1
|
Cao Y, Qin L, Zhang L, Safrit J, Ho DD. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995; 332:201-8. [PMID: 7808485 DOI: 10.1056/nejm199501263320401] [Citation(s) in RCA: 730] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND In most subjects infected with human immunodeficiency virus type 1 (HIV-1), clinical or laboratory evidence of immunodeficiency develops within 10 years of seroconversion, but a few infected people remain healthy and immunologically normal for more than a decade. Studies of these subjects, termed long-term survivors, may yield important clues for the development of prophylactic and therapeutic interventions against the acquired immunodeficiency syndrome. METHODS AND RESULTS We studied 10 seropositive subjects who remained asymptomatic with normal and stable CD4+ lymphocyte counts despite 12 to 15 years of HIV-1 infection. Plasma cultures were uniformly negative for infectious virus. However, particle-associated HIV-1 RNA was detected in four subjects with a sensitive branched-DNA signal-amplification assay, whereas in five others the levels of HIV-1 RNA were too low to detect. Infectious HIV-1 was detected in peripheral-blood mononuclear cells (PBMC) of three subjects by standard limiting-dilution cultures, and infectious virus was recovered from another subject with use of a CD8-depleted culture. The other six subjects had no detectable infectious virus in their PBMC. A quantitative polymerase-chain-reaction assay revealed that all subjects had detectable but low titers of viral DNA in PBMC. Overall, the viral burden in the plasma and PBMC of long-term survivors was orders of magnitude lower than that typically found in subjects with progressive disease. There was no in vitro evidence of resistance by host CD4+ lymphocytes to HIV-1 infection. However, long-term survivors had a vigorous, virus-inhibitory CD8+ lymphocyte response and a strong neutralizing-antibody response. In two subjects the kinetics of viral replication were consistent with the presence of a substantially attenuated strain of HIV-1. CONCLUSIONS Subjects who remain asymptomatic for many years despite HIV-1 infection have low levels of HIV-1 and a combination of strong virus-specific immune responses with some degree of attenuation of the virus.
Collapse
|
|
30 |
730 |
2
|
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1037-1045. [PMID: 27156888 DOI: 10.1016/j.bbadis.2016.04.017] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
Abstract
Cognitive decline in chronic diabetic patients is a less investigated topic. Diabetes and obesity are among the modifiable risk factors for Alzheimer's disease (AD), the most common form of dementia. Studies have identified several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, and inflammation that are observed in these disorders. Advanced glycation end products generated by chronic hyperglycemia and their receptor RAGE provide critical links between diabetes and AD. Peripheral inflammation observed in obesity leads to insulin resistance and type 2 diabetes. Although the brain is an immune-privileged organ, cross-talks between peripheral and central inflammation have been reported. Damage to the blood brain barrier (BBB) as seen with aging can lead to infiltration of immune cells into the brain, leading to the exacerbation of central inflammation. Neuroinflammation, which has emerged as an important cause of cognitive dysfunction, could provide a central mechanism for aging-associated ailments. To further add to these injuries, adult neurogenesis that provides neuronal plasticity is also impaired in the diabetic brain. This review discusses these molecular mechanisms that link obesity, diabetes and AD. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
|
Review |
9 |
445 |
3
|
Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, Wilson B, Yang J, Hong JS, Veronesi B. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 2004; 18:1618-20. [PMID: 15319363 DOI: 10.1096/fj.04-1945fje] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The contributing role of environmental factors to the development of Parkinson's disease has become increasingly evident. We report that mesencephalic neuron-glia cultures treated with diesel exhaust particles (DEP; 0.22 microM) (5-50 microg/ml) resulted in a dose-dependent decrease in dopaminergic (DA) neurons, as determined by DA-uptake assay and tyrosine-hydroxylase immunocytochemistry (ICC). The selective toxicity of DEP for DA neurons was demonstrated by the lack of DEP effect on both GABA uptake and Neu-N immunoreactive cell number. The critical role of microglia was demonstrated by the failure of neuron-enriched cultures to exhibit DEP-induced DA neurotoxicity, where DEP-induced DA neuron death was reinstated with the addition of microglia to neuron-enriched cultures. OX-42 ICC staining of DEP treated neuron-glia cultures revealed changes in microglia morphology indicative of activation. Intracellular reactive oxygen species and superoxide were produced from enriched-microglia cultures in response to DEP. Neuron-glia cultures from NADPH oxidase deficient (PHOX-/-) mice were insensitive to DEP neurotoxicity when compared with control mice (PHOX+/+). Cytochalasin D inhibited DEP-induced superoxide production in enriched-microglia cultures, implying that DEP must be phagocytized by microglia to produce superoxide. Together, these in vitro data indicate that DEP selectively damages DA neurons through the phagocytic activation of microglial NADPH oxidase and consequent oxidative insult.
Collapse
|
Journal Article |
21 |
273 |
4
|
Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, Pickles MR, Qin L, Fu Y, Mann JS, Kirschner BS, Jabs EW, Weber J, Hanauer SB, Bayless TM, Brant SR. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci U S A 1998; 95:7502-7. [PMID: 9636179 PMCID: PMC22666 DOI: 10.1073/pnas.95.13.7502] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
The idiopathic inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 x 10(-4)), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 x 10(-5)), and at chromosome 1p (MLod = 2.65, P = 2.4 x 10(-4)) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 x 10(-4)), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 x 10(-3)), particularly among Ashkenazim (MLod = 1.51, P = 7.8 x 10(-3)); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 4
- Colitis, Ulcerative/genetics
- Crohn Disease/genetics
- Disease Susceptibility
- Epistasis, Genetic
- Genetic Linkage
- Genetic Markers
- Genotype
- Humans
- Lod Score
Collapse
|
research-article |
27 |
272 |
5
|
Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8:2019-29. [PMID: 9414251 DOI: 10.1089/hum.1997.8.17-2019] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the major limitations to current gene therapy is the low-level and transient vector gene expression due to poorly defined mechanisms, possibly including promoter attenuation or extinction. Because the application of gene therapy vectors in vivo induces cytokine production through specific or nonspecific immune responses, we hypothesized that cytokine-mediated signals may alter vector gene expression. Our data indicate that the cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) inhibit transgene expression from certain widely used viral promoters/enhancers (cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro. A constitutive cellular promoter (beta-actin) is less sensitive to these cytokine effects. Inhibition is at the mRNA level and cytokines do not cause vector DNA degradation, inhibit total cellular protein synthesis, or kill infected/transfected cells. Administration of neutralizing anti-IFN-gamma monoclonal antibody results in enhanced transgene expression in vivo. Thus, standard gene therapy vectors in current use may be improved by altering cytokine-responsive regulatory elements. Determination of the mechanisms involved in cytokine-regulated vector gene expression may improve the understanding of the cellular disposition of vectors for gene transfer and gene therapy.
Collapse
|
|
28 |
232 |
6
|
Bullard DC, Qin L, Lorenzo I, Quinlin WM, Doyle NA, Bosse R, Vestweber D, Doerschuk CM, Beaudet AL. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J Clin Invest 1995; 95:1782-8. [PMID: 7535798 PMCID: PMC295704 DOI: 10.1172/jci117856] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neutrophil emigration during an inflammatory response is mediated through interactions between adhesion molecules on endothelial cells and neutrophils. P-Selectin mediates rolling or slowing of neutrophils, while intercellular adhesion molecule-1 (ICAM-1) contributes to the firm adhesion and emigration of neutrophils. Removing the function of either molecule partially prevents neutrophil emigration. To analyze further the role of P-selectin and ICAM-1, we have generated a line of mice with mutations in both of these molecules. While mice with either mutation alone show a 60-70% reduction in acute neutrophil emigration into the peritoneum during Streptococcus pneumoniae-induced peritonitis, double mutant mice show a complete loss of neutrophil emigration. In contrast, neutrophil emigration into the alveolar spaces during acute S. pneumoniae-induced pneumonia is normal in double mutant mice. These data demonstrate organ-specific differences, since emigration into the peritoneum requires both adhesion molecules while emigration into the lung requires neither. In the peritoneum, P-selectin-independent and ICAM-1-independent adhesive mechanisms permit reduced emigration when one of these molecules is deficient, but P-selectin-independent mechanisms cannot lead to ICAM-1-independent firm adhesion and emigration.
Collapse
|
research-article |
30 |
221 |
7
|
Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D, Tong KI, Park H, Dutta R, Qin L, Swindells MB, Yamazaki T, Ono AM, Kainosho M, Inouye M, Ikura M. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 1998; 396:88-92. [PMID: 9817206 DOI: 10.1038/23968] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine-aspartate phosphorelay signal-transduction system (also known as the two-component system) is important in cellular adaptation to environmental changes in both prokaryotes and lower eukaryotes. In this system, protein histidine kinases function as sensors and signal transducers. The Escherichia coli osmosensor, EnvZ, is a transmembrane protein with histidine kinase activity in its cytoplasmic region. The cytoplasmic region contains two functional domains: domain A (residues 223-289) contains the conserved histidine residue (H243), a site of autophosphorylation as well as transphosphorylation to the conserved D55 residue of response regulator OmpR, whereas domain B (residues 290-450) encloses several highly conserved regions (G1, G2, F and N boxes) and is able to phosphorylate H243. Here we present the solution structure of domain B, the catalytic core of EnvZ. This core has a novel protein kinase structure, distinct from the serine/threonine/tyrosine kinase fold, with unanticipated similarities to both heatshock protein 90 and DNA gyrase B.
Collapse
|
|
27 |
212 |
8
|
Gu XN, Xie XH, Li N, Zheng YF, Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 2012; 8:2360-74. [PMID: 22387336 DOI: 10.1016/j.actbio.2012.02.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Magnesium alloys have shown potential as biodegradable metallic materials for orthopedic applications due to their degradability, resemblance to cortical bone and biocompatible degradation/corrosion products. However, the fast corrosion rate and the potential toxicity of their alloying element limit the clinical application of Mg alloys. From the viewpoint of both metallurgy and biocompatibility, strontium (Sr) was selected to prepare hot rolled Mg-Sr binary alloys (with a Sr content ranging from 1 to 4 wt.%) in the present study. The optimal Sr content was screened with respect to the mechanical and corrosion properties of Mg-Sr binary alloys and the feasibility of the use of Mg-Sr alloys as orthopedic biodegradable metals was investigated by in vitro cell experiments and intramedullary implantation tests. The mechanical properties and corrosion rates of Mg-Sr alloys were dose dependent with respect to the added Sr content. The as-rolled Mg-2Sr alloy exhibited the highest strength and slowest corrosion rate, suggesting that the optimal Sr content was 2 wt.%. The as-rolled Mg-2Sr alloy showed Grade I cytotoxicity and induced higher alkaline phosphatase activity than the other alloys. During the 4 weeks implantation period we saw gradual degradation of the as-rolled Mg-2Sr alloy within a bone tunnel. Micro-computer tomography and histological analysis showed an enhanced mineral density and thicker cortical bone around the experimental implants. Higher levels of Sr were observed in newly formed peri-implant bone compared with the control. In summary, this study shows that the optimal content of added Sr is 2 wt.% for binary Mg-Sr alloys in the rolled state and that the as-rolled Mg-2Sr alloy in vivo produces an acceptable host response.
Collapse
|
|
13 |
207 |
9
|
Shimomura T, Denda K, Kitamura A, Kawaguchi T, Kito M, Kondo J, Kagaya S, Qin L, Takata H, Miyazawa K, Kitamura N. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272:6370-6. [PMID: 9045658 DOI: 10.1074/jbc.272.10.6370] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatocyte growth factor (HGF) activator is a serine protease that is produced and secreted by the liver and circulates in the blood as an inactive zymogen. In response to tissue injury, the HGF activator zymogen is converted to the active form by limited proteolysis. The activated HGF activator converts an inactive single chain precursor of HGF to a biologically active heterodimer in injured tissue. The activated HGF may be involved in the regeneration of the injured tissue. In this study, we purified an inhibitor of HGF activator from the conditioned medium of a human MKN45 stomach carcinoma cell line and molecularly cloned its cDNA. The sequence of the cDNA revealed that the inhibitor has two well defined Kunitz domains, suggesting that the inhibitor is a member of the Kunitz family of serine protease inhibitors. The sequence also showed that the primary translation product of the inhibitor has a hydrophobic sequence at the COOH-terminal region. Inhibitory activity toward HGF activator was detected in the membrane fraction as well as in the conditioned medium of MKN45 cells. These results suggest that the inhibitor may be produced as a membrane-associated form and secreted by the producing cells as a proteolytically truncated form.
Collapse
|
|
28 |
204 |
10
|
Abstract
Histidine kinases play a major role in signal transduction in prokaryotes for the cellular adaptation to environmental conditions and stresses. Recent progress in the three-dimensional structure determination of two representative members of histidine kinases, EnvZ (class I) and CheA (class II), has revealed common structural features, as well as a kinase catalytic motif topologically similar to those of the ATP-binding domains of a few ATPases. They have also disclosed that there are significant differences in domain organization between class I and II histidine kinases, possibly reflecting their distinct locations, functions and regulatory mechanisms. In spite of this diversity, both class I and II histidine kinases use similar four-helix bundle motifs to relay phosphoryl groups from ATP to regulatory domains of response regulators. The previously known so-called transmitter domain of histidine kinase is further dissected into two domains: a CA (Catalytic ATP-binding) domain and a DHp (Dimerization Histidine phosphotransfer) domain for class I, or a CA domain and an HPt (Histidine-containing Phosphotransfer) domain for class II histidine kinases. From a comparative analysis of the CA domains of EnvZ, CheA and their ATPase homologues, the core elements of the CA domain have been derived. The apparent resemblance between DHp and HPt domains is only superficial, and significant differences between them are discussed.
Collapse
|
Review |
26 |
186 |
11
|
Moore JP, Cao Y, Leu J, Qin L, Korber B, Ho DD. Inter- and intraclade neutralization of human immunodeficiency virus type 1: genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes. J Virol 1996; 70:427-44. [PMID: 8523556 PMCID: PMC189832 DOI: 10.1128/jvi.70.1.427-444.1996] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have studied genetic variation among clades A through E of human immunodeficiency virus type 1 (HIV-1) at the levels of antibody binding to gp120 molecules and virus neutralization. We are unable to identify neutralization serotypes that correspond to the genetic clades. Instead, we observe that inter- and intraclade neutralization of primary isolates by HIV-1-positive sera is generally weak and sporadic; some sera show a reasonable degree of neutralization breadth and potency whereas others are relatively sensitive to neutralization, but no consistent pattern was found. However, a few sera were able to neutralize across clades with significant potency, an observation which may have implications for the feasibility of a broadly effective HIV-1 vaccine involving humoral immunity. Serological assays measuring anti-gp120 antibody binding also failed to identify serotypes that correspond precisely to the genetic clades, but some indications of clade-specific binding were observed, notably with sera from clades B and E. A representative protein for each clade (A through E) was selected on the basis of its specificity, defined as high seroreactivity with sera from individuals infected with virus of that clade and lower reactivity with sera from individuals infected with viruses from other clades. The seroreactivity patterns against these five proteins could be used to predict the genotype of the infecting virus with moderate success.
Collapse
|
research-article |
29 |
185 |
12
|
Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010; 11:320. [PMID: 20492721 PMCID: PMC2895628 DOI: 10.1186/1471-2164-11-320] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/23/2010] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a large class of tiny non-coding RNAs (~22-24 nt) that regulate diverse biological processes at the posttranscriptional level by controlling mRNA stability or translation. As a molecular switch, the canonical Wnt/β-catenin signaling pathway should be suppressed during the adipogenesis; However, activation of this pathway leads to the inhibition of lipid depots formation. The aim of our studies was to identify miRNAs that might be involved in adipogenesis by modulating WNT signaling pathway. Here we established two types of cell model, activation and repression of WNT signaling, and investigated the expression profile of microRNAs using microarray assay. Results The high throughput microarray data revealed 18 miRNAs that might promote adipogenesis by repressing WNT signaling: miR-210, miR-148a, miR-194, miR-322 etc. Meanwhile, we also identified 29 miRNAs that might have negative effect on adipogenesis by activating WNT signaling: miR-344, miR-27 and miR-181 etc. The targets of these miRNAs were also analysed by bioinformatics. To validate the predicted targets and the potential functions of these identified miRNAs, the mimics of miR-210 were transfected into 3T3-L1 cells and enlarged cells with distinct lipid droplets were observed; Meanwhile, transfection with the inhibitor of miR-210 could markedly decrease differentiation-specific factors at the transcription level, which suggested the specific role of miR-210 in promoting adipogenesis. Tcf7l2, the predicted target of miR-210, is a transcription factor triggering the downstream responsive genes of WNT signaling, was blocked at transcription level. Furthermore, the activity of luciferase reporter bearing Tcf7l2 mRNA 3' UTR was decreased after co-transfection with miR-210 in HEK-293FT cells. Last but not least, the protein expression level of β-catenin was increased in the lithium (LiCl) treated 3T3-L1 cells after transfection with miR-210. These findings suggested that miR-210 could promote adipogenesis by repressing WNT signaling through targeting Tcf7l2. Conclusions The results suggest the presence of miRNAs in two cell models, providing insights into WNT pathway-specific miRNAs that can be further characterized for their potential roles in adipogenesis. To our knowledge, present study represents the first attempt to unveil the profile of miRNAs involed in adipogenesis by modulating WNT signaling pathway, which contributed to deeper investigation of the mechanism of adipogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
168 |
13
|
Chan BP, Fu S, Qin L, Lee K, Rolf CG, Chan K. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. ACTA ORTHOPAEDICA SCANDINAVICA 2000; 71:513-8. [PMID: 11186411 DOI: 10.1080/000164700317381234] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the effects of basic fibroblast growth factor (bFGF) on cell proliferation, type III collagen expression, ultimate stress and the pyridinoline content in the early stages of healing in rat patellar tendon. 96 male Sprague Dawley rats were injected with increasing doses of basic fibroblast growth factor (bFGF) at 3 days after a "window defect" was induced in the mid-part of the patellar tendon. They were killed at 7 and 14 days after the injury. A dose-dependent increase in the number of proliferating cells and the level of expression of type III collagen was demonstrated at only 7 days post-injury. On the other hand, we found no effects of bFGF on ultimate stress and the pyridinoline content of healing tendons. Only time significantly affected both strength-associated parameters. We showed that in vivo supplementation with bFGF affected the initial events of healing such as cell proliferation and type III collagen expression.
Collapse
|
|
25 |
163 |
14
|
Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ, Wang X, Chen SH, Huang L, Tian L, Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 2015; 5:10719. [PMID: 26023878 PMCID: PMC4448657 DOI: 10.1038/srep10719] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/23/2015] [Indexed: 11/24/2022] Open
Abstract
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
159 |
15
|
Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P. Cellular and molecular basis for stress-induced depression. Mol Psychiatry 2017; 22:1440-1447. [PMID: 27457815 PMCID: PMC5269558 DOI: 10.1038/mp.2016.118] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022]
Abstract
Chronic stress has a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2+) glutamatergic neurons. Viral expression of p11 in D2+ PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2+ neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2+ PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
|
research-article |
8 |
154 |
16
|
Kawaguchi T, Qin L, Shimomura T, Kondo J, Matsumoto K, Denda K, Kitamura N. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272:27558-64. [PMID: 9346890 DOI: 10.1074/jbc.272.44.27558] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocyte growth factor (HGF) activator is a serine protease responsible for proteolytic activation of HGF in response to tissue injury and thus plays an important role in the regulation of biological functions of HGF in regenerating tissue. We previously purified an inhibitor of HGF activator (HGF activator inhibitor type 1, HAI-1) from the conditioned medium of a human stomach carcinoma cell line MKN45 and cloned its cDNA. HAI-1 is a novel member of the Kunitz family of serine protease inhibitors. In the present study, we purified a second type of HGF activator inhibitor (HAI-2) from the conditioned medium of MKN45 cells and molecularly cloned its cDNA. The cDNA sequence revealed that HAI-2 is derived from a precursor protein of 252 amino acids and contains two Kunitz domains, indicating that HAI-2 is also a member of the Kunitz family of serine protease inhibitors. The primary translation product of HAI-2 has a hydrophobic sequence in the COOH-terminal region, suggesting that, like HAI-1, HAI-2 is produced in a membrane-associated form and secreted in a proteolytically truncated form. Because HAI-2 and HAI-1 are potent inhibitors specific for HGF activator, they may be involved in regulation of proteolytic activation of HGF in injured tissues.
Collapse
|
|
28 |
145 |
17
|
Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 2000; 15:1587-95. [PMID: 10934658 DOI: 10.1359/jbmr.2000.15.8.1587] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) may be associated with generalized low bone mineral status. The bone mineral density (BMD) of 75 girls of 12-14 years of age and diagnosed as having AIS were compared with 94 age-matched female control subjects. Areal BMD (aBMD) of the lumbar spine (L2-L4) and the bilateral proximal femur were measured using-energy X-ray absorptiometry (DEXA), and volumetric BMD (vBMD) of the nondominant distal radius and bilateral distal tibias was measured with peripheral quantitative computer tomography (pQCT). Relevant anthropometric parameters and the severity of the spinal deformity (Cobb's angle) also were evaluated and correlated with the BMD measurements. Results revealed the presence of a generalized lower bone mineral status in AIS patients. Detailed analysis showed that the aBMD and vBMD measured at the bilateral lower extremities were significantly lower in AIS patients when compared with the same in the normal controls. The most significant effect was seen in the trabecular BMD (tBMD) of the distal tibias. Of all the AIS girls, 38% of the aBMD and 36% of the vBMD were below -1 SD of the normal. BMD was found to correlate better with "years since menarche" (YSM) than with chronological age. When the BMD was evaluated for the 3 YSM groups, aBMD of the proximal femur and tBMD of distal tibias were found to be significantly lower in the AIS patients. Neither the aBMD nor the vBMD of AIS patients was found to be associated with the severity of spinal deformity. In addition, anthropometric measurements showed significantly longer arm span and lower extremities in the AIS girls. We concluded that the AIS girls had generalized lower aBMDs and vBMDs.
Collapse
|
|
25 |
141 |
18
|
Zhao X, Mo D, Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, Cong P, He Z, Wang C, Li J, Chen Y. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One 2011; 6:e19774. [PMID: 21637832 PMCID: PMC3102668 DOI: 10.1371/journal.pone.0019774] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/05/2011] [Indexed: 01/25/2023] Open
Abstract
Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene Expression Omnibus (GEO) under series GSE25406.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
130 |
19
|
Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JCY, Kumta SM. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A 2003; 66:880-4. [PMID: 12926041 DOI: 10.1002/jbm.a.10535] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hyaluronan (or hyaluronic acid, HA) is an essential component of extracellular matrices. It interacts with other macromolecules and plays a predominant role in tissue morphogenesis, cell migration, differentiation, and adhesion. The cell signaling functions of HA are mediated through the CD-44 receptor and are dependent upon the molecular weight of the polymer. We hypothesized that an HA of appropriate molecular weight alone in optimal concentration may induce osteoblast differentiation and bone formation. Enzyme-digested calvarial-derived mesenchymal cells from 2-day-old newborn rats were cultured with the addition of HA of three different molecular weights (2300, 900, and 60 kDa). We added, 0.5, 1.0, and 2.0 mg/mL HA for each molecular weight to the medium at the first plating of cells. After 7 to 20 days in culture, cell proliferation and differentiation were evaluated by measuring thymidine incorporation, alkaline phosphatase activity, and osteocalcin gene expression. The effects of HA on bone formation were examined by using Alizarin red staining for mineralization. The results showed that low molecular weight HA (60 kDa) significantly stimulated cell growth, increased osteocalcin mRNA expression in a dose-dependent manner, but showed no apparent effects on alkaline phosphatase activity and bone mineralization. On the other hand, high-weight HA (900 and 2,300 kDa) significantly increased all the parameters examined, particularly alkaline phosphatase activity, in a dose-dependent manner and stimulated cell mineralization to 126% and 119% of the controls, respectively, in the 1.0 mg/mL dose. Our findings suggest that HA has a molecular weight-specific and dose-specific mode of action that may enhance the osteogenic and osteoinductive properties of bone graft materials and substitutes due to its stimulatory effects on osteoblasts.
Collapse
|
|
22 |
126 |
20
|
Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, Mo Q, Liao L, Xu J. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 2016; 36:1157-1166. [PMID: 27524420 PMCID: PMC5311074 DOI: 10.1038/onc.2016.286] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/12/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
The heterogeneous breast cancers can be classified into different subtypes according to their histopathological characteristics and molecular signatures. Foxa1 expression is linked with luminal breast cancer (LBC) with good prognosis, whereas Twist1 expression is associated with basal-like breast cancer (BLBC) with poor prognosis owing to its role in promoting epithelial-to-mesenchymal transition (EMT), invasiveness and metastasis. However, the regulatory and functional relationships between Twist1 and Foxa1 in breast cancer progression are unknown. In this study, we demonstrate that in the estrogen receptor (ERα)-positive LBC cells Twist1 silences Foxa1 expression, which has an essential role in relieving Foxa1-arrested migration, invasion and metastasis of breast cancer cells. Mechanistically, Twist1 binds to Foxa1 proximal promoter and recruits the NuRD transcriptional repressor complex to de-acetylate H3K9 and repress RNA polymerase II recruitment. Twist1 also silences Foxa1 promoter by inhibiting AP-1 recruitment. Twist1 expression in MCF7 cells silenced Foxa1 expression, which was concurrent with the induction of EMT, migration, invasion and metastasis of these cells. Importantly, restored Foxa1 expression in these cells largely inhibited Twist1-promoted migration, invasion and metastasis. Restored Foxa1 expression did not change the Twist1-induced mesenchymal cellular morphology and the expression of Twist1-regulated E-cadherin, β-catenin, vimentin and Slug, but it partially rescued Twist1-silenced ERα and cytokeratin 8 expression and reduced Twist1-induced integrin α5, integrin β1 and MMP9 expression. In a xenografted mouse model, restored Foxa1 also increased Twist1-repressed LBC markers and decreased Twist1-induced BLBC markers. Furthermore, Twist1 expression is negatively correlated with Foxa1 in the human breast tumors. The tumors with high Twist1 and low Foxa1 expressions are associated with poor distant metastasis-free survival. These results demonstrate that Twist1's silencing effect on Foxa1 expression is largely responsible for Twist1-induced migration, invasion and metastasis, but less responsible for Twist1-induced mesenchymal morphogenesis and expression of certain EMT markers.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
120 |
21
|
Lui P, Zhang P, Chan K, Qin L. Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 2010; 5:59. [PMID: 20727196 PMCID: PMC2931497 DOI: 10.1186/1749-799x-5-59] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/21/2010] [Indexed: 02/06/2023] Open
Abstract
Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL) reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis") which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be paid to augment tendon to bone insertion (TBI) healing. Apart from surgical fixation, biological and biophysical interventions have been studied aiming at regeneration of TBI healing complex, especially the regeneration of interpositioned fibrocartilage and new bone at the healing junction. This paper described the biology and the factors influencing TBI healing using patella-patellar tendon (PPT) healing and tendon graft to bone tunnel healing in ACL reconstruction as examples. Recent development in the improvement of TBI healing and directions for future studies were also reviewed and discussed.
Collapse
|
Journal Article |
15 |
112 |
22
|
Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, Niu Y, Liu X, Chen Y. Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 2010; 5:e11377. [PMID: 20614006 PMCID: PMC2894071 DOI: 10.1371/journal.pone.0011377] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/20/2010] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV) replicates mainly in porcine alveolar macrophages (PAMs) and dendritic cells (DCs) and develops persistent infections, antibody-dependent enhancement (ADE), interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV) strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE) system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
108 |
23
|
Yan Y, Smant G, Stokkermans J, Qin L, Helder J, Baum T, Schots A, Davis E. Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene 1998; 220:61-70. [PMID: 9767113 DOI: 10.1016/s0378-1119(98)00413-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genomic organization of genes encoding beta-1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of 2151 and 2492bp, respectively. HG-eng2 and GR-eng2 both contained seven introns and structural domains of 2324 and 2388bp, respectively. No significant similarity in intron sequence or size was observed between HG-eng1 and HG-eng2, whereas the opposite was true between GR-eng1 and GR-eng2. Intron positions among all four cyst nematode cellulase genes were conserved identically in relation to the predicted amino acid sequence. HG-eng1, GR-eng1, and GR-eng2 had several introns demarcated by 5'-GCellipsisAG-3' in the splice sites, and all four nematode cellulase genes had the polyadenylation and cleavage signal sequence 5'-GAUAAA-3'-both rare occurences in eukaryotic genes. The 5'- flanking regions of each nematode cellulase gene, however, had signature sequences typical of eukaryotic promoter regions, including a TATA box, bHLH-type binding sites, and putative silencer, repressor, and enhancer elements. Database searches and subsequent phylogenetic comparison of the catalytic domain of the nematode cellulases placed the nematode genes in one group, with Family 5, subfamily 2, glycosyl hydrolases from Scotobacteria and Bacilliaceae as the most homologous groups. The overall amino acid sequence identity among the four nematode cellulases was from 71 to 83%, and the amino acid sequence identity to bacterial Family 5 cellulases ranged from 33 to 44%. The eukaryotic organization of the four cyst nematode cellulases suggests that they share a common ancestor, and their strong homology to prokaryotic glycosyl hydrolases may be indicative of an ancient horizontal gene transfer.
Collapse
|
Comparative Study |
27 |
106 |
24
|
Zhang G, Qin L, Hung WY, Shi YY, Leung PC, Yeung HY, Leung KS. Flavonoids derived from herbal Epimedium Brevicornum Maxim prevent OVX-induced osteoporosis in rats independent of its enhancement in intestinal calcium absorption. Bone 2006; 38:818-25. [PMID: 16413840 DOI: 10.1016/j.bone.2005.11.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
AIM Factorial design was used to test our hypothesis whether a group of flavonoids (FE) derived from herbal Epimedium Brevicornum Maxim exerted its preventive effects on estrogen-deficiency-induced osteoporosis mainly through an enhancement in intestinal calcium absorption. MATERIALS AND METHODS Forty-five 12-month-old female Wistar rats were used and randomly assigned into sham-operated group and four ovariectomy (OVX) subgroups, i.e. OVX with vehicle (OVX group), OVX with FE (FE group), OVX with calcium supplement (CS group), and OVX with FE and CS (FE + CS group). Daily oral administration of FE (10 mg/kg/day) and/or CS (56 mg/kg/day) started on day 4 after OVX for 12 weeks. Before sacrificing the animals, urine and serum samples were collected for assaying indicators related to intestinal calcium absorption, regulator for calcium homeostasis, and markers of bone turnover. The left proximal femur was dissected for evaluation of the primary end-point (failure force), the second end-points (pQCT-quantified densitometry, geometry, and micro-CT-quantified 3-D trabecula micro-architecture), and pQCT-defined cross-sectional envelope. RESULTS FE was found to be able to prevent OVX-induced reduction in failure force as well as the above second end-points, without resulting in an increased uterus weight. CS had no preventive effect on OVX-induced reduction in failure force. Two-way factorial interaction analysis between FE and CS showed that the un-enhanced suppression of parathyroid hormone for calcium homeostasis did not provide link between the enhanced intestinal calcium absorption and the enhanced inhibition of bone resorption in the present study. Furthermore, the discrepancies between the enhanced intestinal calcium absorption and the un-enhanced end-point measures as well as anabolic effect were also revealed by the interaction analysis. CONCLUSION The present study suggested that FE inhibited bone resorption, stimulated bone formation, and accordingly prevented osteoporosis without hyperplastic effect on uterus in the OVX rat model, which was however independent of an enhancement in intestinal calcium absorption.
Collapse
|
|
19 |
103 |
25
|
Zhu Y, Qin L, Yoshida T, Inouye M. Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci U S A 2000; 97:7808-13. [PMID: 10884412 PMCID: PMC16626 DOI: 10.1073/pnas.97.14.7808] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most histidine kinases are bifunctional enzymes having both kinase and phosphatase activities. The cytoplasmic kinase domain of EnvZ, a transmembrane histidine kinase functioning as an osmosensor in Escherichia coli, consists of two distinct functional subdomains: domain A [EnvZc(223-289)] and domain B [EnvZc(290-450)]. NMR studies demonstrated that domain A consists of a four-helix bundle serving as a dimerization and phosphotransfer domain, and domain B functions as the ATP-binding and catalytic domain. Here we demonstrate that domain A by itself has the phosphatase activity both in vitro and in vivo. This phosphatase activity is Mg(2+) dependent but is not activated by ADP, ATP, or adenosine 5'-[beta, gamma-imido]triphosphate (AMPPNP), each of which may serve as a cofactor for the EnvZ phosphatase activity. Domain B showed a small but distinct effect on the domain A phosphatase activity only in the presence of ADP or AMPPNP. However, when domain B was covalently linked to domain A, dramatic cofactor-dependent enhancement of the phosphatase activity was observed. Extending domain A for another 75 residues at the C terminus or 44 residues at the N terminus did not enhance its phosphatase activity. Substitution mutations at His-243, the autophosphorylation site, demonstrate that the His residue plays an essential role in the phosphatase activity. The so-called X-region mutant L288P that is known to specifically abolish the phosphatase activity in EnvZ had no effect on the domain A phosphatase function. We propose that the EnvZ phosphatase activity is regulated by relative positioning of domains A and B, which is controlled by external signals. We also propose that the His-243 residue participates in both kinase and phosphatase reactions.
Collapse
|
research-article |
25 |
98 |