1
|
Engreitz JM, Lawson HA, Singh H, Starita LM, Hon GC, Carter H, Sahni N, Reddy TE, Lin X, Li Y, Munshi NV, Chahrour MH, Boyle AP, Hitz BC, Mortazavi A, Craven M, Mohlke KL, Pinello L, Wang T, Kundaje A, Yue F, Cody S, Farrell NP, Love MI, Muffley LA, Pazin MJ, Reese F, Van Buren E, Dey KK, Kircher M, Ma J, Radivojac P, Balliu B, Williams BA, Huangfu D, Park CY, Quertermous T, Das J, Calderwood MA, Fowler DM, Vidal M, Ferreira L, Mooney SD, Pejaver V, Zhao J, Gazal S, Koch E, Reilly SK, Sunyaev S, Carpenter AE, Buenrostro JD, Leslie CS, Savage RE, Giric S, Luo C, Plath K, Barrera A, Schubach M, Gschwind AR, Moore JE, Ahituv N, Yi SS, Hallgrimsdottir I, Gaulton KJ, Sakaue S, Booeshaghi S, Mattei E, Nair S, Pachter L, Wang AT, Shendure J, Agarwal V, Blair A, Chalkiadakis T, Chardon FM, Dash PM, Deng C, Hamazaki N, Keukeleire P, Kubo C, Lalanne JB, Maass T, Martin B, McDiarmid TA, Nobuhara M, Page NF, Regalado S, Sims J, Ushiki A, Best SM, Boyle G, Camp N, Casadei S, Da EY, Dawood M, Dawson SC, Fayer S, Hamm A, James RG, Jarvik GP, McEwen AE, Moore N, Pendyala S, Popp NA, Post M, Rubin AF, Smith NT, Stone J, Tejura M, Wang ZR, Wheelock MK, Woo I, Zapp BD, Amgalan D, Aradhana A, Arana SM, Bassik MC, Bauman JR, Bhattacharya A, Cai XS, Chen Z, Conley S, Deshpande S, Doughty BR, Du PP, Galante JA, Gifford C, Greenleaf WJ, Guo K, Gupta R, Isobe S, Jagoda E, Jain N, Jones H, Kang HY, Kim SH, Kim Y, Klemm S, Kundu R, Kundu S, Lago-Docampo M, Lee-Yow YC, Levin-Konigsberg R, Li DY, Lindenhofer D, Ma XR, Marinov GK, Martyn GE, McCreery CV, Metzl-Raz E, Monteiro JP, Montgomery MT, Mualim KS, Munger C, Munson G, Nguyen TC, Nguyen T, Palmisano BT, Pampari A, Rabinovitch M, Ramste M, Ray J, Roy KR, Rubio OM, Schaepe JM, Schnitzler G, Schreiber J, Sharma D, Sheth MU, Shi H, Singh V, Sinha R, Steinmetz LM, Tan J, Tan A, Tycko J, Valbuena RC, Amiri VVP, van Kooten MJFM, Vaughan-Jackson A, Venida A, Weldy CS, Worssam MD, Xia F, Yao D, Zeng T, Zhao Q, Zhou R, Chen ZS, Cimini BA, Coppin G, Coté AG, Haghighi M, Hao T, Hill DE, Lacoste J, Laval F, Reno C, Roth FP, Singh S, Spirohn-Fitzgerald K, Taipale M, Teelucksingh T, Tixhon M, Yadav A, Yang Z, Kraus WL, Armendariz DA, Dederich AE, Gogate A, El Hayek L, Goetsch SC, Kaur K, Kim HB, McCoy MK, Nzima MZ, Pinzón-Arteaga CA, Posner BA, Schmitz DA, Sivakumar S, Sundarrajan A, Wang L, Wang Y, Wu J, Xu L, Xu J, Yu L, Zhang Y, Zhao H, Zhou Q, Won H, Bell JL, Broadaway KA, Degner KN, Etheridge AS, Koller BH, Mah W, Mu W, Ritola KD, Rosen JD, Schoenrock SA, Sharp RA, Bauer D, Lettre G, Sherwood R, Becerra B, Blaine LJ, Che E, Francoeur MJ, Gibbs EN, Kim N, King EM, Kleinstiver BP, Lecluze E, Li Z, Patel ZM, Phan QV, Ryu J, Starr ML, Wu T, Gersbach CA, Crawford GE, Allen AS, Majoros WH, Iglesias N, Rai R, Venukuttan R, Li B, Anglen T, Bounds LR, Hamilton MC, Liu S, McCutcheon SR, McRoberts Amador CD, Reisman SJ, ter Weele MA, Bodle JC, Streff HL, Siklenka K, Strouse K, Bernstein BE, Babu J, Corona GB, Dong K, Duarte FM, Durand NC, Epstein CB, Fan K, Gaskell E, Hall AW, Ham AM, Knudson MK, Shoresh N, Wekhande S, White CM, Xi W, Satpathy AT, Corces MR, Chang SH, Chin IM, Gardner JM, Gardell ZA, Gutierrez JC, Johnson AW, Kampman L, Kasowski M, Lareau CA, Liu V, Ludwig LS, McGinnis CS, Menon S, Qualls A, Sandor K, Turner AW, Ye CJ, Yin Y, Zhang W, Wold BJ, Carilli M, Cheong D, Filibam G, Green K, Kawauchi S, Kim C, Liang H, Loving R, Luebbert L, MacGregor G, Merchan AG, Rebboah E, Rezaie N, Sakr J, Sullivan DK, Swarna N, Trout D, Upchurch S, Weber R, Castro CP, Chou E, Feng F, Guerra A, Huang Y, Jiang L, Liu J, Mills RE, Qian W, Qin T, Sartor MA, Sherpa RN, Wang J, Wang Y, Welch JD, Zhang Z, Zhao N, Mukherjee S, Page CD, Clarke S, Doty RW, Duan Y, Gordan R, Ko KY, Li S, Li B, Thomson A, Raychaudhuri S, Price A, Ali TA, Dey KK, Durvasula A, Kellis M, Iakoucheva LM, Kakati T, Chen Y, Benazouz M, Jain S, Zeiberg D, De Paolis Kaluza MC, Velyunskiy M, Gasch A, Huang K, Jin Y, Lu Q, Miao J, Ohtake M, Scopel E, Steiner RD, Sverchkov Y, Weng Z, Garber M, Fu Y, Haas N, Li X, Phalke N, Shan SC, Shedd N, Yu T, Zhang Y, Zhou H, Battle A, Jerby L, Kotler E, Kundu S, Marderstein AR, Montgomery SB, Nigam A, Padhi EM, Patel A, Pritchard J, Raine I, Ramalingam V, Rodrigues KB, Schreiber JM, Singhal A, Sinha R, Wang AT, Abundis M, Bisht D, Chakraborty T, Fan J, Hall DR, Rarani ZH, Jain AK, Kaundal B, Keshari S, McGrail D, Pease NA, Yi VF, Wu H, Kannan S, Song H, Cai J, Gao Z, Kurzion R, Leu JI, Li F, Liang D, Ming GL, Musunuru K, Qiu Q, Shi J, Su Y, Tishkoff S, Xie N, Yang Q, Yang W, Zhang H, Zhang Z, Beer MA, Hadjantonakis AK, Adeniyi S, Cho H, Cutler R, Glenn RA, Godovich D, Hu N, Jovanic S, Luo R, Oh JW, Razavi-Mohseni M, Shigaki D, Sidoli S, Vierbuchen T, Wang X, Williams B, Yan J, Yang D, Yang Y, Sander M, Gaulton KJ, Ren B, Bartosik W, Indralingam HS, Klie A, Mummey H, Okino ML, Wang G, Zemke NR, Zhang K, Zhu H, Zaitlen N, Ernst J, Langerman J, Li T, Sun Y, Rudensky AY, Periyakoil PK, Gao VR, Smith MH, Thomas NM, Donlin LT, Lakhanpal A, Southard KM, Ardy RC, Cherry JM, Gerstein MB, Andreeva K, Assis PR, Borsari B, Douglass E, Dong S, Gabdank I, Graham K, Jolanki O, Jou J, Kagda MS, Lee JW, Li M, Lin K, Miyasato SR, Rozowsky J, Small C, Spragins E, Tanaka FY, Whaling IM, Youngworth IA, Sloan CA, Belter E, Chen X, Chisholm RL, Dickson P, Fan C, Fulton L, Li D, Lindsay T, Luan Y, Luo Y, Lyu H, Ma X, Macias-Velasco J, Miga KH, Quaid K, Stitziel N, Stranger BE, Tomlinson C, Wang J, Zhang W, Zhang B, Zhao G, Zhuo X, Brennand K, Ciccia A, Hayward SB, Huang JW, Leuzzi G, Taglialatela A, Thakar T, Vaitsiankova A, Dey KK, Ali TA, Kim A, Grimes HL, Salomonis N, Gupta R, Fang S, Lee-Kim V, Heinig M, Losert C, Jones TR, Donnard E, Murphy M, Roberts E, Song S, Mostafavi S, Sasse A, Spiro A, Pennacchio LA, Kato M, Kosicki M, Mannion B, Slaven N, Visel A, Pollard KS, Drusinsky S, Whalen S, Ray J, Harten IA, Ho CH, Sanjana NE, Caragine C, Morris JA, Seruggia D, Kutschat AP, Wittibschlager S, Xu H, Fu R, He W, Zhang L, Osorio D, Bly Z, Calluori S, Gilchrist DA, Hutter CM, Morris SA, Samer EK. Deciphering the impact of genomic variation on function. Nature 2024; 633:47-57. [PMID: 39232149 DOI: 10.1038/s41586-024-07510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
Our genomes influence nearly every aspect of human biology-from molecular and cellular functions to phenotypes in health and disease. Studying the differences in DNA sequence between individuals (genomic variation) could reveal previously unknown mechanisms of human biology, uncover the basis of genetic predispositions to diseases, and guide the development of new diagnostic tools and therapeutic agents. Yet, understanding how genomic variation alters genome function to influence phenotype has proved challenging. To unlock these insights, we need a systematic and comprehensive catalogue of genome function and the molecular and cellular effects of genomic variants. Towards this goal, the Impact of Genomic Variation on Function (IGVF) Consortium will combine approaches in single-cell mapping, genomic perturbations and predictive modelling to investigate the relationships among genomic variation, genome function and phenotypes. IGVF will create maps across hundreds of cell types and states describing how coding variants alter protein activity, how noncoding variants change the regulation of gene expression, and how such effects connect through gene-regulatory and protein-interaction networks. These experimental data, computational predictions and accompanying standards and pipelines will be integrated into an open resource that will catalyse community efforts to explore how our genomes influence biology and disease across populations.
Collapse
|
2
|
Klocke K, Moore JE, Buchhold M. Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits. PHYSICAL REVIEW LETTERS 2024; 133:070401. [PMID: 39213567 DOI: 10.1103/physrevlett.133.070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N-state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N-colored loop model. It yields an equivalent description of the circuit by an SU(N)-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N-component height field. For N=2, we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L)∼L^{1/2} for L sites. For N≥3, the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L)∼L^{0.57}. This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.
Collapse
|
3
|
Kim A, Zhang Z, Legros C, Lu Z, de Smith A, Moore JE, Mancuso N, Gazal S. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307556. [PMID: 38798383 PMCID: PMC11118635 DOI: 10.1101/2024.05.17.24307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) from disease-relevant cell types. Critical next steps are to infer which and how many cell types are truly causal for a disease (after accounting for co-regulation across cell types), and to understand how individual variants impact disease risk through single or multiple causal cell types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability (~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal cell types, highlighted cell-disease relationships consistent with known biology, and uncovered previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a phenotype through a single cell type, and that pleiotropic SNPs target different cell types depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how genetic variants act collectively and individually at the cellular level to impact disease risk.
Collapse
|
4
|
Yao D, Tycko J, Oh JW, Bounds LR, Gosai SJ, Lataniotis L, Mackay-Smith A, Doughty BR, Gabdank I, Schmidt H, Guerrero-Altamirano T, Siklenka K, Guo K, White AD, Youngworth I, Andreeva K, Ren X, Barrera A, Luo Y, Yardımcı GG, Tewhey R, Kundaje A, Greenleaf WJ, Sabeti PC, Leslie C, Pritykin Y, Moore JE, Beer MA, Gersbach CA, Reddy TE, Shen Y, Engreitz JM, Bassik MC, Reilly SK. Multicenter integrated analysis of noncoding CRISPRi screens. Nat Methods 2024; 21:723-734. [PMID: 38504114 PMCID: PMC11009116 DOI: 10.1038/s41592-024-02216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
Collapse
|
5
|
Bhattacharyya P, Chen W, Huang X, Chatterjee S, Huang B, Kobrin B, Lyu Y, Smart TJ, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe ZM, Zu C, Struzhkin V, Jeanloz R, Moore JE, Cui T, Galli G, Halperin BI, Laumann CR, Yao NY. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 2024; 627:73-79. [PMID: 38418887 DOI: 10.1038/s41586-024-07026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.
Collapse
|
6
|
Gschwind AR, Mualim KS, Karbalayghareh A, Sheth MU, Dey KK, Jagoda E, Nurtdinov RN, Xi W, Tan AS, Jones H, Ma XR, Yao D, Nasser J, Avsec Ž, James BT, Shamim MS, Durand NC, Rao SSP, Mahajan R, Doughty BR, Andreeva K, Ulirsch JC, Fan K, Perez EM, Nguyen TC, Kelley DR, Finucane HK, Moore JE, Weng Z, Kellis M, Bassik MC, Price AL, Beer MA, Guigó R, Stamatoyannopoulos JA, Lieberman Aiden E, Greenleaf WJ, Leslie CS, Steinmetz LM, Kundaje A, Engreitz JM. An encyclopedia of enhancer-gene regulatory interactions in the human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.563812. [PMID: 38014075 PMCID: PMC10680627 DOI: 10.1101/2023.11.09.563812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.
Collapse
|
7
|
Sherman NE, Avdoshkin A, Moore JE. Universality of Critical Dynamics with Finite Entanglement. PHYSICAL REVIEW LETTERS 2023; 131:106501. [PMID: 37739353 DOI: 10.1103/physrevlett.131.106501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/28/2023] [Indexed: 09/24/2023]
Abstract
When a system is swept through a quantum critical point, the quantum Kibble-Zurek mechanism makes universal predictions for quantities such as the number and energy of excitations produced. This mechanism is now being used to obtain critical exponents on emerging quantum computers and emulators, which in some cases can be compared to matrix product state (MPS) numerical studies. However, the mechanism is modified when the divergence of entanglement entropy required for a faithful description of many quantum critical points is not fully captured by the experiment or classical calculation. In this Letter, we study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement, using conformally invariant critical points described approximately by a MPS as an example. We derive that the effect of finite entanglement on a Kibble-Zurek process is captured by a dimensionless scaling function of the ratio of two length scales, one determined dynamically and one by the entanglement restriction. Numerically we confirm first that dynamics at finite bond dimension χ is independent of the algorithm chosen, then obtain scaling collapses for sweeps in the transverse field Ising model and the three-state Potts model. Our result establishes the precise role played by entanglement in time-dependent critical phenomena and has direct implications for quantum state preparation and classical simulation of quantum states.
Collapse
|
8
|
Reese F, Williams B, Balderrama-Gutierrez G, Wyman D, Çelik MH, Rebboah E, Rezaie N, Trout D, Razavi-Mohseni M, Jiang Y, Borsari B, Morabito S, Liang HY, McGill CJ, Rahmanian S, Sakr J, Jiang S, Zeng W, Carvalho K, Weimer AK, Dionne LA, McShane A, Bedi K, Elhajjajy SI, Upchurch S, Jou J, Youngworth I, Gabdank I, Sud P, Jolanki O, Strattan JS, Kagda MS, Snyder MP, Hitz BC, Moore JE, Weng Z, Bennett D, Reinholdt L, Ljungman M, Beer MA, Gerstein MB, Pachter L, Guigó R, Wold BJ, Mortazavi A. The ENCODE4 long-read RNA-seq collection reveals distinct classes of transcript structure diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540865. [PMID: 37292896 PMCID: PMC10245583 DOI: 10.1101/2023.05.15.540865] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.
Collapse
|
9
|
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023. [PMID: 37104599 DOI: 0.1126/science.abn3943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Collapse
|
10
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
|
11
|
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wang C, Wallerman O, Xue J, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler A, Keough KC, Zheng Z, Zeng J, Wray NR, Li Y, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 2023; 380:eabn2937. [PMID: 37104612 PMCID: PMC10259825 DOI: 10.1126/science.abn2937] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2023] [Indexed: 04/29/2023]
Abstract
Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Collapse
|
12
|
Andrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science 2023; 380:eabn7930. [PMID: 37104580 DOI: 10.1126/science.abn7930] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Understanding the regulatory landscape of the human genome is a long-standing objective of modern biology. Using the reference-free alignment across 241 mammalian genomes produced by the Zoonomia Consortium, we charted evolutionary trajectories for 0.92 million human candidate cis-regulatory elements (cCREs) and 15.6 million human transcription factor binding sites (TFBSs). We identified 439,461 cCREs and 2,024,062 TFBSs under evolutionary constraint. Genes near constrained elements perform fundamental cellular processes, whereas genes near primate-specific elements are involved in environmental interaction, including odor perception and immune response. About 20% of TFBSs are transposable element-derived and exhibit intricate patterns of gains and losses during primate evolution whereas sequence variants associated with complex traits are enriched in constrained TFBSs. Our annotations illuminate the regulatory functions of the human genome.
Collapse
|
13
|
Foley NM, Mason VC, Harris AJ, Bredemeyer KR, Damas J, Lewin HA, Eizirik E, Gatesy J, Karlsson EK, Lindblad-Toh K, Springer MS, Murphy WJ, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. A genomic timescale for placental mammal evolution. Science 2023; 380:eabl8189. [PMID: 37104581 DOI: 10.1126/science.abl8189] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The precise pattern and timing of speciation events that gave rise to all living placental mammals remain controversial. We provide a comprehensive phylogenetic analysis of genetic variation across an alignment of 241 placental mammal genome assemblies, addressing prior concerns regarding limited genomic sampling across species. We compared neutral genome-wide phylogenomic signals using concatenation and coalescent-based approaches, interrogated phylogenetic variation across chromosomes, and analyzed extensive catalogs of structural variants. Interordinal relationships exhibit relatively low rates of phylogenomic conflict across diverse datasets and analytical methods. Conversely, X-chromosome versus autosome conflicts characterize multiple independent clades that radiated during the Cenozoic. Genomic time trees reveal an accumulation of cladogenic events before and immediately after the Cretaceous-Paleogene (K-Pg) boundary, implying important roles for Cretaceous continental vicariance and the K-Pg extinction in the placental radiation.
Collapse
|
14
|
Rozowsky J, Gao J, Borsari B, Yang YT, Galeev T, Gürsoy G, Epstein CB, Xiong K, Xu J, Li T, Liu J, Yu K, Berthel A, Chen Z, Navarro F, Sun MS, Wright J, Chang J, Cameron CJF, Shoresh N, Gaskell E, Drenkow J, Adrian J, Aganezov S, Aguet F, Balderrama-Gutierrez G, Banskota S, Corona GB, Chee S, Chhetri SB, Cortez Martins GC, Danyko C, Davis CA, Farid D, Farrell NP, Gabdank I, Gofin Y, Gorkin DU, Gu M, Hecht V, Hitz BC, Issner R, Jiang Y, Kirsche M, Kong X, Lam BR, Li S, Li B, Li X, Lin KZ, Luo R, Mackiewicz M, Meng R, Moore JE, Mudge J, Nelson N, Nusbaum C, Popov I, Pratt HE, Qiu Y, Ramakrishnan S, Raymond J, Salichos L, Scavelli A, Schreiber JM, Sedlazeck FJ, See LH, Sherman RM, Shi X, Shi M, Sloan CA, Strattan JS, Tan Z, Tanaka FY, Vlasova A, Wang J, Werner J, Williams B, Xu M, Yan C, Yu L, Zaleski C, Zhang J, Ardlie K, Cherry JM, Mendenhall EM, Noble WS, Weng Z, Levine ME, Dobin A, Wold B, Mortazavi A, Ren B, Gillis J, Myers RM, Snyder MP, Choudhary J, Milosavljevic A, Schatz MC, Bernstein BE, Guigó R, Gingeras TR, Gerstein M. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 2023; 186:1493-1511.e40. [PMID: 37001506 PMCID: PMC10074325 DOI: 10.1016/j.cell.2023.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/16/2022] [Accepted: 02/10/2023] [Indexed: 04/03/2023]
Abstract
Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × ∼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.
Collapse
|
15
|
Xu J, Pratt HE, Moore JE, Gerstein MB, Weng Z. Building integrative functional maps of gene regulation. Hum Mol Genet 2022; 31:R114-R122. [PMID: 36083269 PMCID: PMC9585680 DOI: 10.1093/hmg/ddac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Every cell in the human body inherits a copy of the same genetic information. The three billion base pairs of DNA in the human genome, and the roughly 50 000 coding and non-coding genes they contain, must thus encode all the complexity of human development and cell and tissue type diversity. Differences in gene regulation, or the modulation of gene expression, enable individual cells to interpret the genome differently to carry out their specific functions. Here we discuss recent and ongoing efforts to build gene regulatory maps, which aim to characterize the regulatory roles of all sequences in a genome. Many researchers and consortia have identified such regulatory elements using functional assays and evolutionary analyses; we discuss the results, strengths and shortcomings of their approaches. We also discuss new techniques the field can leverage and emerging challenges it will face while striving to build gene regulatory maps of ever-increasing resolution and comprehensiveness.
Collapse
|
16
|
Ross J, Ramsay DP, Sutton-Smith LJ, Willink RD, Moore JE. Residual neuromuscular blockade in the ICU: a prospective observational study and national survey. Anaesthesia 2022; 77:991-998. [PMID: 35837762 DOI: 10.1111/anae.15789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/23/2022]
Abstract
Residual neuromuscular blockade is associated with significant morbidity. It has been widely studied in anaesthesia; however, the incidence of residual neuromuscular blockade in patients managed in the ICU is unknown. We conducted a prospective observational study in a tertiary ICU to determine the incidence of residual neuromuscular blockade using quantitative accelerographic monitoring. We tested for residual neuromuscular blockade (defined as a train-of-four ratio < 0.9) before cessation of sedation in anticipation of tracheal extubation. We also surveyed 16 other ICUs in New Zealand to determine their use of neuromuscular monitoring. A total of 191 patients were included in the final analysis. The incidence (95%CI) of residual neuromuscular blockade was 43% (36-50%), with a similar incidence observed in non-postoperative and postoperative patients. There was a lower risk of residual neuromuscular blockade with atracurium than rocuronium (risk ratio (95%CI) of 0.39 (0.12-0.78)) and a higher risk with pancuronium than rocuronium (1.59 (1.06-2.49)). Our survey shows that, in New Zealand ICUs, monitoring of neuromuscular function is rarely carried out before tracheal extubation. When neuromuscular monitoring is undertaken, it is based on individual clinician suspicion and performed using qualitative measurements. No ICU reported using a quantitative monitor or a clinical guideline. The results demonstrate a high incidence of residual neuromuscular blockade in our ICU patients and identify the type of neuromuscular blocking drug as a possible risk factor. Monitoring neuromuscular function before tracheal extubation is not currently the standard of care in New Zealand ICUs. These data suggest that residual neuromuscular blockade may be an under-recognised problem in ICU practice.
Collapse
|
17
|
Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, Kaul R, Halow J, Van Nostrand EL, Freese P, Gorkin DU, Shen Y, He Y, Mackiewicz M, Pauli-Behn F, Williams BA, Mortazavi A, Keller CA, Zhang XO, Elhajjajy SI, Huey J, Dickel DE, Snetkova V, Wei X, Wang X, Rivera-Mulia JC, Rozowsky J, Zhang J, Chhetri SB, Zhang J, Victorsen A, White KP, Visel A, Yeo GW, Burge CB, Lécuyer E, Gilbert DM, Dekker J, Rinn J, Mendenhall EM, Ecker JR, Kellis M, Klein RJ, Noble WS, Kundaje A, Guigó R, Farnham PJ, Cherry JM, Myers RM, Ren B, Graveley BR, Gerstein MB, Pennacchio LA, Snyder MP, Bernstein BE, Wold B, Hardison RC, Gingeras TR, Stamatoyannopoulos JA, Weng Z. Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2022; 605:E3. [PMID: 35474001 PMCID: PMC9095460 DOI: 10.1038/s41586-021-04226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Moore JE, Moore PJA, Millar BC. GREEN EGGS AND HAM BY DR. SEUSS: EMPLOYING DIGITAL TOOLS TO IMPROVE READABILITY OF PATIENT-FACING MATERIALS. THE ULSTER MEDICAL JOURNAL 2022; 91:50. [PMID: 35169340 PMCID: PMC8835417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Moore JE, Zhang XO, Elhajjajy SI, Fan K, Pratt HE, Reese F, Mortazavi A, Weng Z. Integration of high-resolution promoter profiling assays reveals novel, cell type-specific transcription start sites across 115 human cell and tissue types. Genome Res 2021; 32:389-402. [PMID: 34949670 PMCID: PMC8805725 DOI: 10.1101/gr.275723.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/19/2021] [Indexed: 12/02/2022]
Abstract
Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated nor do they contain information on cell type–specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks are primarily proximal to GENCODE-annotated TSSs and are concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3′ ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations are supported by epigenomic and other transcriptomic data sets. To show the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide association study (GWAS) catalog and identified new candidate GWAS genes. Overall, our work shows the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.
Collapse
|
20
|
Pratt HE, Andrews GR, Phalke N, Purcaro MJ, van der Velde A, Moore JE, Weng Z. Factorbook: an updated catalog of transcription factor motifs and candidate regulatory motif sites. Nucleic Acids Res 2021; 50:D141-D149. [PMID: 34755879 PMCID: PMC8728199 DOI: 10.1093/nar/gkab1039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The human genome contains ∼2000 transcriptional regulatory proteins, including ∼1600 DNA-binding transcription factors (TFs) recognizing characteristic sequence motifs to exert regulatory effects on gene expression. The binding specificities of these factors have been profiled both in vitro, using techniques such as HT-SELEX, and in vivo, using techniques including ChIP-seq. We previously developed Factorbook, a TF-centric database of annotations, motifs, and integrative analyses based on ChIP-seq data from Phase II of the ENCODE Project. Here we present an update to Factorbook which significantly expands the breadth of cell type and TF coverage. The update includes an expanded motif catalog derived from thousands of ENCODE Phase II and III ChIP-seq experiments and HT-SELEX experiments; this motif catalog is integrated with the ENCODE registry of candidate cis-regulatory elements to annotate a comprehensive collection of genome-wide candidate TF binding sites. The database also offers novel tools for applying the motif models within machine learning frameworks and using these models for integrative analysis, including annotation of variants and disease and trait heritability. Factorbook is publicly available at www.factorbook.org; we will continue to expand the resource as ENCODE Phase IV data are released.
Collapse
|
21
|
Ishimoto K, Hatanaka N, Otani S, Maeda S, Xu B, Yasugi M, Moore JE, Suzuki M, Nakagawa S, Yamasaki S. Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Lett Appl Microbiol 2021; 74:2-7. [PMID: 34695222 PMCID: PMC8661916 DOI: 10.1111/lam.13591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/03/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID‐19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS‐CoV‐2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml−1 black tea extract and two‐fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml−1, green tea extracts showed more antiviral activity against SARS‐CoV‐2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS‐CoV‐2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.
Collapse
|
22
|
Moore JE, Millar BC. Improving IPC health literacy through better communication: investigation of the readability of IPC patient information leaflets from several sources. J Hosp Infect 2021; 118:15-19. [PMID: 34536531 DOI: 10.1016/j.jhin.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
|
23
|
Millar BC, Rao JR, Moore JE. Fighting antimicrobial resistance (AMR): Chinese herbal medicine as a source of novel antimicrobials - an update. Lett Appl Microbiol 2021; 73:400-407. [PMID: 34219247 DOI: 10.1111/lam.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) has now emerged as a global public health crisis, requiring the discovery of new and novel antimicrobial compounds, that may be precursors of future therapeutic antibiotics. Chinese Herbal Medicine (CHM) comes with a rich pedigree of holistic and empirical usage in Asia for the last 5000 years. Extracts of Anemarrhena asphodeloides Bunge, Angelica sinensis (Oliv.) Diels, Dianthus superbus L. Forsythiae fructus (Lian Qiao), Lonicerae flos (Jin Yin Hua), Naemorhedi cornu, Platycladus orientalis Franco, Polygonum aviculare, Polygonum cuspidatum, Poria cocos (Schw.), Rehmannia glutinosa (Gaertn.) DC, Rheum palmatum, Salvia miltiorrhiza Bunge, Scutellaria barbata, Scutellariae radix (Huang Qin) and Ursi fel (Xiong Dan) have shown to have antimicrobial properties against clinically significant Gram-negative and Gram-positive bacterial pathogens, as well as the mycobacteria (TB and non-tuberculous mycobacteria). Evidence is now beginning to emerge through systematic reviews of the outcomes of clinical studies employing CHM to treat infections. Of the 106 Cochrane systematic reviews on CHM, 16 (ca 15%) reviews examine CHM in the context of treating a specific infection disease or state. This update examines direct antimicrobial effect of CHM on bacterial pathogens, as well as synergistic effects of combining CHM with conventional antibiotics.
Collapse
|
24
|
Fan K, Moore JE, Zhang XO, Weng Z. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes. Nucleic Acids Res 2021; 49:5705-5725. [PMID: 33978759 PMCID: PMC8191798 DOI: 10.1093/nar/gkab345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 12/04/2022] Open
Abstract
Gene expression is controlled by regulatory elements within accessible chromatin. Although most regulatory elements are cell type-specific, a subset is accessible in nearly all the 517 human and 94 mouse cell and tissue types assayed by the ENCODE consortium. We systematically analyzed 9000 human and 8000 mouse ubiquitously-accessible candidate cis-regulatory elements (cCREs) with promoter-like signatures (PLSs) from ENCODE, which we denote ubi-PLSs. These are more CpG-rich than non-ubi-PLSs and correspond to genes with ubiquitously high transcription, including a majority of cell-essential genes. ubi-PLSs are enriched with motifs of ubiquitously-expressed transcription factors and preferentially bound by transcriptional cofactors regulating ubiquitously-expressed genes. They are highly conserved between human and mouse at the synteny level but exhibit frequent turnover of motif sites; accordingly, ubi-PLSs show increased variation at their centers compared with flanking regions among the ∼186 thousand human genomes sequenced by the TOPMed project. Finally, ubi-PLSs are enriched in genes implicated in Mendelian diseases, especially diseases broadly impacting most cell types, such as deficiencies in mitochondrial functions. Thus, a set of roughly 9000 mammalian promoters are actively maintained in an accessible state across cell types by a distinct set of transcription factors and cofactors to ensure the transcriptional programs of cell-essential genes.
Collapse
|
25
|
Abstract
Invasive fungal disease continues to be a cause of significant life-threatening morbidity and mortality in humans, particularly in those with a diminished immune system, such as with haematological malignancies. The mainstay of treating such life-threatening fungal infection has been antifungal drugs, including azoles, echinocandins and macrocyclic polyenes. However, like antibiotic resistance, antifungal resistance is beginning to emerge, potentially jeopardizing the effectiveness of these molecules in the treatment of fungal disease. One strategy to avoid this is the development of fungal vaccines. However, the inability to provoke a sufficient immune response in the most vulnerable immunocompromised groups has hindered translation from bench to bedside. This review will assess the latest available data and will investigate potential Aspergillus antigens and feasible vaccine techniques, particularly for vaccination of high-risk groups, including immunocompromised and immunosuppressed populations.
Collapse
|