1
|
Hao Y, Zhang Y, Wang Y, Zhou D, Tu K. The effect of hot air treatment on volatile compounds in nectarine fruit and the regulation of glycosidically bound compounds by sugar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109490. [PMID: 39805169 DOI: 10.1016/j.plaphy.2025.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.01%, weight loss of 32.13%, internal browning index of 58.03%, and maintained the high commodity quality of nectarine fruit at the end of storage. HA could reduce the content of aldehydes and increase the content of esters. The bound linalool in HA increased by 171.41% compared with the CK. In addition, the results of in vitro experiments showed that glucose and sucrose systems could increase the content of free and bound linalool by up-regulating the expression of PpUGT85A2, promoted the accumulation of bound benzaldehyde and nonanal, and reduced the corresponding free volatile compounds, it showed that free aldehydes can be synthesized from soluble sugars into bound aldehydes.
Collapse
|
2
|
Aydın G, Çoban CÇ, Kurbanoğlu Nİ, Türk M, Baran A. Acquiring stereospecific new pseudosugars: Obtaining rac-decahydro-1,4-epoxynaphthalene-2,3,5,6,7,8-hexaols from the Diels-Alder reaction and investigating their biological effects. Bioorg Chem 2025; 154:108078. [PMID: 39733512 DOI: 10.1016/j.bioorg.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO4), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH3(g)/MeOH reactions were carried out. 1H NMR, 13C NMR, IR, and elemental analysis elucidated the structures of all synthesized compounds. The α, β-glucosidase, and α-amylase inhibitory potentials of the new polycyclitols, conduritol A and F analogs, were examined for biological activity. Also, enzyme kinetic studies of well-active compounds were carried out. Compound 30 showed the best inhibition activity against α, β-glucosidase, and α-amylase enzymes. Compound 28a showed the best activity against L929 and Capan-1 cell lines, and compound 22 showed the best activity against the A549 fibroblast cell line. Moreover, hemolysis (ASTM F756 standard) and genotoxicity test results were recorded.
Collapse
|
3
|
Xu M, Li H, Luo H, Liu J, Li K, Li Q, Yang N, Xu D. Unveiling the Role of β-Glucosidase Genes in Bletilla striata's Secondary Metabolism: A Genome-Wide Analysis. Int J Mol Sci 2024; 25:13191. [PMID: 39684901 DOI: 10.3390/ijms252313191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
β-glucosidases (BGLUs) are abundant enzymes in plants that play pivotal roles in cell wall modification, hormone signal transduction, secondary metabolism, defense against herbivores, and volatile compound release. Bletilla striata, a perennial herb revered for its therapeutic properties, lacks a comprehensive analysis of its BGLU gene family despite the critical role these genes play in plant secondary metabolism. This study aims to perform a genome-wide analysis of the BGLU gene family in B. striata (BsBGLU) to elucidate their functions and regulatory mechanisms in secondary metabolite biosynthesis. We conducted a genome-wide screening to identify BsBGLU, followed by phylogenetic analysis to classify these genes into groups. Sequence characteristics were analyzed to predict functional roles. Simple sequence repeat (SSR) markers were examined to assess conservation and polymorphism among different landraces. Expression profiles of BsBGLUs were evaluated under sodium acetate and salicylic acid elicitor treatments and across different tissues. The accumulation of phylogenetic metabolites in different treatments and tissues was also analyzed by HPLC and LCMS detection to explore the correlation between gene expression and metabolite accumulation. A total of 23 BsBGLU genes were identified and classified into eight distinct groups. Sequence analysis suggested diverse functions related to hormone responses, secondary metabolism, and stress resistance. BsBGLUs with SSR sequences were conserved yet showed polymorphism among different B. striata landraces. Under elicitor treatments, expression profiling revealed that BsBGLUs significantly modulate the synthesis of secondary metabolites such as dactylorhin A and militarine. Tissue-specific expression analysis indicated that BsBGLU15 and BsBGLU28 were highly expressed in tubers compared to other tissues, suggesting their central role and a potential negative regulatory effect in metabolite accumulation. The elicitor NaAc can regulate metabolite synthesis by modulating the expression of BsBGLUs. The BsBGLU gene family in B. striata is integral to the modulation of secondary metabolite biosynthesis and accumulation and can respond to elicitors to promote the synthesis of militarine. These findings provide a theoretical foundation for the further exploration of BsBGLU gene functions and their regulatory mechanisms, advancing the production of medicinally active compounds in B. striata.
Collapse
|
4
|
Wang X, Zhuhuang C, He Y, Zhang X, Wang Y, Ni Q, Zhang Y, Xu G. Selective transformation of crocin-1 to crocetin-glucosyl esters by β-glucosidase (Lf18920) from Leifsonia sp. ZF2019: Insights from molecular docking and point mutations. Enzyme Microb Technol 2024; 181:110522. [PMID: 39378560 DOI: 10.1016/j.enzmictec.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Crocetin di/mono-glucosyl esters (crocin-4 and crocin-5) are rarely distributed in nature, limiting their potential applications in the food and pharmaceutical industries. In the present study, a novel GH3 family β-glucosidase Lf18920 was identified from Leifsonia sp. ZF2019, which selectively hydrolyzed crocin-1 (crocetin di-gentiobiosyl ester) to crocin-5 and crocin-4, but not to its aglycone, crocetin. Under the optimal condition of 40 °C and pH 6.0 for 120 min, Lf18920 almost completely hydrolyzed crocin-1, yielding 73.50±5.66 % crocin-4 and 16.19±1.38 % crocin-5. Molecular docking and point mutation studies revealed that Lf18920 formed a narrow binding channel that facilitated crocin-1 binding. Five single amino acid variants (D50A, D53A, W274A, G420A, and Q421A) were constructed, all of which showed reduced hydrolytic activity. Mutations at D50 and D53, located distal to the active site, increased binding energy and decreased hydrolytic activity, while mutations at W274, G420, and Q421, proximal to the active site, disrupted hydrolytic function. These findings suggest that the narrow binding channel and specific enzyme-substrate interactions are crucial for Lf18920's selective hydrolytic activity. Overall, this study is the first to report a β-glucosidase capable of selectively transforming crocin-1 to crocetin di/mono-glucosyl esters, offering potential for synthesizing crocin-4 and crocin-5.
Collapse
|
5
|
Ramanathan N, Sreeramulu B, Mani M, Sundaram J. Potential of insect endogenous cellulases for lignocellulosic break down deciphered using molecular docking studies. Nat Prod Res 2024; 38:4146-4154. [PMID: 37967019 DOI: 10.1080/14786419.2023.2280169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Insects possess cellulolytic system capable of producing variegate enzymes with multifarious specificities to break down complex lignocellulosic products. Astonishingly, endoglucanases, exoglucanases and β-glycosidases act sequentially in a synergistic system to facilitate the breakdown of cellulose to utilisable energy source glucose. In silico docking studies of endo-β-1,4-glucanase from 19 different insects belonging to six different orders identified that it possesses high affinity for all the six substrates, including CMC, cellulose, cellotriose, cellotetraose, cellopentose and cellohexaose. Additionally, β-glucosidase from nearly all the reported insect sources also showed considerable affinity towards cellobiose. Van der Waals, conventional hydrogen bonds and carbon-hydrogen bonds stabilise the interaction between the enzyme and different substrates. Molecular dynamics simulations also held up the stability of various complexes. Efficient breakdown of lignocelluloses-based substrates becoming a major focus of industrial and academic communities worldwide, this study can perhaps complement the propensity of insect cellulases for prospected applications.
Collapse
|
6
|
Zhang X, Wang Y, Zhang T, Yuan Z, Wei Y. Efficient Biotransformation of Icariin to Baohuoside I Using Two Novel GH1 β-Glucosidases. Molecules 2024; 29:5280. [PMID: 39598669 PMCID: PMC11596834 DOI: 10.3390/molecules29225280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Epimedium Folium (EF) is a traditional Chinese herbal medicine, and its primary bioactive ingredients, such as icariin, are flavonoid glycosides. A rare EF flavonoid, baohuoside I, exhibits superior bioactivities and enhanced bioavailability compared to its metabolic precursor icariin. The biotransformation of icariin to baohuoside I can be effectively and specifically achieved by β-glucosidases. In this study, 33 candidate full-length β-glucosidase genes were screened from a previously built carbohydrate active enzyme (CAZyme) gene dataset derived from cow fecal microbiota. Thirteen of them exhibited β-glucosidase activity, with DCF-bgl-26 and DCF-bgl-27 showing relatively high expression levels and β-glucosidase activity. The maximum β-glucosidase activity of DCF-bgl-26 and DCF-bgl-27 was achieved at 45 °C and pH 6.0, with DCF-bgl-26 demonstrating better thermostability and pH tolerance compared to DCF-bgl-27. The activities of DCF-bgl-26 and DCF-bgl-27 were 123.2 U/mg protein and 157.9 U/mg protein, respectively, both of which are higher than those of many bacterial β-glucosidases. Structure analysis suggested that both β-glucosidases possess canonical (β/α)8-TIM barrel fold structure of GH1 family β-glucosidases. Thin-layer chromatography results showed that both enzymes could efficiently convert icariin to baohuoside I in 30 min, indicating they have potential application in the production of high value rare baohuoside I.
Collapse
|
7
|
Guo Y, Chen A, Liu K, Ji C. Structural insights and functional characterization of a novel β-glucosidase derived from Thermotoga profunda. Biochem Biophys Res Commun 2024; 732:150405. [PMID: 39033552 DOI: 10.1016/j.bbrc.2024.150405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
β-Glucosidase is a crucial cellulase, as its activity determines the efficiency of cellulose hydrolysis into glucose. This study addresses the functional and structural characteristics of Thermotoga profunda β-glucosidase (Tp-BGL). Tp-BGL exhibited a Km of 0.3798 mM for p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and 4.44 mM for cellobiose, with kcat/Km of 1211.16 and 4.18 s-1 mM-1, respectively. In addition, Tp-BGL showed significant pH adaptability and thermal stability, with a Tm of 85.7 °C and retaining >90 % of its activity after incubation at 80 °C for 90 min. The crystal structure of Tp-BGL was resolved at 1.95 Å resolution, and reveals a typical TIM barrel structure. Comparative structural analysis highlighted that the major distinction between Tp-BGL and the other glucosidases lies in their loop regions.
Collapse
|
8
|
Leaković E, Siems K, Feussi Tala M, Habazin A, Findrik Blažević Z, Vrsalović Presečki A. Optimization of Biocatalytic Rhododendrol Production from Biogenic Rhododendrol Glycosides. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:16329-16339. [PMID: 39512595 PMCID: PMC11539071 DOI: 10.1021/acssuschemeng.4c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
An enzyme-catalyzed synthesis of rhododendrol, an intermediate in the production of raspberry ketone, was investigated. The approach involves the enzymatic hydrolysis of rhododendrol glycosides into rhododendrol and a glycosidic residue. Rhododendrol glycosides, which are naturally derived from the inner bark of birch trees-a renewable resource-vary considerably in composition depending on the origin of the plants. In this study, mixtures of betuloside and apiosylrhododendrin from natural resources were used in different proportions. An in-depth study was conducted to assess the feasibility of the process. A mathematical model was developed based on studies of the kinetics and operational stability of the enzyme. The model for betuloside hydrolysis catalyzed by β-glucosidase was validated in batch, repetitive batch, and ultrafiltration membrane reactors. The highest productivity, ranging from 83.9 to 94.5 g L-1 day-1, was achieved in the latter. After screening nearly 50 enzymes, RAPIDASE emerged as a solution for the hydrolysis of apiosylrhododendrin, and the model was validated in a batch reactor. Model-based optimization enabled the prediction of input parameters for different compositions of biogenic rhododendrol glycosides to obtain consistent process output metrics.
Collapse
|
9
|
Mazzei R, Bazzarelli F, Terholsen H, Nardi M, Piacentini E, Procopio A, Bornscheuer UT, Giorno L. Triple Enzymatic Cascade Reaction to Produce Hydroxytyrosol Acetate from Olive Leaves Using Integrated Membrane Bioreactors. CHEMSUSCHEM 2024:e202401707. [PMID: 39400969 DOI: 10.1002/cssc.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
An integrated system of three membrane bioreactors (MBRs) has been developed that cascades three different enzymatic reactions. The integrated system was applied to produce hydroxytyrosol acetate from oleuropein extracted from olive leaves. Different reactor configurations for each reaction were tested and individually optimized to select the MBR to ensure high conversion and continuous production of oleuropein aglycone (OA), hydroxytyrosol (HY) and hydroxytyrosol acetate (HA). Based on this study, the most performing configuration of the integrated system was identified. In the first reaction, oleuropein was converted to OA using a biocatalytic membrane reactor (BMR) with immobilized β-glucosidase in polymeric membranes (conversion 95 %). The OA was then fed to another BMR, where it was converted to HY (conversion: 70 %) by an immobilized mutant of the promiscuous hydrolase/acyltransferase (PestE) (from the thermophilic archaeon Pyrobaculum calidifontis VA1). The HY produced was then acetylated using PestE immobilized on magnetic nanoparticles in a multiphase MBR (conversion: 98 %) and simultaneously extracted (extraction: 98 %) in ethyl acetate. The work demonstrates that continuous cascade enzymatic reactions can be engineered using artificial membranes to tailor enzyme compartmentalization, mass transport and phase contact according to reaction requirements. Besides, environmental factors proved the sustainability of the integrated membrane bioreactive system.
Collapse
|
10
|
Tran TNA, Nahar J, Park JK, Murugesan M, Ko JH, Ahn JC, Yang DC, Mathiyalagan R, Yang DU. Cloning, characterization of β-glucosidase from Furfurilactobacillus rossiae in bioconversion and its efficacy. Arch Microbiol 2024; 206:423. [PMID: 39361043 DOI: 10.1007/s00203-024-04148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Minor ginsenosides produced by β-glucosidase are interesting biologically and pharmacologically. In this study, new ginsenoside-hydrolyzing glycosidase from Furfurilactobacillus rossiae DCYL3 was cloned and expressed in Escherichia coli strain BL21. The enzyme converted Rb1 and Gyp XVII into Rd and compound K following the pathways: Rb1→Rd and Gyp XVII→F2→CK, respectively at optimal condition: 40 °C, 15 min, and pH 6.0. Furthermore, we examined the cytotoxicity, NO production, ROS generation, and gene expression of Gynostemma extract (GE) and bioconverted Gynostemma extract (BGE) in vitro against A549 cell lines for human lung cancer and macrophage RAW 264.7 cells for antiinflammation, respectively. As a result, BGE demonstrated significantly greater toxicity than GE against lung cancer at a dose of 500 µg/mL but in normal cells showed lower toxicity. Then, we indicated an enhanced generation of ROS, which may be boosting cancer cell toxicity. By blocking the intrinsic way, BGE increased p53, Bax, Caspase 3, 9, and while Bcl2 is decreased. At 500 µg/mL, the BGE sample was less toxic in normal cells and decreased the LPS-treated NO and ROS level to reduce inflammation. In addition, BGE inhibited the expression of pro-inflammatory genes COX-2, iNOS, IL-6, and IL-8 in RAW 264.7 cells than the sample of GE. In conclusion, FrBGL3 has considerable downstream applications for high-yield, low-cost, effective manufacture of minor ginsenosides. Moreover, the study's findings imply that BGE would be potential materials for anti-cancer and anti-inflammatory agent after consideration of future studies.
Collapse
|
11
|
Suryanarayanan TS, Rajamani T, Aro N, Borisova A, Marjamaa K, Govindarajulu MB. Fungal endophytes and leaf litter fungi as sources of novel inhibitor-resistant cellulase for biofuel production: a basic study. 3 Biotech 2024; 14:243. [PMID: 39323902 PMCID: PMC11420430 DOI: 10.1007/s13205-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrothermal pretreatments are commonly employed prior to the biotechnological conversion of lignocellulosic biomass (LCB) into value-added products, such as fuels and chemicals. However, the by-products of this pretreatment, including furaldehydes, lignin-derived phenolics, and carboxylic acids, can inhibit the enzymes and microbes used in the biotechnological process. In this study, LCB degrading enzymes of endophytic and litter fungi were screened for their tolerance to potential pretreatment-derived inhibitors. Several fungi produced endo- and exoglucanases that remained functional in the presence of lignocellulose-derived phenolics. Some were also active in the presence of tannic acid. Additionally, thermostable endoglucanase activity was observed in some fungi. The ability of some of these fungi to utilize furaldehyde inhibitors as a sole carbon source was also noted. The culture supernatants of the fungal strains were tested in hydrolysis experiments using microcrystalline cellulose as a substrate, in the presence of lignocellulose phenolics and tannic acid. With some strains, higher sugar yields were obtained in the hydrolysis of cellulose when phenolics were added. Our results highlight the need for more intensive exploration of endophytic and plant litter fungi for novel inhibitor-resistant cellulases for biofuel production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04087-3.
Collapse
|
12
|
Boudabbous M, Ben Hmad I, Zaidi M, Saibi W, Jlaiel L, Gargouri A. Biosynthesis and one-step enrichment process of potentially prebiotic cello-oligosaccharides produced by β-glucosidase from Fusarium solani. Arch Microbiol 2024; 206:395. [PMID: 39249579 DOI: 10.1007/s00203-024-04111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Cello-oligosaccharides (COS) become a new type of functional oligosaccharides. COS transglycosylation reactions were studied to enhance COS yield production. Seeking the ability of the free form of Fusarium solani β-glucosidase (FBgl1) to synthesize COS under low substrate concentrations, we found out that this biocatalyst initiates this reaction with only 1 g/L of cellobiose, giving rise to the formation of cellotriose. Cellotriose and cellopentaose were detected in biphasic conditions with an immobilized FBgl1 and when increased to 50 g/L of cellobiose as a starter concentration. After the biocatalyst recycling process, the trans-glycosylation yield of COS was maintained after 5 cycles, and the COS concentration was 6.70 ± 0.35 g/L. The crude COS contained 20.15 ± 0.25 g/L glucose, 23.15 ± 0.22 g/L non-reacting substrate cellobiose, 5.25 ± 0.53 g/L, cellotriose and 1.49 ± 0.32 g/L cellopentaose. A bioprocess was developed for cellotriose enrichment, using whole Bacillus velezensis cells as a microbial purification tool. This bacteria consumed glucose, unreacted cellobiose, and cellopentaose while preserving cellotriose in the fermented medium. This study provides an excellent enzyme candidate for industrial COS production and is also the first study on the single-step COS enrichment process.
Collapse
|
13
|
Anwar F, Sanaullah M, Ali HM, Hussain S, Mahmood F, Zahid Z, Shahzad T. Effect of combined application of inorganic nitrogen and phosphorus to an organic-matter poor soil on soil organic matter cycling. PeerJ 2024; 12:e17984. [PMID: 39247545 PMCID: PMC11380837 DOI: 10.7717/peerj.17984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Sequestering carbon dioxide (CO2) in agricultural soils promises climate change mitigation as well as sustainable ecosystem services. In order to stabilize crop residues as soil carbon (C), addition of mineral nutrients in excess to crop needs is suggested as an inevitable practice. However, the effect of two macronutrients i.e., nitrogen (N) & phosphorus (P), on C cycling has been found contradictory. Mineral N usually decreases whereas mineral P increases the soil organic C (SOC) mineralization and microbial biomass. How the addition of these macronutrients in inorganic form to an organic-matter poor soil affect C cycling remains to be investigated. Methods To reconcile this contradiction, we tested the effect of mineral N (120 kg N ha-1) and/or P (60 kg N ha-1) in presence or absence of maize litter (1 g C kg-1 soil) on C cycling in an organic-matter poor soil (0.87% SOC) in a laboratory incubation. Soil respiration was measured periodically during the incubation whereas various soil variables were measured at the end of the incubation. Results Contrary to literature, P addition stimulated soil C mineralization very briefly at start of incubation period and released similar total cumulative CO2-C as in control soil. We attributed this to low organic C content of the soil as P addition could desorb very low amounts of labile C for microbial use. Adding N with litter built up the largest microbial biomass (144% higher) without inducing any further increase in CO2-C release compared to litter only addition. However, adding P with litter did not induce any increase in microbial biomass. Co-application of inorganic N and P significantly increased C mineralization in presence (19% with respect to only litter amended) as well as absence (41% with respect to control soil) of litter. Overall, our study indicates that the combined application of inorganic N and P stabilizes added organic matter while depletes the already unamended soil.
Collapse
|
14
|
Khusnutdinova AN, Tran H, Devlekar S, Distaso MA, Kublanov IV, Skarina T, Stogios P, Savchenko A, Ferrer M, Golyshina OV, Yakunin AF, Golyshin PN. Moderately thermostable GH1 β-glucosidases from hyperacidophilic archaeon Cuniculiplasma divulgatum S5. FEMS Microbiol Ecol 2024; 100:fiae114. [PMID: 39127612 PMCID: PMC11376072 DOI: 10.1093/femsec/fiae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024] Open
Abstract
Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C. divulgatum encodes three GH1 enzyme candidates, from which CIB12 and CIB13 were heterologously expressed and characterized. Phylogenetic analysis of CIB12 and CIB13 clustered them with β-glucosidases from genuinely thermophilic archaea including Thermoplasma acidophilum, Picrophilus torridus, Sulfolobus solfataricus, Pyrococcus furiosus, and Thermococcus kodakarensis. Purified enzymes showed maximal activities at pH 4.5-6.0 (CIB12) and 4.5-5.5 (CIB13) with optimal temperatures at 50°C, suggesting a high-temperature origin of Cuniculiplasma spp. ancestors. Crystal structures of both enzymes revealed a classical (α/β)8 TIM-barrel fold with the active site located inside the barrel close to the C-termini of β-strands including the catalytic residues Glu204 and Glu388 (CIB12), and Glu204 and Glu385 (CIB13). Both enzymes preferred cellobiose over lactose as substrates and were classified as cellobiohydrolases. Cellobiose addition increased the biomass yield of Cuniculiplasma cultures growing on peptides by 50%, suggesting that the cellobiohydrolases expand the carbon substrate range and hence environmental fitness of Cuniculiplasma.
Collapse
|
15
|
Rodríguez-López MA, Coll-Marqués JM, Talens-Perales D, Marín-Navarro J, Polaina J, Vázquez-Contreras E. Analysis of Amyloid Fibrillation of Two Family 1 Glycoside Hydrolases. Int J Mol Sci 2024; 25:8536. [PMID: 39126103 PMCID: PMC11313343 DOI: 10.3390/ijms25158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The formation and analysis of amyloid fibers by two β-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (β/α)8 TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a β-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a β-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation.
Collapse
|
16
|
Batista AM, Pessoa TN, Putti FF, Andreote FD, Libardi PL. Root Influences Rhizosphere Hydraulic Properties through Soil Organic Carbon and Microbial Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1981. [PMID: 39065508 PMCID: PMC11281268 DOI: 10.3390/plants13141981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Processes of water retention and movement and the hydraulic conductivity are altered in the rhizosphere. The aim of this study was to investigate the physical-hydric properties of soil aggregates in the rhizosphere of annual ryegrass (Lolium multiflorum) cropped in a Kandiudalfic Eutrudox, taking into account aspects related to soil aggregate stability. Soil aggregates from rhizosphere soil (RZS) and soil between plant rows (SBP) were used to determine soil water retention curves (SWRCs) and saturated hydraulic conductivity (Ksat). In addition, properties related to soil aggregate stability, such as water-dispersible clay, soil organic carbon (SOC), and microbial activity, were also assessed. The higher microbial activity observed in the RZS was facilitated by increased SOC and microbial activity, resulting in improved soil aggregation (less water-dispersible clay). For nearly all measured matric potentials, RZS had a higher water content than SBP. This was attributed to the stability of aggregates, increase in SOC content, and the root exudates, which improved soil water retention. The increase in total porosity in RZS was associated with improved soil aggregation, which prevents deterioration of the soil pore space and results in higher Ksat and hydraulic conductivity as a function of the effective relative saturation in RZS compared to SBP.
Collapse
|
17
|
Zdunek-Zastocka E, Michniewska B, Pawlicka A, Grabowska A. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Pisum sativum Leaves in a Developmentally Specific Manner. Int J Mol Sci 2024; 25:6582. [PMID: 38928288 PMCID: PMC11203977 DOI: 10.3390/ijms25126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, β-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.
Collapse
|
18
|
Zhou J, Qi Z, Yi L, Zhang Y, Yan Z, Zhang J, Ge F, Li Y, Liu J. Enzymatic synthesis of Vaccinium blue using vaccinoside as a bifunctional precursor. Food Chem 2024; 439:138049. [PMID: 38134568 DOI: 10.1016/j.foodchem.2023.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023]
Abstract
Since Tang dynasty in China, the fresh leaves of Vaccinium bracteatum (VBL) have been applied as natural pigment to produce black rice. However, detailed information on its biosynthetic mechanism still remained unclear. Following rice dyeing capacity assay, vaccinoside, one of iridoid glycosides, was identified as the key active compound. Increased methodical research demonstrated vaccinoside as a distinct bifunctional precursor, which could be catalyzed by polyphenol oxidase or β-glucosidase independently, followed by reaction with 15 amino acids to give blue pigments (VBPs; λmax 581-590 nm) of different hues. Two synthetic pathways of VBPs were proposed, using multiple techniques such as HPLC, HPSEC, UV-Vis spectrum and colorimeter as analysis tools. Black rice was interpreted to be prepared by cooking, using vaccinoside, intrinsic enzymes from fresh VBL and rice protein in combination. These findings promote the understanding of VBP formation mechanisms and provide an efficient method of producing novel Vaccinium blue pigments.
Collapse
|
19
|
Liu B, Gu H, Shi R, He X, Sun Z, Ren Q, Pan H. Streptomyces beigongshangae sp. nov., isolated from baijiu fermented grains, could transform ginsenosides of Panax notoginseng. Int J Syst Evol Microbiol 2024; 74. [PMID: 38767616 DOI: 10.1099/ijsem.0.006392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of β-glucosidase. The recombinant β-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.
Collapse
|
20
|
Kislitsin VY, Chulkin AM, Dotsenko AS, Sinelnikov IG, Sinitsyn AP, Rozhkova AM. The role of intracellular β-glucosidase in cellulolytic response induction in filamentous fungus Penicillium verruculosum. Res Microbiol 2024; 175:104178. [PMID: 38160731 DOI: 10.1016/j.resmic.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular β-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.
Collapse
|
21
|
Magwaza B, Amobonye A, Bhagwat P, Pillai S. Biochemical and in silico structural properties of a thermo-acid stable β-glucosidase from Beauveria bassiana. Heliyon 2024; 10:e28667. [PMID: 38571589 PMCID: PMC10988058 DOI: 10.1016/j.heliyon.2024.e28667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
β-glucosidase hydrolyses the glycosidic bonds in cellobiose and cello-oligosaccharides, a critical step in the saccharification for biofuel production. Hence, the aim of this study was to gain insights into the biochemical and structural properties of a β-glucosidase from Beauveria bassiana, an entomopathogenic fungus. The β-glucosidase was purified to homogeneity using salt precipitation, ultrafiltration, and chromatographic techniques, attaining a specific activity of 496 U/mg. The molecular mass of the enzyme was then estimated via SDS-PAGE to be 116 kDa, while its activity pattern was confirmed by zymography using 4-methylumbelliferyl-β-d-glucopyranoside. Furthermore, the pH optima and temperature of the enzyme were found to be pH 5.0 and 60 °C respectively; its activity was significantly enhanced by Mg2+ and Na+ and was found to be relatively moderate in the presence of ethanol and dichloromethane. Molecular docking of the modelled B. bassiana β-glucosidase structure with the substrates, viz., 4-nitrophenyl β-d-glucopyranoside and cellobiose, revealed the binding affinity energies of -7.2 and -6.2 (kcal mol-1), respectively. Furthermore, the computational study predicted Lys-657, Asp-658, and Arg-1000 as the core amino acid residues in the catalytic site of the enzyme. This is the first investigation into a purified β-glucosidase from B. bassiana, providing valuable insights into the functional properties of carbohydrases from entomopathogenic fungal endophytes.
Collapse
|
22
|
Kham NNN, Phovisay S, Unban K, Kanpiengjai A, Saenjum C, Lumyong S, Shetty K, Khanongnuch C. A Thermotolerant Yeast Cyberlindnera rhodanensis DK Isolated from Laphet-so Capable of Extracellular Thermostable β-Glucosidase Production. J Fungi (Basel) 2024; 10:243. [PMID: 38667914 PMCID: PMC11051217 DOI: 10.3390/jof10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to utilize the microbial resources found within Laphet-so, a traditional fermented tea in Myanmar. A total of 18 isolates of thermotolerant yeasts were obtained from eight samples of Laphet-so collected from southern Shan state, Myanmar. All isolates demonstrated the tannin tolerance, and six isolates were resistant to 5% (w/v) tannin concentration. All 18 isolates were capable of carboxy-methyl cellulose (CMC) degrading, but only the isolate DK showed ethanol production at 45 °C noticed by gas formation. This ethanol producing yeast was identified to be Cyberlindnera rhodanensis based on the sequence analysis of the D1/D2 domain on rRNA gene. C. rhodanensis DK produced 1.70 ± 0.01 U of thermostable extracellular β-glucosidase when cultured at 37 °C for 24 h using 0.5% (w/v) CMC as a carbon source. The best two carbon sources for extracellular β-glucosidase production were found to be either xylose or xylan, with β-glucosidase activity of 3.07-3.08 U/mL when the yeast was cultivated in the yeast malt extract (YM) broth containing either 1% (w/v) xylose or xylan as a sole carbon source at 37 °C for 48 h. The optimal medium compositions for enzyme production predicted by Plackett-Burman design and central composite design (CCD) was composed of yeast extract 5.83 g/L, peptone 10.81 g/L and xylose 20.20 g/L, resulting in a production of 7.96 U/mL, while the medium composed (g/L) of yeast extract 5.79, peptone 13.68 and xylan 20.16 gave 9.45 ± 0.03 U/mL for 48 h cultivation at 37 °C. Crude β-glucosidase exhibited a remarkable stability of 100%, 88% and 75% stable for 3 h at 35, 45 and 55 °C, respectively.
Collapse
|
23
|
Nam KH. Structural analysis of Tris binding in β-glucosidases. Biochem Biophys Res Commun 2024; 700:149608. [PMID: 38306932 DOI: 10.1016/j.bbrc.2024.149608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
β-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.
Collapse
|
24
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
|
25
|
Zhu Q, Huang Y, Yang Z, Wu X, Zhu Q, Zheng H, Zhu D, Lv Z, Yin Y. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules 2024; 29:1017. [PMID: 38474529 DOI: 10.3390/molecules29051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As a crucial enzyme for cellulose degradation, β-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family β-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic β-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.
Collapse
|