1
|
Della Sala A, Tasca L, Butnarasu C, Sala V, Prono G, Murabito A, Garbero OV, Millo E, Terranova L, Blasi F, Gramegna A, Aliberti S, Massarotti A, Visentin S, Hirsch E, Ghigo A. A Non-natural Peptide Targeting the A-kinase Anchoring Function of PI3Kγ for Therapeutic cAMP Modulation in Pulmonary Cells. J Biol Chem 2024:107873. [PMID: 39393573 DOI: 10.1016/j.jbc.2024.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
A-kinase anchoring proteins (AKAPs) are key orchestrators of cyclic AMP (cAMP) signaling that act by recruiting protein kinase A (PKA) in proximity of its substrates and regulators to specific subcellular compartments. Modulation of AKAPs function offers the opportunity to achieve compartment-restricted modulation of the cAMP/PKA axis, paving the way to new targeted treatments. For instance, blocking the AKAP activity of PI3Kγ improves lung function by inducing cAMP-mediated bronchorelaxation, ion transport and anti-inflammatory responses. Here, we report the generation of a non-natural peptide, DRI-Pep #20, optimized to disrupt the AKAP function of PI3Kγ. DRI-Pep #20 mimicked the native interaction between the N-terminal domain of PI3Kγ and PKA, demonstrating nanomolar affinity for PKA, high resistance to protease degradation and high permeability to the pulmonary mucus barrier. DRI-Pep #20 triggered cAMP elevation both in vivo in the airway tract of mice upon intratracheal administration, and in vitro in bronchial epithelial cells of cystic fibrosis (CF) patients. In CF cells, DRI-Pep #20 rescued the defective function of the cAMP-operated channel cystic fibrosis conductance regulator (CFTR), by boosting the efficacy of approved CFTR modulators. Overall, this study unveils DRI-Pep #20 as a potent PI3Kγ/PKA disruptor for achieving therapeutic cAMP elevation in chronic respiratory disorders.
Collapse
|
2
|
Sorge M, Savoré G, Gallo A, Acquarone D, Sbroggiò M, Velasco S, Zamporlini F, Femminò S, Moiso E, Morciano G, Balmas E, Raimondi A, Nattenberg G, Stefania R, Tacchetti C, Rizzo AM, Corsetto P, Ghigo A, Turco E, Altruda F, Silengo L, Pinton P, Raffaelli N, Sniadecki NJ, Penna C, Pagliaro P, Hirsch E, Riganti C, Tarone G, Bertero A, Brancaccio M. An intrinsic mechanism of metabolic tuning promotes cardiac resilience to stress. EMBO Mol Med 2024; 16:2450-2484. [PMID: 39271959 PMCID: PMC11473679 DOI: 10.1038/s44321-024-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Defining the molecular mechanisms underlying cardiac resilience is crucial to find effective approaches to protect the heart. A physiologic level of ROS is produced in the heart by fatty acid oxidation, but stressful events can boost ROS and cause mitochondrial dysfunction and cardiac functional impairment. Melusin is a muscle specific chaperone required for myocardial compensatory remodeling during stress. Here we report that Melusin localizes in mitochondria where it binds the mitochondrial trifunctional protein, a key enzyme in fatty acid oxidation, and decreases it activity. Studying both mice and human induced pluripotent stem cell-derived cardiomyocytes, we found that Melusin reduces lipid oxidation in the myocardium and limits ROS generation in steady state and during pressure overload and doxorubicin treatment, preventing mitochondrial dysfunction. Accordingly, the treatment with the lipid oxidation inhibitor Trimetazidine concomitantly with stressful stimuli limits ROS accumulation and prevents long-term heart dysfunction. These findings disclose a physiologic mechanism of metabolic regulation in the heart and demonstrate that a timely restriction of lipid metabolism represents a potential therapeutic strategy to improve cardiac resilience to stress.
Collapse
|
3
|
Tocchetti CG, Farmakis D, Koop Y, Andres MS, Couch LS, Formisano L, Ciardiello F, Pane F, Au L, Emmerich M, Plummer C, Gulati G, Ramalingam S, Cardinale D, Brezden-Masley C, Iakobishvili Z, Thavendiranathan P, Santoro C, Bergler-Klein J, Keramida K, de Boer RA, Maack C, Lutgens E, Rassaf T, Fradley MG, Moslehi J, Yang EH, De Keulenaer G, Ameri P, Bax J, Neilan TG, Herrmann J, Mbakwem AC, Mirabel M, Skouri H, Hirsch E, Cohen-Solal A, Sverdlov AL, van der Meer P, Asteggiano R, Barac A, Ky B, Lenihan D, Dent S, Seferovic P, Coats AJS, Metra M, Rosano G, Suter T, Lopez-Fernandez T, Lyon AR. Cardiovascular toxicities of immune therapies for cancer - a scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Council of Cardio-Oncology. Eur J Heart Fail 2024; 26:2055-2076. [PMID: 39087551 DOI: 10.1002/ejhf.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
The advent of immunological therapies has revolutionized the treatment of solid and haematological cancers over the last decade. Licensed therapies which activate the immune system to target cancer cells can be broadly divided into two classes. The first class are antibodies that inhibit immune checkpoint signalling, known as immune checkpoint inhibitors (ICIs). The second class are cell-based immune therapies including chimeric antigen receptor T lymphocyte (CAR-T) cell therapies, natural killer (NK) cell therapies, and tumour infiltrating lymphocyte (TIL) therapies. The clinical efficacy of all these treatments generally outweighs the risks, but there is a high rate of immune-related adverse events (irAEs), which are often unpredictable in timing with clinical sequalae ranging from mild (e.g. rash) to severe or even fatal (e.g. myocarditis, cytokine release syndrome) and reversible to permanent (e.g. endocrinopathies).The mechanisms underpinning irAE pathology vary across different irAE complications and syndromes, reflecting the broad clinical phenotypes observed and the variability of different individual immune responses, and are poorly understood overall. Immune-related cardiovascular toxicities have emerged, and our understanding has evolved from focussing initially on rare but fatal ICI-related myocarditis with cardiogenic shock to more common complications including less severe ICI-related myocarditis, pericarditis, arrhythmias, including conduction system disease and heart block, non-inflammatory heart failure, takotsubo syndrome and coronary artery disease. In this scientific statement on the cardiovascular toxicities of immune therapies for cancer, we summarize the pathophysiology, epidemiology, diagnosis, and management of ICI, CAR-T, NK, and TIL therapies. We also highlight gaps in the literature and where future research should focus.
Collapse
|
4
|
Gauer L, Lagarde S, Valenti-Hirsch MP, Makhalova J, Milh M, Baer S, Lepine A, Ollivier I, Scavarda D, Hirsch E, Bartolomei F, De Saint-Martin A, Villeneuve N. Pathways to epilepsy surgery in children with tuberous sclerosis complex-associated epilepsy. Rev Neurol (Paris) 2024; 180:807-817. [PMID: 38866657 DOI: 10.1016/j.neurol.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Previous studies showed the efficacy of epilepsy surgery in carefully selected children with epilepsy associated with tuberous sclerosis complex. However, how this selection is conducted, and the characteristics of the patients brought to surgery are still poorly described. By conducting a multicentric retrospective cohort study covering the practice of the last twenty years, we describe the paths leading to epilepsy surgery in children with epilepsy associated with tuberous sclerosis complex. METHODS We identified 84 children diagnosed with tuberous sclerosis complex and epilepsy by matching two exhaustive registries of genetic diseases and subsequent medical records reviews within two French neuropediatric and epilepsy centers. Demographic, clinical, longitudinal, and diagnostic and surgical procedures data were collected. RESULTS Forty-six percent of the children were initially drug-resistant and 19% underwent resective surgery, most often before the age of four. Stereotactic electroencephalography was performed prior to surgery in 44% of cases. Fifty-seven and 43% of patients remained seizure-free one and ten years after surgery, respectively. In addition, 52% of initially drug-resistant patients who did not undergo surgery were seizure-free at the last follow-up. The number of anti-seizure medications required decreased in 50% of cases after surgery. Infantile spasms, intellectual disability, autism spectrum disorder or severe behavioral disorders were not contraindications to surgery but were associated with a higher rate of complications and a lower rate of seizure freedom after surgery. CONCLUSION Despite the assumption of complex multifocal epilepsy and practical difficulties in young children with tuberous sclerosis complex, successful surgery results are comparable with other populations of patients with drug-resistant epilepsy, and a spontaneous evolution to drug-sensitive epilepsy may occur in non-operated patients.
Collapse
|
5
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
|
6
|
Guerra G, Russo M, Priolo R, Riganti C, Reano S, Filigheddu N, Hirsch E, Ghigo A. Unravelling the metabolic rewiring in the context of doxorubicin-induced cardiotoxicity: Fuel preference changes from fatty acids to glucose oxidation. Vascul Pharmacol 2024; 155:107324. [PMID: 38985581 DOI: 10.1016/j.vph.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Oxidation-Reduction
- Glucose/metabolism
- Cardiotoxicity
- Fatty Acids/metabolism
- Energy Metabolism/drug effects
- Class Ib Phosphatidylinositol 3-Kinase/metabolism
- Glycolysis/drug effects
- Autophagy/drug effects
- Male
- Signal Transduction/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Citric Acid Cycle/drug effects
- Mice, Inbred C57BL
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/prevention & control
- Heart Diseases/physiopathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/enzymology
- Mice, Knockout
- Disease Models, Animal
- Reactive Oxygen Species/metabolism
- Glucose Transporter Type 4/metabolism
- Antibiotics, Antineoplastic/toxicity
- Antibiotics, Antineoplastic/adverse effects
Collapse
|
7
|
De Santis MC, Bockorny B, Hirsch E, Cappello P, Martini M. Exploiting pancreatic cancer metabolism: challenges and opportunities. Trends Mol Med 2024; 30:592-604. [PMID: 38604929 DOI: 10.1016/j.molmed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive form of pancreatic cancer, known for its challenging diagnosis and limited treatment options. The focus on metabolic reprogramming as a key factor in tumor initiation, progression, and therapy resistance has gained prominence. In this review we focus on the impact of metabolic changes on the interplay among stromal, immune, and tumor cells, as glutamine and branched-chain amino acids (BCAAs) emerge as pivotal players in modulating immune cell functions and tumor growth. We also discuss ongoing clinical trials that explore metabolic modulation for PDAC, targeting mitochondrial metabolism, asparagine and glutamine addiction, and autophagy inhibition. Overcoming challenges in understanding nutrient effects on immune-stromal-tumor interactions holds promise for innovative therapeutic strategies.
Collapse
|
8
|
Cnudde S, Brand T, Fender J, Prever L, Murabito A, Russo M, Logrand F, Gulluni F, Lorenz K, Hirsch E, Ghigo A. PI3KC2α controls cardiac contractility through regulation of β2-adrenergic receptor recycling. Vascul Pharmacol 2024; 155:107313. [PMID: 38985607 DOI: 10.1016/j.vph.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
|
9
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
|
10
|
Hirsch E, Fantastico E, Prever L, Gulluni F. A connection between phosphatidylinositol 5-phosphate and the Hippo pathway to prevent epithelial-mesenchymal transition in cancer. Sci Signal 2024; 17:eadp3504. [PMID: 38805585 DOI: 10.1126/scisignal.adp3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
The Hippo pathway blocks epithelial-mesenchymal transition and metastasis in cancer mediated by the transcriptional coactivator YAP. In this issue of Science Signaling, Palamiuc et al. demonstrate that phosphatidylinositol 5-phosphate (PI5P) enhances Hippo pathway activation and that simultaneously the Hippo pathway initiates a positive feedback loop by inhibiting the conversion of PI5P into PIP2.
Collapse
|
11
|
Pavlaki N, Froese A, Li W, De Jong KA, Geertz B, Subramanian H, Mohagaonkar S, Luo X, Schubert M, Wiegmann R, Margaria JP, Ghigo A, Kämmerer S, Hirsch E, El-Armouche A, Guan K, Nikolaev VO. Gene therapy with phosphodiesterases 2A and 4B ameliorates heart failure and arrhythmias by improving subcellular cAMP compartmentation. Cardiovasc Res 2024:cvae094. [PMID: 38776406 DOI: 10.1093/cvr/cvae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 05/25/2024] Open
Abstract
AIMS Gene therapy with cardiac phosphodiesterases (PDEs) such as PDE4B has recently been described to effectively prevent heart failure in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload induced heart failure in mice by acting on and restoring altered cAMP compartmentalization in distinct subcellular microdomains. METHODS AND RESULTS Heart failure was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3 or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentalization in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human induced pluripotent stem derived cardiomyocytes with the A2254 V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS Our data indicate that gene therapy with phosphodiesterases can prevent heart failure including associated cardiac remodeling and arrhythmias by restoring altered cAMP compartmentalization in functionally relevant subcellular microdomains.
Collapse
|
12
|
Gauer L, Baer S, Valenti-Hirsch MP, De Saint-Martin A, Hirsch E. Drug-resistant generalized epilepsies: Revisiting the frontiers of idiopathic generalized epilepsies. Rev Neurol (Paris) 2024; 180:290-297. [PMID: 38508955 DOI: 10.1016/j.neurol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The 2017 International League Against Epilepsy (ILAE) classification suggested that the term "genetic generalized epilepsies" (GGEs) should be used for the broad group of epilepsies with so-called "generalized" seizure types and "generalized" spike-wave activity on EEG, based on a presumed genetic etiology. Within this framework, idiopathic generalized epilepsies (IGEs) are described as a subset of GGEs and include only four epileptic syndromes: childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone. The recent 2022 ILAE definition of IGEs is based on the current state of knowledge and reflects a community consensus and is designed to evolve as knowledge advances. The term "frontiers of IGEs" refers to the actual limits of our understanding of these four syndromes. Indeed, among patients presenting with a syndrome compatible with the 2022 definition of IGEs, we still observe a significant proportion of patients presenting with specific clinical features, refractory seizures, or drug-resistant epilepsies. This leads to the discussion of the boundaries of IGEs and GGEs, or what is accepted within a clinical spectrum of a definite IGE. Here, we discuss several entities that have been described in the literature for many years and that may either constitute rare features of IGEs or a distinct differential diagnosis. Their recognition by clinicians may allow a more individualized approach and improve the management of patients presenting with such entities.
Collapse
|
13
|
Nasr M, Fay A, Lupieri A, Malet N, Darmon A, Zahreddine R, Swiader A, Wahart A, Viaud J, Nègre-Salvayre A, Hirsch E, Monteyne D, Perez-Morgà D, Dupont N, Codogno P, Ramel D, Morel E, Laffargue M, Gayral S. PI3KCIIα-Dependent Autophagy Program Protects From Endothelial Dysfunction and Atherosclerosis in Response to Low Shear Stress in Mice. Arterioscler Thromb Vasc Biol 2024; 44:620-634. [PMID: 38152888 DOI: 10.1161/atvbaha.123.319978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.
Collapse
|
14
|
Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Cell Rep Med 2023; 4:101306. [PMID: 38052214 PMCID: PMC10772350 DOI: 10.1016/j.xcrm.2023.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.
Collapse
|
15
|
Salloum FN, Tocchetti CG, Ameri P, Ardehali H, Asnani A, de Boer RA, Burridge P, Cabrera JÁ, de Castro J, Córdoba R, Costa A, Dent S, Engelbertsen D, Fernández-Velasco M, Fradley M, Fuster JJ, Galán-Arriola C, García-Lunar I, Ghigo A, González-Neira A, Hirsch E, Ibáñez B, Kitsis RN, Konety S, Lyon AR, Martin P, Mauro AG, Mazo Vega MM, Meijers WC, Neilan TG, Rassaf T, Ricke-Hoch M, Sepulveda P, Thavendiranathan P, van der Meer P, Fuster V, Ky B, López-Fernández T. Priorities in Cardio-Oncology Basic and Translational Science: GCOS 2023 Symposium Proceedings: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:715-731. [PMID: 38205010 PMCID: PMC10774781 DOI: 10.1016/j.jaccao.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 01/12/2024] Open
Abstract
Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.
Collapse
|
16
|
Bandini C, Mereu E, Paradzik T, Labrador M, Maccagno M, Cumerlato M, Oreglia F, Prever L, Manicardi V, Taiana E, Ronchetti D, D’Agostino M, Gay F, Larocca A, Besse L, Merlo GR, Hirsch E, Ciarrocchi A, Inghirami G, Neri A, Piva R. Lysin (K)-specific demethylase 1 inhibition enhances proteasome inhibitor response and overcomes drug resistance in multiple myeloma. Exp Hematol Oncol 2023; 12:71. [PMID: 37563685 PMCID: PMC10413620 DOI: 10.1186/s40164-023-00434-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy, accounting for approximately 1% of all cancers. Despite recent advances in the treatment of MM, due to the introduction of proteasome inhibitors (PIs) such as bortezomib (BTZ) and carfilzomib (CFZ), relapses and disease progression remain common. Therefore, a major challenge is the development of novel therapeutic approaches to overcome drug resistance, improve patient outcomes, and broaden PIs applicability to other pathologies. METHODS We performed genetic and drug screens to identify new synthetic lethal partners to PIs, and validated candidates in PI-sensitive and -resistant MM cells. We also tested best synthetic lethal interactions in other B-cell malignancies, such as mantle cell, Burkitt's and diffuse large B-cell lymphomas. We evaluated the toxicity of combination treatments in normal peripheral blood mononuclear cells (PBMCs) and bone marrow stromal cells (BMSCs). We confirmed the combo treatment' synergistic effects ex vivo in primary CD138+ cells from MM patients, and in different MM xenograft models. We exploited RNA-sequencing and Reverse-Phase Protein Arrays (RPPA) to investigate the molecular mechanisms of the synergy. RESULTS We identified lysine (K)-specific demethylase 1 (LSD1) as a top candidate whose inhibition can synergize with CFZ treatment. LSD1 silencing enhanced CFZ sensitivity in both PI-resistant and -sensitive MM cells, resulting in increased tumor cell death. Several LSD1 inhibitors (SP2509, SP2577, and CC-90011) triggered synergistic cytotoxicity in combination with different PIs in MM and other B-cell neoplasms. CFZ/SP2509 treatment exhibited a favorable cytotoxicity profile toward PBMCs and BMSCs. We confirmed the clinical potential of LSD1-proteasome inhibition in primary CD138+ cells of MM patients, and in MM xenograft models, leading to the inhibition of tumor progression. DNA damage response (DDR) and proliferation machinery were the most affected pathways by CFZ/SP2509 combo treatment, responsible for the anti-tumoral effects. CONCLUSIONS The present study preclinically demonstrated that LSD1 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients and that this combination might be exploited for the treatment of other B-cell malignancies, thus extending the therapeutic impact of the project.
Collapse
|
17
|
Mastini C, Campisi M, Patrucco E, Mura G, Ferreira A, Costa C, Ambrogio C, Germena G, Martinengo C, Peola S, Mota I, Vissio E, Molinaro L, Arigoni M, Olivero M, Calogero R, Prokoph N, Tabbò F, Shoji B, Brugieres L, Geoerger B, Turner SD, Cuesta-Mateos C, D’Aliberti D, Mologni L, Piazza R, Gambacorti-Passerini C, Inghirami GG, Chiono V, Kamm RD, Hirsch E, Koch R, Weinstock DM, Aster JC, Voena C, Chiarle R. Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma. Sci Transl Med 2023; 15:eabo3826. [PMID: 37379367 PMCID: PMC10804420 DOI: 10.1126/scitranslmed.abo3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.
Collapse
|
18
|
Hirsch E, Nnani D, Patel S, Rochlani Y, Vukelic S, Shin J, Chavez P, Madan S, Sims D, Jorde U, Saeed O. Tolerability and Effectiveness of Intensified Statin after Heart Transplantation. J Heart Lung Transplant 2023. [DOI: 10.1016/j.healun.2023.02.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
19
|
Rotolo R, Leuci V, Donini C, Galvagno F, Massa A, De Santis MC, Peirone S, Medico G, Sanlorenzo M, Vujic I, Gammaitoni L, Basiricò M, Righi L, Riganti C, Salaroglio IC, Napoli F, Tabbò F, Mariniello A, Vigna E, Modica C, D’Ambrosio L, Grignani G, Taulli R, Hirsch E, Cereda M, Aglietta M, Scagliotti GV, Novello S, Bironzo P, Sangiolo D. Novel Lymphocyte-Independent Antitumor Activity by PD-1 Blocking Antibody against PD-1+ Chemoresistant Lung Cancer Cells. Clin Cancer Res 2023; 29:621-634. [PMID: 36165915 PMCID: PMC9890136 DOI: 10.1158/1078-0432.ccr-22-0761] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non-small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. EXPERIMENTAL DESIGN PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in vitro, by PD-1 blockade and stimulation with soluble ligand (PD-L1s), and in vivo within NSCLC xenograft models. RESULTS We showed the existence of PD-1+ NSCLC cell subsets in cell lines and large in silico datasets (Cancer Cell Line Encyclopedia and The Cancer Genome Atlas). Cisplatin significantly increased PD-1 expression on chemo-surviving NSCLC cells (2.5-fold P = 0.0014), while the sequential treatment with anti-PD-1 Ab impaired their recovery after chemotherapy. PD-1 was found to be associated with tumor stemness features. PD-1 expression was enhanced in NSCLC stem-like pneumospheres (P < 0.0001), significantly promoted by stimulation with soluble PD-L1 (+27% ± 4, P < 0.0001) and inhibited by PD-1 blockade (-30% ± 3, P < 0.0001). The intravenous monotherapy with anti-PD-1 significantly inhibited tumor growth of NSCLC xenografts in immunodeficient mice, without the contribution of the immune system, and delayed the occurrence of chemoresistance when combined with cisplatin. CONCLUSIONS We report first evidence of a novel lymphocyte-independent activity of anti-PD-1 antibodies in NSCLC, capable of inhibiting chemo-surviving NSCLC cells and exploitable to contrast disease relapses following chemotherapy. See related commentary by Augustin et al., p. 505.
Collapse
|
20
|
De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Di Gregorio E, Mina E, Lorito N, Bacci M, Lattanzio R, Sala G, Cappello P, Novelli F, Giovannetti E, Vicentini C, Andreani S, Delfino P, Corbo V, Scarpa A, Porporato PE, Morandi A, Hirsch E, Martini M. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut 2023; 72:360-371. [PMID: 35623884 PMCID: PMC9872233 DOI: 10.1136/gutjnl-2021-325117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Collapse
|
21
|
Liu Q, Telezhkin V, Jiang W, Gu Y, Wang Y, Hong W, Tian W, Yarova P, Zhang G, Lee SMY, Zhang P, Zhao M, Allen ND, Hirsch E, Penninger J, Song B. Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation. Cell Biosci 2023; 13:4. [PMID: 36624495 PMCID: PMC9830810 DOI: 10.1186/s13578-023-00954-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are considered as candidates for cell replacement therapy in many neurological disorders. However, the propensity for their differentiation to proceed more glial rather than neuronal phenotypes in pathological conditions limits positive outcomes of reparative transplantation. Exogenous physical stimulation to favor the neuronal differentiation of NSCs without extra chemical side effect could alleviate the problem, providing a safe and highly efficient cell therapy to accelerate neurological recovery following neuronal injuries. RESULTS With 7-day physiological electric field (EF) stimulation at 100 mV/mm, we recorded the boosted neuronal differentiation of NSCs, comparing to the non-EF treated cells with 2.3-fold higher MAP2 positive cell ratio, 1.6-fold longer neuronal process and 2.4-fold higher cells ratio with neuronal spontaneous action potential. While with the classical medium induction, the neuronal spontaneous potential may only achieve after 21-day induction. Deficiency of either PI3Kγ or β-catenin abolished the above improvement, demonstrating the requirement of the PI3K/Akt/GSK-3β/β-catenin cascade activation in the physiological EF stimulation boosted neuronal differentiation of NSCs. When transplanted into the spinal cord injury (SCI) modelled mice, these EF pre-stimulated NSCs were recorded to develop twofold higher proportion of neurons, comparing to the non-EF treated NSCs. Along with the boosted neuronal differentiation following transplantation, we also recorded the improved neurogenesis in the impacted spinal cord and the significantly benefitted hind limp motor function repair of the SCI mice. CONCLUSIONS In conclusion, we demonstrated physiological EF stimulation as an efficient method to boost the neuronal differentiation of NSCs via the PI3K/Akt/GSK-3β/β-catenin activation. Pre-treatment with the EF stimulation induction before NSCs transplantation would notably improve the therapeutic outcome for neurogenesis and neurofunction recovery of SCI.
Collapse
|
22
|
Liaci C, Camera M, Zamboni V, Sarò G, Ammoni A, Parmigiani E, Ponzoni L, Hidisoglu E, Chiantia G, Marcantoni A, Giustetto M, Tomagra G, Carabelli V, Torelli F, Sala M, Yanagawa Y, Obata K, Hirsch E, Merlo GR. Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Front Cell Dev Biol 2022; 10:875468. [PMID: 36568982 PMCID: PMC9774038 DOI: 10.3389/fcell.2022.875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.
Collapse
|
23
|
Russo M, Guerra G, Priolo R, Riganti C, Hirsch E, Ghigo A. Doxorubicin promotes a cardiac metabolic switch from an oxidative metabolism to glycolysis through a PI3Kγ-dependent mechanism. J Mol Cell Cardiol 2022. [DOI: 10.1016/j.yjmcc.2022.08.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Cnudde S, Russo M, Prever L, Fuentes S, Murabito A, Logrand F, Fagoonee S, Gulluni F, Hirsch E, Ghigo A. PI3KC2α regulates cardiac contractility by restraining the β-adrenergic receptor/cyclic AMP (β-AR/cAMP) pathway. J Mol Cell Cardiol 2022. [DOI: 10.1016/j.yjmcc.2022.08.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Fitouchi S, Jesel L, Hirsch E, Marzak H. Epileptic seizure-induced syncopal asystole reversed by lacosamide: a case report. Europace 2022; 25:1510. [PMID: 36417315 PMCID: PMC10105847 DOI: 10.1093/europace/euac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|