1
|
Hilser JR, Spencer NJ, Afshari K, Gilliland FD, Hu H, Deb A, Lusis AJ, Wilson Tang W, Hartiala JA, Hazen SL, Allayee H. COVID-19 Is a Coronary Artery Disease Risk Equivalent and Exhibits a Genetic Interaction With ABO Blood Type. Arterioscler Thromb Vasc Biol 2024; 44:2321-2333. [PMID: 39381876 PMCID: PMC11495539 DOI: 10.1161/atvbaha.124.321001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND COVID-19 is associated with acute risk of major adverse cardiac events (MACE), including myocardial infarction, stroke, and mortality (all-cause). However, the duration and underlying determinants of heightened risk of cardiovascular disease and MACE post-COVID-19 are not known. METHODS Data from the UK Biobank was used to identify COVID-19 cases (n=10 005) who were positive for polymerase chain reaction (PCR+)-based tests for SARS-CoV-2 infection (n=8062) or received hospital-based International Classification of Diseases version-10 (ICD-10) codes for COVID-19 (n=1943) between February 1, 2020 and December 31, 2020. Population controls (n=217 730) and propensity score-matched controls (n=38 860) were also drawn from the UK Biobank during the same period. Proportional hazard models were used to evaluate COVID-19 for association with long-term (>1000 days) risk of MACE and as a coronary artery disease risk equivalent. Additional analyses examined whether COVID-19 interacted with genetic determinants to affect the risk of MACE and its components. RESULTS The risk of MACE was elevated in COVID-19 cases at all levels of severity (HR, 2.09 [95% CI, 1.94-2.25]; P<0.0005) and to a greater extent in cases hospitalized for COVID-19 (HR, 3.85 [95% CI, 3.51-4.24]; P<0.0005). Hospitalization for COVID-19 represented a coronary artery disease risk equivalent since incident MACE risk among cases without history of cardiovascular disease was even higher than that observed in patients with cardiovascular disease without COVID-19 (HR, 1.21 [95% CI, 1.08-1.37]; P<0.005). A significant genetic interaction was observed between the ABO locus and hospitalization for COVID-19 (Pinteraction=0.01), with risk of thrombotic events being increased in subjects with non-O blood types (HR, 1.65 [95% CI, 1.29-2.09]; P=4.8×10-5) to a greater extent than subjects with blood type O (HR, 0.96 [95% CI, 0.66-1.39]; P=0.82). CONCLUSIONS Hospitalization for COVID-19 represents a coronary artery disease risk equivalent, with post-acute myocardial infarction and stroke risk particularly heightened in non-O blood types. These results may have important clinical implications and represent, to our knowledge, one of the first examples of a gene-pathogen exposure interaction for thrombotic events.
Collapse
|
2
|
Hampson HE, Li S, Walker DI, Wang H, Jia Q, Rock S, Costello E, Bjornstad P, Pyle L, Nelson J, Gilliland FD, Chen Z, Aung M, Chatzi L, Conti DV, Alderete TL, Goodrich JA. The potential mediating role of the gut microbiome and metabolites in the association between PFAS and kidney function in young adults: A proof-of-concept study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024:176519. [PMID: 39424468 DOI: 10.1016/j.scitotenv.2024.176519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects over 10 % of the global population and can lead to kidney failure and death. Exposure to per- and polyfluoroalkyl substances (PFAS) is associated with increased risk of CKD, yet studies examining the mechanisms linking PFAS and kidney function are lacking. In this exploratory study, we examined longitudinal associations of PFAS exposure with kidney function, and tested if associations were mediated by altered gut bacterial taxa or plasma metabolites using a multi-omics mediation analysis. METHODS Seventy-eight young adults from the Children's Health Study were included in this longitudinal cohort study. At baseline, seven plasma PFAS and untargeted plasma metabolomics were measured using liquid chromatography/mass-spectrometry. Baseline gut bacterial abundance was characterized using 16S rRNA sequencing and examined at the genus level. At follow-up, serum creatinine and cystatin-C concentrations were quantified to estimate glomerular filtration rate (eGFR). High-dimensional multi-omics analyses were conducted to assess the association between baseline PFAS exposure with follow-up eGFR, mediated by gut microbiome and circulating metabolite levels. RESULTS PFAS burden score, a variable developed to estimate exposure to chemical mixtures, was associated with kidney function. Each standard deviation increase in baseline PFAS burden score was associated with a 2.4 % lower eGFR at follow-up (95 % CI:[0.1 %,4.8 %]). Following high-dimensional mediation analyses with the microbiome and circulating metabolites, a joint component (characterized by reduced Lachnospiraceae and 17b-estradiol and increased succinate, retinoate and dodecanoic acid) and a metabolite component (characterized by increased hypotaurine and decreased D-pinitol and ureidopropionate) mediated 38 % and 50 % of the effect between PFAS burden score and eGFR, respectively. CONCLUSION Our proof-of-concept analysis provides the first evidence that reduced short-chain fatty acid-producing bacteria and anti-inflammatory metabolites may link PFAS exposure with impaired kidney function. This study raises the possibility of future targeted interventions that can alter gut microbiome or circulating metabolite profiles to prevent PFAS induced kidney damage.
Collapse
|
3
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL105756 NHLBI NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AI132476 NIAID NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153805 NHLBI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
|
4
|
Bradfeld JP, Kember RL, Ulrich A, Balkhiyarova Z, Alyass A, Aris IM, Bell JA, Broadaway KA, Chen Z, Chai JF, Davies NM, Fernandez-Orth D, Bustamante M, Fore R, Ganguli A, Heiskala A, Hottenga JJ, Íñiguez C, Kobes S, Leinonen J, Lowry E, Lyytikainen LP, Mahajan A, Pitkänen N, Schnurr TM, Have CT, Strachan DP, Thiering E, Vogelezang S, Wade KH, Wang CA, Wong A, Holm LA, Chesi A, Choong C, Cruz M, Elliott P, Franks S, Frithiof-Bøjsøe C, Gauderman WJ, Glessner JT, Gilsanz V, Griesman K, Hanson RL, Kaakinen M, Kalkwarf H, Kelly A, Kindler J, Kähönen M, Lanca C, Lappe J, Lee NR, McCormack S, Mentch FD, Mitchell JA, Mononen N, Niinikoski H, Oken E, Pahkala K, Sim X, Teo YY, Baier LJ, van Beijsterveldt T, Adair LS, Boomsma DI, de Geus E, Guxens M, Eriksson JG, Felix JF, Gilliland FD, Hansen T, Hardy R, Hivert MF, Holm JC, Jaddoe VWV, Järvelin MR, Lehtimäki T, Mackey DA, Meyre D, Mohlke KL, Mykkänen J, Oberfeld S, Pennell CE, Perry JRB, Raitakari O, Rivadeneira F, Saw SM, Sebert S, Shepherd JA, Standl M, Sørensen TIA, Timpson NJ, Torrent M, Willemsen G, Hypponen E, Power C, McCarthy MI, Freathy RM, Widén E, Hakonarson H, Prokopenko I, Voight BF, Zemel BS, Grant SFA, Cousminer DL. Author Correction: Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes. Genome Biol 2024; 25:129. [PMID: 38773652 PMCID: PMC11106973 DOI: 10.1186/s13059-024-03276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
|
5
|
Jiang M, Hu CJ, Rowe CL, Kang H, Gong X, Dagucon CP, Wang J, Lin Y, Sood A, Guo Y, Zhu Y, Alexis NE, Gilliland FD, Belinsky SA, Yu X, Leng S. Application of artificial intelligence in quantifying lung deposition dose of black carbon in people with exposure to ambient combustion particles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:529-537. [PMID: 37848612 PMCID: PMC11021374 DOI: 10.1038/s41370-023-00607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Understanding lung deposition dose of black carbon is critical to fully reconcile epidemiological evidence of combustion particles induced health effects and inform the development of air quality metrics concerning black carbon. Macrophage carbon load (MaCL) is a novel cytology method that quantifies lung deposition dose of black carbon, however it has limited feasibility in large-scale epidemiological study due to the labor-intensive manual counting. OBJECTIVE To assess the association between MaCL and episodic elevation of combustion particles; to develop artificial intelligence based counting algorithm for MaCL assay. METHODS Sputum slides were collected during episodic elevation of ambient PM2.5 (n = 49, daily PM2.5 > 10 µg/m3 for over 2 weeks due to wildfire smoke intrusion in summer and local wood burning in winter) and low PM2.5 period (n = 39, 30-day average PM2.5 < 4 µg/m3) from the Lovelace Smokers cohort. RESULTS Over 98% individual carbon particles in macrophages had diameter <1 µm. MaCL levels scored manually were highly responsive to episodic elevation of ambient PM2.5 and also correlated with lung injury biomarker, plasma CC16. The association with CC16 became more robust when the assessment focused on macrophages with higher carbon load. A Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP) was developed based on the Mask Region-based Convolutional Neural Network. MacLEAP algorithm yielded excellent correlations with manual counting for number and area of the particles. The algorithm produced associations with ambient PM2.5 and plasma CC16 that were nearly identical in magnitude to those obtained through manual counting. IMPACT STATEMENT Understanding lung black carbon deposition is crucial for comprehending health effects of combustion particles. We developed "Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP)", the first artificial intelligence algorithm for quantifying airway macrophage black carbon. Our study bolstered the algorithm with more training images and its first use in air pollution epidemiology. We revealed macrophage carbon load as a sensitive biomarker for heightened ambient combustion particles due to wildfires and residential wood burning.
Collapse
|
6
|
Chen JC, Goodrich JA, Walker DI, Liao J, Costello E, Alderete TL, Valvi D, Hampson H, Li S, Baumert BO, Rock S, Jones DP, Eckel SP, McConnell R, Gilliland FD, Aung MT, Conti DV, Chen Z, Chatzi L. Exposure to per- and polyfluoroalkyl substances and high-throughput proteomics in Hispanic youth. ENVIRONMENT INTERNATIONAL 2024; 186:108601. [PMID: 38537583 PMCID: PMC11479670 DOI: 10.1016/j.envint.2024.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.
Collapse
|
7
|
Hampson HE, Costello E, Walker DI, Wang H, Baumert BO, Valvi D, Rock S, Jones DP, Goran MI, Gilliland FD, Conti DV, Alderete TL, Chen Z, Chatzi L, Goodrich JA. Associations of dietary intake and longitudinal measures of per- and polyfluoroalkyl substances (PFAS) in predominantly Hispanic young Adults: A multicohort study. ENVIRONMENT INTERNATIONAL 2024; 185:108454. [PMID: 38316574 PMCID: PMC11089812 DOI: 10.1016/j.envint.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.
Collapse
|
8
|
Beglarian E, Costello E, Walker DI, Wang H, Alderete TL, Chen Z, Valvi D, Baumert BO, Rock S, Rubbo B, Aung MT, Gilliland FD, Goran MI, Jones DP, McConnell R, Eckel SP, Conti DV, Goodrich JA, Chatzi L. Exposure to perfluoroalkyl substances and longitudinal changes in bone mineral density in adolescents and young adults: A multi-cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117611. [PMID: 38061983 PMCID: PMC10922273 DOI: 10.1016/j.envres.2023.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) may impair bone development in adolescence, which impacts life-long bone health. No previous studies have examined prospective associations of individual PFAS and their mixture with bone mineral density (BMD) changes in Hispanic young persons, a population at high risk of osteoporosis in adulthood. OBJECTIVES To examine associations of individual PFAS and PFAS mixtures with longitudinal changes in BMD in an adolescent Hispanic cohort and examine generalizability of findings in a mixed-ethnicity young adult cohort (58.4% Hispanic). METHODS Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n = 304; mean follow-up = 1.4 years) and young adults from the Southern California Children's Health Study (CHS; n = 137; mean follow-up = 4.1 years) were included in this study. Plasma PFAS were measured at baseline and dual x-ray absorptiometry scans were performed at baseline and follow-up to measure BMD. We estimated longitudinal associations between BMD and five PFAS via separate covariate-adjusted linear mixed effects models, and between BMD and the PFAS mixture via quantile g-computation. RESULTS In SOLAR adolescents, baseline plasma perfluorooctanesulfonic acid (PFOS) was associated with longitudinal changes in BMD. Each doubling of PFOS was associated with an average -0.003 g/cm2 difference in change in trunk BMD per year over follow-up (95% CI: -0.005, -0.0002). Associations with PFOS persisted in CHS young adults, where each doubling of plasma PFOS was associated with an average -0.032 g/cm2 difference in total BMD at baseline (95% CI -0.062, -0.003), though longitudinal associations were non-significant. We did not find associations of other PFAS with BMD; associations of the PFAS mixture with BMD outcomes were primarily negative though non-significant. DISCUSSION PFOS exposure was associated with lower BMD in adolescence and young adulthood, important periods for bone development, which may have implications on future bone health and risk of osteoporosis in adulthood.
Collapse
|
9
|
Costello E, Goodrich JA, Patterson WB, Walker DI, Chen J(C, Baumert BO, Rock S, Gilliland FD, Goran MI, Chen Z, Alderete TL, Conti DV, Chatzi L. Proteomic and Metabolomic Signatures of Diet Quality in Young Adults. Nutrients 2024; 16:429. [PMID: 38337712 PMCID: PMC10857402 DOI: 10.3390/nu16030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The assessment of "omics" signatures may contribute to personalized medicine and precision nutrition. However, the existing literature is still limited in the homogeneity of participants' characteristics and in limited assessments of integrated omics layers. Our objective was to use post-prandial metabolomics and fasting proteomics to identify biological pathways and functions associated with diet quality in a population of primarily Hispanic young adults. We conducted protein and metabolite-wide association studies and functional pathway analyses to assess the relationships between a priori diet indices, Healthy Eating Index-2015 (HEI) and Dietary Approaches to Stop Hypertension (DASH) diets, and proteins (n = 346) and untargeted metabolites (n = 23,173), using data from the MetaAIR study (n = 154, 61% Hispanic). Analyses were performed for each diet quality index separately, adjusting for demographics and BMI. Five proteins (ACY1, ADH4, AGXT, GSTA1, F7) and six metabolites (undecylenic acid, betaine, hyodeoxycholic acid, stearidonic acid, iprovalicarb, pyracarbolid) were associated with both diets (p < 0.05), though none were significant after adjustment for multiple comparisons. Overlapping proteins are involved in lipid and amino acid metabolism and in hemostasis, while overlapping metabolites include amino acid derivatives, bile acids, fatty acids, and pesticides. Enriched biological pathways were involved in macronutrient metabolism, immune function, and oxidative stress. These findings in young Hispanic adults contribute to efforts to develop precision nutrition and medicine for diverse populations.
Collapse
|
10
|
Bradfield JP, Kember RL, Ulrich A, Balkhiyarova Z, Alyass A, Aris IM, Bell JA, Broadaway KA, Chen Z, Chai JF, Davies NM, Fernandez-Orth D, Bustamante M, Fore R, Ganguli A, Heiskala A, Hottenga JJ, Íñiguez C, Kobes S, Leinonen J, Lowry E, Lyytikainen LP, Mahajan A, Pitkänen N, Schnurr TM, Have CT, Strachan DP, Thiering E, Vogelezang S, Wade KH, Wang CA, Wong A, Holm LA, Chesi A, Choong C, Cruz M, Elliott P, Franks S, Frithioff-Bøjsøe C, Gauderman WJ, Glessner JT, Gilsanz V, Griesman K, Hanson RL, Kaakinen M, Kalkwarf H, Kelly A, Kindler J, Kähönen M, Lanca C, Lappe J, Lee NR, McCormack S, Mentch FD, Mitchell JA, Mononen N, Niinikoski H, Oken E, Pahkala K, Sim X, Teo YY, Baier LJ, van Beijsterveldt T, Adair LS, Boomsma DI, de Geus E, Guxens M, Eriksson JG, Felix JF, Gilliland FD, Biobank PM, Hansen T, Hardy R, Hivert MF, Holm JC, Jaddoe VWV, Järvelin MR, Lehtimäki T, Mackey DA, Meyre D, Mohlke KL, Mykkänen J, Oberfield S, Pennell CE, Perry JRB, Raitakari O, Rivadeneira F, Saw SM, Sebert S, Shepherd JA, Standl M, Sørensen TIA, Timpson NJ, Torrent M, Willemsen G, Hypponen E, Power C, McCarthy MI, Freathy RM, Widén E, Hakonarson H, Prokopenko I, Voight BF, Zemel BS, Grant SFA, Cousminer DL. Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes. Genome Biol 2024; 25:22. [PMID: 38229171 PMCID: PMC10790528 DOI: 10.1186/s13059-023-03136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.
Collapse
|
11
|
Goodrich JA, Wang H, Walker DI, Lin X, Hu X, Alderete TL, Chen Z, Valvi D, Baumert BO, Rock S, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Postprandial Metabolite Profiles and Risk of Prediabetes in Young People: A Longitudinal Multicohort Study. Diabetes Care 2024; 47:151-159. [PMID: 37971952 PMCID: PMC10733648 DOI: 10.2337/dc23-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Prediabetes in young people is an emerging epidemic that disproportionately impacts Hispanic populations. We aimed to develop a metabolite-based prediction model for prediabetes in young people with overweight/obesity at risk for type 2 diabetes. RESEARCH DESIGN AND METHODS In independent, prospective cohorts of Hispanic youth (discovery; n = 143 without baseline prediabetes) and predominately Hispanic young adults (validation; n = 56 without baseline prediabetes), we assessed prediabetes via 2-h oral glucose tolerance tests. Baseline metabolite levels were measured in plasma from a 2-h postglucose challenge. In the discovery cohort, least absolute shrinkage and selection operator regression with a stability selection procedure was used to identify robust predictive metabolites for prediabetes. Predictive performance was evaluated in the discovery and validation cohorts using logistic regression. RESULTS Two metabolites (allylphenol sulfate and caprylic acid) were found to predict prediabetes beyond known risk factors, including sex, BMI, age, ethnicity, fasting/2-h glucose, total cholesterol, and triglycerides. In the discovery cohort, the area under the receiver operator characteristic curve (AUC) of the model with metabolites and known risk factors was 0.80 (95% CI 0.72-0.87), which was higher than the risk factor-only model (AUC 0.63 [0.53-0.73]; P = 0.001). When the predictive models developed in the discovery cohort were applied to the replication cohort, the model with metabolites and risk factors predicted prediabetes more accurately (AUC 0.70 [95% CI 40.55-0.86]) than the same model without metabolites (AUC 0.62 [0.46-0.79]). CONCLUSIONS Metabolite profiles may help improve prediabetes prediction compared with traditional risk factors. Findings suggest that medium-chain fatty acids and phytochemicals are early indicators of prediabetes in high-risk youth.
Collapse
|
12
|
Shrine N, Izquierdo AG, Chen J, Packer R, Hall RJ, Guyatt AL, Batini C, Thompson RJ, Pavuluri C, Malik V, Hobbs BD, Moll M, Kim W, Tal-Singer R, Bakke P, Fawcett KA, John C, Coley K, Piga NN, Pozarickij A, Lin K, Millwood IY, Chen Z, Li L, Wijnant SRA, Lahousse L, Brusselle G, Uitterlinden AG, Manichaikul A, Oelsner EC, Rich SS, Barr RG, Kerr SM, Vitart V, Brown MR, Wielscher M, Imboden M, Jeong A, Bartz TM, Gharib SA, Flexeder C, Karrasch S, Gieger C, Peters A, Stubbe B, Hu X, Ortega VE, Meyers DA, Bleecker ER, Gabriel SB, Gupta N, Smith AV, Luan J, Zhao JH, Hansen AF, Langhammer A, Willer C, Bhatta L, Porteous D, Smith BH, Campbell A, Sofer T, Lee J, Daviglus ML, Yu B, Lim E, Xu H, O'Connor GT, Thareja G, Albagha OME, Suhre K, Granell R, Faquih TO, Hiemstra PS, Slats AM, Mullin BH, Hui J, James A, Beilby J, Patasova K, Hysi P, Koskela JT, Wyss AB, Jin J, Sikdar S, Lee M, May-Wilson S, Pirastu N, Kentistou KA, Joshi PK, Timmers PRHJ, Williams AT, Free RC, Wang X, Morrison JL, Gilliland FD, Chen Z, Wang CA, Foong RE, Harris SE, Taylor A, Redmond P, Cook JP, Mahajan A, Lind L, Palviainen T, Lehtimäki T, Raitakari OT, Kaprio J, Rantanen T, Pietiläinen KH, Cox SR, Pennell CE, Hall GL, Gauderman WJ, Brightling C, Wilson JF, Vasankari T, Laitinen T, Salomaa V, Mook-Kanamori DO, Timpson NJ, Zeggini E, Dupuis J, Hayward C, Brumpton B, Langenberg C, Weiss S, Homuth G, Schmidt CO, Probst-Hensch N, Jarvelin MR, Morrison AC, Polasek O, Rudan I, Lee JH, Sayers I, Rawlins EL, Dudbridge F, Silverman EK, Strachan DP, Walters RG, Morris AP, London SJ, Cho MH, Wain LV, Hall IP, Tobin MD. Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat Genet 2023; 55:1778-1779. [PMID: 37749248 PMCID: PMC10562210 DOI: 10.1038/s41588-023-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
|
13
|
Miller RL, Schuh H, Chandran A, Aris IM, Bendixsen C, Blossom J, Breton C, Camargo CA, Canino G, Carroll KN, Commodore S, Cordero JF, Dabelea DM, Ferrara A, Fry RC, Ganiban JM, Gern JE, Gilliland FD, Gold DR, Habre R, Hare ME, Harte RN, Hartert T, Hasegawa K, Khurana Hershey GK, Jackson DJ, Joseph C, Kerver JM, Kim H, Litonjua AA, Marsit CJ, McEvoy C, Mendonça EA, Moore PE, Nkoy FL, O'Connor TG, Oken E, Ownby D, Perzanowski M, Rivera-Spoljaric K, Ryan PH, Singh AM, Stanford JB, Wright RJ, Wright RO, Zanobetti A, Zoratti E, Johnson CC. Incidence rates of childhood asthma with recurrent exacerbations in the US Environmental influences on Child Health Outcomes (ECHO) program. J Allergy Clin Immunol 2023; 152:84-93. [PMID: 36972767 PMCID: PMC10330473 DOI: 10.1016/j.jaci.2023.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Descriptive epidemiological data on incidence rates (IRs) of asthma with recurrent exacerbations (ARE) are sparse. OBJECTIVES This study hypothesized that IRs for ARE would vary by time, geography, age, and race and ethnicity, irrespective of parental asthma history. METHODS The investigators leveraged data from 17,246 children born after 1990 enrolled in 59 US with 1 Puerto Rican cohort in the Environmental Influences on Child Health Outcomes (ECHO) consortium to estimate IRs for ARE. RESULTS The overall crude IR for ARE was 6.07 per 1000 person-years (95% CI: 5.63-6.51) and was highest for children aged 2-4 years, for Hispanic Black and non-Hispanic Black children, and for those with a parental history of asthma. ARE IRs were higher for 2- to 4-year-olds in each race and ethnicity category and for both sexes. Multivariable analysis confirmed higher adjusted ARE IRs (aIRRs) for children born 2000-2009 compared with those born 1990-1999 and 2010-2017, 2-4 versus 10-19 years old (aIRR = 15.36; 95% CI: 12.09-19.52), and for males versus females (aIRR = 1.34; 95% CI 1.16-1.55). Black children (non-Hispanic and Hispanic) had higher rates than non-Hispanic White children (aIRR = 2.51; 95% CI 2.10-2.99; and aIRR = 2.04; 95% CI: 1.22-3.39, respectively). Children born in the Midwest, Northeast and South had higher rates than those born in the West (P < .01 for each comparison). Children with a parental history of asthma had rates nearly 3 times higher than those without such history (aIRR = 2.90; 95% CI: 2.43-3.46). CONCLUSIONS Factors associated with time, geography, age, race and ethnicity, sex, and parental history appear to influence the inception of ARE among children and adolescents.
Collapse
|
14
|
Bekelman TA, Knapp EA, Dong Y, Dabelea D, Bastain TM, Breton CV, Carroll KN, Camargo CA, Davis AM, Dunlop AL, Elliott AJ, Ferrara A, Fry RC, Ganiban JM, Gilbert-Diamond D, Gilliland FD, Hedderson MM, Hipwell AE, Hockett CW, Huddleston KC, Karagas MR, Kelly N, Lai JS, Lester BM, Lucchini M, Melough MM, Mihalopoulos NL, O'Shea TM, Rundle AG, Stanford JB, VanBronkhorst S, Wright RJ, Zhao Q, Sauder KA. Sociodemographic Variation in Children's Health Behaviors During the COVID-19 Pandemic. Child Obes 2023; 19:226-238. [PMID: 35856858 PMCID: PMC10398734 DOI: 10.1089/chi.2022.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Societal changes during the COVID-19 pandemic may affect children's health behaviors and exacerbate disparities. This study aimed to describe children's health behaviors during the COVID-19 pandemic, how they vary by sociodemographic characteristics, and the extent to which parent coping strategies mitigate the impact of pandemic-related financial strain on these behaviors. Methods: This study used pooled data from 50 cohorts in the Environmental influences on Child Health Outcomes Program. Children or parent proxies reported sociodemographic characteristics, health behaviors, and parent coping strategies. Results: Of 3315 children aged 3-17 years, 49% were female and 57% were non-Hispanic white. Children of parents who reported food access as a source of stress were 35% less likely to engage in a higher level of physical activity. Children of parents who changed their work schedule to care for their children had 82 fewer min/day of screen time and 13 more min/day of sleep compared with children of parents who maintained their schedule. Parents changing their work schedule were also associated with a 31% lower odds of the child consuming sugar-sweetened beverages. Conclusions: Parents experiencing pandemic-related financial strain may need additional support to promote healthy behaviors. Understanding how changes in parent work schedules support shorter screen time and longer sleep duration can inform future interventions.
Collapse
|
15
|
Queen K, Nguyen MN, Gilliland FD, Chun S, Raby BA, Millstein J. ACDC: a general approach for detecting phenotype or exposure associated co-expression. Front Med (Lausanne) 2023; 10:1118824. [PMID: 37275375 PMCID: PMC10235619 DOI: 10.3389/fmed.2023.1118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background Existing module-based differential co-expression methods identify differences in gene-gene relationships across phenotype or exposure structures by testing for consistent changes in transcription abundance. Current methods only allow for assessment of co-expression variation across a singular, binary or categorical exposure or phenotype, limiting the information that can be obtained from these analyses. Methods Here, we propose a novel approach for detection of differential co-expression that simultaneously accommodates multiple phenotypes or exposures with binary, ordinal, or continuous data types. Results We report an application to two cohorts of asthmatic patients with varying levels of asthma control to identify associations between gene co-expression and asthma control test scores. Results suggest that both expression levels and covariances of ADORA3, ALOX15, and IDO1 are associated with asthma control. Conclusion ACDC is a flexible extension to existing methodology that can detect differential co-expression across varying external variables.
Collapse
|
16
|
Weinstock JS, Laurie CA, Broome JG, Taylor KD, Guo X, Shuldiner AR, O’Connell JR, Lewis JP, Boerwinkle E, Barnes KC, Chami N, Kenny EE, Loos RJ, Fornage M, Redline S, Cade BE, Gilliland FD, Chen Z, Gauderman WJ, Kumar R, Grammer L, Schleimer RP, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Qiao D, Weiss ST, Lasky-Su J, DeMeo DL, Palmer ND, Freedman BI, Bowden DW, Cho MH, Vasan RS, Johnson AD, Yanek LR, Becker LC, Kardia S, He J, Kaplan R, Heckbert SR, Smith NL, Wiggins KL, Arnett DK, Irvin MR, Tiwari H, Correa A, Raffield LM, Gao Y, de Andrade M, Rotter JI, Rich SS, Manichaikul AW, Konkle BA, Johnsen JM, Wheeler MM, Custer BS, Duggirala R, Curran JE, Blangero J, Gui H, Xiao S, Williams LK, Meyers DA, Li X, Ortega V, McGarvey S, Gu CC, Chen YDI, Lee WJ, Shoemaker MB, Darbar D, Roden D, Albert C, Kooperberg C, Desai P, Blackwell TW, Abecasis GR, Smith AV, Kang HM, Mathias R, Natarajan P, Jaiswal S, Reiner AP, Bick AG. The genetic determinants of recurrent somatic mutations in 43,693 blood genomes. SCIENCE ADVANCES 2023; 9:eabm4945. [PMID: 37126548 PMCID: PMC10132750 DOI: 10.1126/sciadv.abm4945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.
Collapse
|
17
|
Weng J, Molshatzki N, Marjoram P, Gauderman WJ, Gilliland FD, Eckel SP. Longitudinal hierarchical Bayesian models of covariate effects on airway and alveolar nitric oxide. Sci Rep 2023; 13:5346. [PMID: 37005426 PMCID: PMC10067946 DOI: 10.1038/s41598-023-31774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Biomarkers such as exhaled nitric oxide (FeNO), a marker of airway inflammation, have applications in the study of chronic respiratory disease where longitudinal studies of within-participant changes in the biomarker are particularly relevant. A cutting-edge approach to assessing FeNO, called multiple flow FeNO, repeatedly assesses FeNO across a range of expiratory flow rates at a single visit and combines these data with a deterministic model of lower respiratory tract NO to estimate parameters quantifying airway wall and alveolar NO sources. Previous methodological work for multiple flow FeNO has focused on methods for data from a single participant or from cross-sectional studies. Performance of existing ad hoc two-stage methods for longitudinal multiple flow FeNO in cohort or panel studies has not been evaluated. In this paper, we present a novel longitudinal extension to a unified hierarchical Bayesian (L_U_HB) model relating longitudinally assessed multiple flow FeNO to covariates. In several simulation study scenarios, we compare the L_U_HB method to other unified and two-stage frequentist methods. In general, L_U_HB produced unbiased estimates, had good power, and its performance was not sensitive to the magnitude of the association with a covariate and correlations between NO parameters. In an application relating height to longitudinal multiple flow FeNO in schoolchildren without asthma, unified analysis methods estimated positive, statistically significant associations of height with airway and alveolar NO concentrations and negative associations with airway wall diffusivity while estimates from two-stage methods were smaller in magnitude and sometimes non-significant.
Collapse
|
18
|
Shrine N, Izquierdo AG, Chen J, Packer R, Hall RJ, Guyatt AL, Batini C, Thompson RJ, Pavuluri C, Malik V, Hobbs BD, Moll M, Kim W, Tal-Singer R, Bakke P, Fawcett KA, John C, Coley K, Piga NN, Pozarickij A, Lin K, Millwood IY, Chen Z, Li L, Wijnant SRA, Lahousse L, Brusselle G, Uitterlinden AG, Manichaikul A, Oelsner EC, Rich SS, Barr RG, Kerr SM, Vitart V, Brown MR, Wielscher M, Imboden M, Jeong A, Bartz TM, Gharib SA, Flexeder C, Karrasch S, Gieger C, Peters A, Stubbe B, Hu X, Ortega VE, Meyers DA, Bleecker ER, Gabriel SB, Gupta N, Smith AV, Luan J, Zhao JH, Hansen AF, Langhammer A, Willer C, Bhatta L, Porteous D, Smith BH, Campbell A, Sofer T, Lee J, Daviglus ML, Yu B, Lim E, Xu H, O'Connor GT, Thareja G, Albagha OME, Suhre K, Granell R, Faquih TO, Hiemstra PS, Slats AM, Mullin BH, Hui J, James A, Beilby J, Patasova K, Hysi P, Koskela JT, Wyss AB, Jin J, Sikdar S, Lee M, May-Wilson S, Pirastu N, Kentistou KA, Joshi PK, Timmers PRHJ, Williams AT, Free RC, Wang X, Morrison JL, Gilliland FD, Chen Z, Wang CA, Foong RE, Harris SE, Taylor A, Redmond P, Cook JP, Mahajan A, Lind L, Palviainen T, Lehtimäki T, Raitakari OT, Kaprio J, Rantanen T, Pietiläinen KH, Cox SR, Pennell CE, Hall GL, Gauderman WJ, Brightling C, Wilson JF, Vasankari T, Laitinen T, Salomaa V, Mook-Kanamori DO, Timpson NJ, Zeggini E, Dupuis J, Hayward C, Brumpton B, Langenberg C, Weiss S, Homuth G, Schmidt CO, Probst-Hensch N, Jarvelin MR, Morrison AC, Polasek O, Rudan I, Lee JH, Sayers I, Rawlins EL, Dudbridge F, Silverman EK, Strachan DP, Walters RG, Morris AP, London SJ, Cho MH, Wain LV, Hall IP, Tobin MD. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat Genet 2023; 55:410-422. [PMID: 36914875 PMCID: PMC10011137 DOI: 10.1038/s41588-023-01314-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
Collapse
|
19
|
Goodrich JA, Walker DI, He J, Lin X, Baumert BO, Hu X, Alderete TL, Chen Z, Valvi D, Fuentes ZC, Rock S, Wang H, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27005. [PMID: 36821578 PMCID: PMC9945578 DOI: 10.1289/ehp11372] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and has been associated with an increased risk of several cardiometabolic diseases. However, the metabolic pathways linking PFAS exposure and human disease are unclear. OBJECTIVE We examined associations of PFAS mixtures with alterations in metabolic pathways in independent cohorts of adolescents and young adults. METHODS Three hundred twelve overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) and 137 young adults from the Southern California Children's Health Study (CHS) were included in the analysis. Plasma PFAS and the metabolome were determined using liquid-chromatography/high-resolution mass spectrometry. A metabolome-wide association study was performed on log-transformed metabolites using Bayesian regression with a g-prior specification and g-computation for modeling exposure mixtures to estimate the impact of exposure to a mixture of six ubiquitous PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and PFDA). Pathway enrichment analysis was performed using Mummichog and Gene Set Enrichment Analysis. Significance across cohorts was determined using weighted Z -tests. RESULTS In the SOLAR and CHS cohorts, PFAS exposure was associated with alterations in tyrosine metabolism (meta-analysis p = 0.00002 ) and de novo fatty acid biosynthesis (p = 0.03 ), among others. For example, when increasing all PFAS in the mixture from low (∼ 30 th percentile) to high (∼ 70 th percentile), thyroxine (T4), a thyroid hormone related to tyrosine metabolism, increased by 0.72 standard deviations (SDs; equivalent to a standardized mean difference) in the SOLAR cohort (95% Bayesian credible interval (BCI): 0.00, 1.20) and 1.60 SD in the CHS cohort (95% BCI: 0.39, 2.80). Similarly, when going from low to high PFAS exposure, arachidonic acid increased by 0.81 SD in the SOLAR cohort (95% BCI: 0.37, 1.30) and 0.67 SD in the CHS cohort (95% BCI: 0.00, 1.50). In general, no individual PFAS appeared to drive the observed associations. DISCUSSION Exposure to PFAS is associated with alterations in amino acid metabolism and lipid metabolism in adolescents and young adults. https://doi.org/10.1289/EHP11372.
Collapse
|
20
|
Li K, Eckel SP, Garcia E, Chen Z, Wilson JP, Gilliland FD. Geographic Variations in Human Mobility Patterns during the First Six Months of the COVID-19 Pandemic in California. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:2440. [PMID: 39354955 PMCID: PMC11444676 DOI: 10.3390/app13042440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Human mobility influenced the spread of the COVID-19 virus, as revealed by the high spatiotemporal granularity location service data gathered from smart devices. We conducted time series clustering analysis to delineate the relationships between human mobility patterns (HMPs) and their social determinants in California (CA) using aggregated smart device tracking data from SafeGraph. We first identified four types of temporal patterns for five human mobility indicator changes by applying dynamic-time-warping self-organizing map clustering methods. We then performed an analysis of variance and linear discriminant analysis on the HMPs with 17 social, economic, and demographic variables. Asians, children under five, adults over 65, and individuals living below the poverty line were found to be among the top contributors to the HMPs, including the HMP with a significant increase in the median home dwelling time and the HMP with emerging weekly patterns in full-time and part-time work devices. Our findings show that the CA shelter-in-place policy had varying impacts on HMPs, with socially disadvantaged places showing less compliance. The HMPs may help practitioners to anticipate the efficacy of non-pharmaceutical interventions on cases and deaths in pandemics.
Collapse
|
21
|
Chen Z, Sidell MA, Huang BZ, Chow T, Martinez MP, Lurmann F, Gilliland FD, Xiang AH. The Independent Effect of COVID-19 Vaccinations and Air Pollution Exposure on Risk of COVID-19 Hospitalizations in Southern California. Am J Respir Crit Care Med 2023; 207:218-221. [PMID: 36125979 PMCID: PMC9893324 DOI: 10.1164/rccm.202206-1123le] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
22
|
Chen Z, Sidell MA, Gilliland FD, Xiang AH. Reply to Chen et al.. Am J Respir Crit Care Med 2022; 206:922. [PMID: 35737572 PMCID: PMC9799270 DOI: 10.1164/rccm.202206-1148le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
23
|
Knapp EA, Dong Y, Dunlop AL, Aschner JL, Stanford JB, Hartert T, Teitelbaum SL, Hudak ML, Carroll K, O’Connor TG, McEvoy CT, O’Shea TM, Carnell S, Karagas MR, Herbstman JB, Dabelea D, Ganiban JM, Ferrara A, Hedderson M, Bekelman TA, Rundle AG, Alshawabkeh A, Gilbert-Diamond D, Fry RC, Chen Z, Gilliland FD, Wright RJ, Camargo CA, Jacobson L, Lester BM, Hockett CW, Hodges ML, Chandran A. Changes in BMI During the COVID-19 Pandemic. Pediatrics 2022; 150:e2022056552. [PMID: 35768891 PMCID: PMC9444980 DOI: 10.1542/peds.2022-056552] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Experts hypothesized increased weight gain in children associated with the coronavirus disease 2019 (COVID-19) pandemic. Our objective was to evaluate whether the rate of change of child body mass index (BMI) increased during the COVID-19 pandemic compared with prepandemic years. METHODS The study population of 1996 children ages 2 to 19 years with at least 1 BMI measure before and during the COVID-19 pandemic was drawn from 38 pediatric cohorts across the United States participating in the Environmental Influences on Child Health Outcomes-wide cohort study. We modeled change in BMI using linear mixed models, adjusting for age, sex, race, ethnicity, maternal education, income, baseline BMI category, and type of BMI measure. Data collection and analysis were approved by the local institutional review board of each institution or by the central Environmental Influences on Child Health Outcomes institutional review board. RESULTS BMI increased during the COVID-19 pandemic compared with previous years (0.24 higher annual gain in BMI during the pandemic compared with previous years, 95% confidence interval 0.02 to 0.45). Children with BMI in the obese range compared with the healthy weight range were at higher risk for excess BMI gain during the pandemic, whereas children in higher-income households were at decreased risk of BMI gain. CONCLUSIONS One effect of the COVID-19 pandemic is an increase in annual BMI gain during the COVID-19 pandemic compared with the 3 previous years among children in our national cohort. This increased risk among US children may worsen a critical threat to public health and health equity.
Collapse
|
24
|
Baumert BO, Goodrich JA, Hu X, Walker DI, Alderete TL, Chen Z, Valvi D, Rock S, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations. ENVIRONMENTAL RESEARCH 2022; 212:113296. [PMID: 35447156 PMCID: PMC9831292 DOI: 10.1016/j.envres.2022.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to lipophilic persistent organic pollutants (POPs) is ubiquitous. POPs are metabolic disrupting chemicals and are potentially diabetogenic. METHODS Using a multi-cohort study including overweight adolescents from the Study of Latino Adolescents at Risk (SOLAR, N = 301, 2001-2012) and young adults from the Southern California Children's Health Study (CHS, N = 135, 2014-2018), we examined associations of POPs and risk factors for type 2 diabetes. SOLAR participants underwent annual visits for a median of 2.2 years and CHS participants performed a single visit, during which a 2-h oral glucose tolerance test was performed. Linear mixed models were used to examine associations between plasma concentrations of POPs [4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE), hexachlorobenzene (HCB), PCBs-153, 138, 118, 180 and PBDEs-154, 153, 100, 85, 47] and changes in glucose homeostasis across age and pubertal stage. RESULTS In SOLAR, exposure to HCB, PCB-118, and PBDE-153 was associated with dysregulated glucose metabolism. For example, each two-fold increase in HCB was associated with approximately 2 mg/dL higher glucose concentrations at 30 min (p = 0.001), 45 min (p = 0.0006), and 60 min (p = 0.03) post glucose challenge. Compared to individuals with low levels of PCB-118, individuals with high levels exhibited a 4.7 mg/dL (p = 0.02) higher glucose concentration at 15 min and a 3.6 mg/dL (p = 0.01) higher glucose concentration at 30 min. The effects observed with exposure to organochlorine compounds were independent of pubertal stages. PBDE-153 was associated with the development of dysregulated glucose metabolism beginning in late puberty. At Tanner stage 4, exposure to PBDE-153 was associated with a 12.7 mg/dL higher 60-min glucose concentration (p = 0.009) and a 16.1 mg*dl-1*hr-1 higher glucose AUC (p = 0.01). These associations persisted at Tanner 5. In CHS, PBDE-153 and total PBDE were associated with similar increases in glucose concentrations. CONCLUSION Our results suggest that childhood exposure to lipophilic POPs is associated with dysregulated glucose metabolism.
Collapse
|
25
|
Eckel SP, Garcia E, Gilliland FD. Predicting asthma exacerbations: is there utility in noninvasive assessment of distal airway inflammation using multiple flow FENO? Eur Respir J 2022. [DOI: 10.1183/13993003.00802-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|