1
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
|
2
|
Kim Y, Chandra S, Waluyo I, Hunt A, Yildiz B. Electro-Chemo-Mechanical Evolution at the Garnet Solid Electrolyte-Cathode Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42034-42048. [PMID: 39102531 DOI: 10.1021/acsami.4c04713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Solid-state batteries promise higher energy density and improved safety compared with lithium-ion batteries. However, electro-chemomechanical instabilities at the solid electrolyte interface with the cathode and the anode hinder their large scale implementation. Here, we focus on resolving electro-chemo-mechanical instability mechanisms and their onset conditions between a state-of-the-art cathode, LiNi0.6Mn0.2Co0.2O2 (NMC622), and the garnet Li7La3Zr2O12 (LLZO) solid electrolyte. We used thin-film NMC622 on LLZO pellets to place the interfacial region within the detection depth of the X-ray characterization techniques. The experimental probes of the near-interface region included in operando X-ray absorption spectroscopy and ex situ focused ion beam scanning electron microscopy. Electrochemical degradation was not observable during cycling at room temperature with 4.3 V versus Li/Li+ charge voltage cutoff, or with stepwise potentiostatic hold up to 4.1 V versus Li/Li+. In contrast, secondary phases including reduced transition metal species (Ni2+, Co2+) were found after cycling up to 4.3 V versus Li/Li+ at 80 °C and during potentiostatic hold at 4.3 V versus Li/Li+ (Ni2+). Intergranular cracks between NMC622 grains and delamination at the NMC622|LLZO interface occurred readily after the first charge. These interface reaction products and mechanical failure lowered the capacity and cell efficiency due to partial loss of the NMC622 phase, partial loss of contact at the interface, and a higher polarization resistance. Electrochemical instability between delithiated NMC622 and LLZO could be mitigated by using a low charge voltage cutoff or cycling at lower temperature. Ways to engineer the mechanical properties to avoid crack deflection and delamination at the interface are also discussed for enhancing mechanical stability.
Collapse
|
3
|
Liao YC, Pang S, Li WP, Shtengel G, Choi H, Schaefer K, Xu CS, Lippincott-Schwartz J. COPII with ALG2 and ESCRTs control lysosome-dependent microautophagy of ER exit sites. Dev Cell 2024; 59:1410-1424.e4. [PMID: 38593803 DOI: 10.1016/j.devcel.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Endoplasmic reticulum exit sites (ERESs) are tubular outgrowths of endoplasmic reticulum that serve as the earliest station for protein sorting and export into the secretory pathway. How these structures respond to different cellular conditions remains unclear. Here, we report that ERESs undergo lysosome-dependent microautophagy when Ca2+ is released by lysosomes in response to nutrient stressors such as mTOR inhibition or amino acid starvation in mammalian cells. Targeting and uptake of ERESs into lysosomes were observed by super-resolution live-cell imaging and focus ion beam scanning electron microscopy (FIB-SEM). The mechanism was ESCRT dependent and required ubiquitinated SEC31, ALG2, and ALIX, with a knockout of ALG2 or function-blocking mutations of ALIX preventing engulfment of ERESs by lysosomes. In vitro, reconstitution of the pathway was possible using lysosomal lipid-mimicking giant unilamellar vesicles and purified recombinant components. Together, these findings demonstrate a pathway of lysosome-dependent ERES microautophagy mediated by COPII, ALG2, and ESCRTS induced by nutrient stress.
Collapse
|
4
|
Kojima T, Yamada H, Enomoto S, Nakao T, Arai S. Melanin granules morphology and distribution in human black hair investigated by focused ion beam scanning electron microscopy: Differences between Asian and Caucasian hair. J Struct Biol 2024; 216:108088. [PMID: 38531503 DOI: 10.1016/j.jsb.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Melanin granules (melanosomes) in Asian and Caucasian black hairs were investigated by focused ion beam scanning electron microscopy (FIB-SEM). This technique facilitates a direct evaluation of the three-dimensional distribution and morphology of melanin granules without requiring their isolation from hair. Three-dimensional reconstructed images of melanin granule distribution in hair samples were obtained using serial SEM images observed by FIB-SEM. Melanin granules in black hair tended to be three-dimensionally dense in the outer periphery of the cortex. The morphometric parameters of melanin granules were calculated using the reconstructed three-dimensional images. The results confirmed that melanin granules in Caucasian black hair were much smaller those in Asian black hair. Moreover, it was indicated that the relative frequency distribution of the volume of melanin granules was significantly different between Asians and Caucasians.
Collapse
|
5
|
Cano-Astorga N, Plaza-Alonso S, Turegano-Lopez M, Rodrigo-Rodríguez J, Merchan-Perez A, DeFelipe J. Unambiguous identification of asymmetric and symmetric synapses using volume electron microscopy. Front Neuroanat 2024; 18:1348032. [PMID: 38645671 PMCID: PMC11026665 DOI: 10.3389/fnana.2024.1348032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.
Collapse
|
6
|
Milgram J, Rehav K, Ibrahim J, Shahar R, Weiner S. The 3D organization of the mineralized scales of the sturgeon has structures reminiscent of dentin and bone: A FIB-SEM study. J Struct Biol 2023; 215:108045. [PMID: 37977509 DOI: 10.1016/j.jsb.2023.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Scales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM). The scale is composed of three layers, upper and lower layers forming the bulk of the scale, as well as a thin surface layer. FTIR shows that the scale is composed mainly of collagen and carbonated hydroxyapatite. Lacunae are present throughout the structure. Fracture surfaces of all three layers are characterized by large diameter collagen fibril bundles (CFBs) emanating from a plane comprising smaller diameter CFBs orientated in different directions. Fine lineations seen in polished surfaces of both major layers are used to define planes called here the striation planes. FIB-SEM image stacks of the upper and lower layers acquired in planes aligned with the striation planes, show that CFBs are oriented in various directions within the striation plane, with larger CFBs emanating from the striation plane. Fibril bundles oriented in different directions in the same plane is reminiscent of a similar organization in orthodentin. The large collagen fibril bundles emanating out of this plane are analogous to von Korff fibrils found in developing dentin with respect to size and orientation. Scales of the sturgeon are unusual in that their mineralized collagen fibril organization contains structural elements of both dentin and bone. The sturgeon scale may be an example of an early evolved mineralized material which is neither bone nor dentin but contains characteristics of both materials, however, the fossil data required to confirm this is missing.
Collapse
|
7
|
Liu Z, Niu Y, Fu Z, Dean M, Fu Z, Hu Y, Zou Z. 3D relationship between hierarchical canal network and gradient mineralization of shark tooth osteodentin. Acta Biomater 2023; 168:185-197. [PMID: 37451657 DOI: 10.1016/j.actbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.
Collapse
|
8
|
Nomura M, Ohta K, Nishigami Y, Nakayama T, Nakamura KI, Tadakuma K, Galipon J. Three-dimensional architecture and assembly mechanism of the egg-shaped shell in testate amoeba Paulinella micropora. Front Cell Dev Biol 2023; 11:1232685. [PMID: 37731817 PMCID: PMC10507277 DOI: 10.3389/fcell.2023.1232685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Unicellular euglyphid testate amoeba Paulinella micropora with filose pseudopodia secrete approximately 50 siliceous scales into the extracellular template-free space to construct a shell isomorphic to that of its mother cell. This shell-constructing behavior is analogous to building a house with bricks, and a complex mechanism is expected to be involved for a single-celled amoeba to achieve such a phenomenon; however, the three-dimensional (3D) structure of the shell and its assembly in P. micropora are still unknown. In this study, we aimed to clarify the positional relationship between the cytoplasmic and extracellular scales and the structure of the egg-shaped shell in P. micropora during shell construction using focused ion beam scanning electron microscopy (FIB-SEM). 3D reconstruction revealed an extensive invasion of the electron-dense cytoplasm between the long sides of the positioned and stacked scales, which was predicted to be mediated by actin filament extension. To investigate the architecture of the shell of P. micropora, each scale was individually segmented, and the position of its centroid was plotted. The scales were arranged in a left-handed, single-circular ellipse in a twisted arrangement. In addition, we 3D printed individual scales and assembled them, revealing new features of the shell assembly mechanism of P. micropora. Our results indicate that the shell of P. micropora forms an egg shape by the regular stacking of precisely designed scales, and that the cytoskeleton is involved in the construction process.
Collapse
|
9
|
Ibrahim J, Rechav K, Boaretto E, Weiner S. Three dimensional structures of the inner and outer pig petrous bone using FIB-SEM: Implications for development and ancient DNA preservation. J Struct Biol 2023; 215:107998. [PMID: 37422275 DOI: 10.1016/j.jsb.2023.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.
Collapse
|
10
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. 3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex. Cereb Cortex 2023; 33:9691-9708. [PMID: 37455478 PMCID: PMC10472499 DOI: 10.1093/cercor/bhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.
Collapse
|
11
|
Besnard C, Marie A, Sasidharan S, Buček P, Walker JM, Parker JE, Spink MC, Harper RA, Marathe S, Wanelik K, Moxham TE, Salvati E, Ignatyev K, Kłosowski MM, Shelton RM, Landini G, Korsunsky AM. Multi-resolution Correlative Ultrastructural and Chemical Analysis of Carious Enamel by Scanning Microscopy and Tomographic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37259-37273. [PMID: 37524079 PMCID: PMC10416148 DOI: 10.1021/acsami.3c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Caries, a major global disease associated with dental enamel demineralization, remains insufficiently understood to devise effective prevention or minimally invasive treatment. Understanding the ultrastructural changes in enamel is hampered by a lack of nanoscale characterization of the chemical spatial distributions within the dental tissue. This leads to the requirement to develop techniques based on various characterization methods. The purpose of the present study is to demonstrate the strength of analytic methods using a correlative technique on a single sample of human dental enamel as a specific case study to test the accuracy of techniques to compare regions in enamel. The science of the different techniques is integrated to genuinely study the enamel. The hierarchical structures within carious tissue were mapped using the combination of focused ion beam scanning electron microscopy with synchrotron X-ray tomography. The chemical changes were studied using scanning X-ray fluorescence (XRF) and X-ray wide-angle and small-angle scattering using a beam size below 80 nm for ångström and nanometer length scales. The analysis of XRF intensity gradients revealed subtle variations of Ca intensity in carious samples in comparison with those of normal mature enamel. In addition, the pathways for enamel rod demineralization were studied using X-ray ptychography. The results show the chemical and structural modification in carious enamel with differing locations. These results reinforce the need for multi-modal approaches to nanoscale analysis in complex hierarchically structured materials to interpret the changes of materials. The approach establishes a meticulous correlative characterization platform for the analysis of biomineralized tissues at the nanoscale, which adds confidence in the interpretation of the results and time-saving imaging techniques. The protocol demonstrated here using the dental tissue sample can be applied to other samples for statistical study and the investigation of nanoscale structural changes. The information gathered from the combination of methods could not be obtained with traditional individual techniques.
Collapse
|
12
|
Feng L, Jia D, Wang Z, Guo J, Zou X, Rao M, Kuang C, Ye J, Chen C, Cheng J. FIB-SEM combined with proteomics and modification omics clarified mechanisms of lipids synthesis in organelles of Chlorella pyrenoidosa cells with high CO 2 concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023:164516. [PMID: 37263437 DOI: 10.1016/j.scitotenv.2023.164516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
In order to explain reasons why flue-gas CO2 (normally containing high CO2) enhanced carbon fixation and lipids synthesis with increased photochemical electron production in microalgae cells. Focused ion beam scanning electron microscopy (FIB-SEM) was combined with proteomics and phosphorylation modification mics to clarify mechanisms of lipids synthesis at protein and organelle levels in Chlorella pyrenoidosa cells cultivated with high CO2 concentration (15 % v/v). The volumes of chloroplast and endoplasmic reticulum in subcellular organelles increased by 47 % and 306 %, respectively, compared with the control, which improved conversion efficiency of starch grains to lipids (lipid content increased by 57 %). Proteomics and modifications omics revealed that protein translation and ribosome structure and biogenesis-related enzymes were significantly modified by phosphorylation, which regulated protein biological functions. Glycolysis, pentose phosphate pathway and other carbohydrate metabolic pathways were markedly enriched and promoted the expression of lipid synthase, which was consistent with enhanced carbon fixation in photosynthesis, expansion of subcellular organelles and improved lipids synthesis.
Collapse
|
13
|
Stempinski ES, Pagano L, Riesterer JL, Adamou SK, Thibault G, Song X, Chang YH, López CS. Automated large volume sample preparation for vEM. Methods Cell Biol 2023; 177:1-32. [PMID: 37451763 DOI: 10.1016/bs.mcb.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
New developments in electron microscopy technology, improved efficiency of detectors, and artificial intelligence applications for data analysis over the past decade have increased the use of volume electron microscopy (vEM) in the life sciences field. Moreover, sample preparation methods are continuously being modified by investigators to improve final sample quality, increase electron density, combine imaging technologies, and minimize the introduction of artifacts into specimens under study. There are a variety of conventional bench protocols that a researcher can utilize, though most of these protocols require several days. In this work, we describe the utilization of an automated specimen processor, the mPrep™ ASP-2000™, to prepare samples for vEM that are compatible with focused ion beam scanning electron microscopy (FIB-SEM), serial block face scanning electron microscopy (SBF-SEM), and array tomography (AT). The protocols described here aimed for methods that are completed in a much shorter period of time while minimizing the exposure of the operator to hazardous and toxic chemicals and improving the reproducibility of the specimens' heavy metal staining, all without compromising the quality of the data acquired using backscattered electrons during SEM imaging. As a control, we have included a widely used sample bench protocol and have utilized it as a comparator for image quality analysis, both qualitatively and using image quality analysis metrics.
Collapse
|
14
|
Feng L, Guo W, Guo J, Zhang X, Zou X, Rao M, Ye J, Kuang C, Chen G, Chen C, Qin S, Yang W, Cheng J. FIB-SEM analysis on three-dimensional structures of growing organelles in wild Chlorella pyrenoidosa cells. PROTOPLASMA 2023; 260:885-897. [PMID: 36416933 DOI: 10.1007/s00709-022-01821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To clarify dynamic changes of organelle microstructures in Chlorella pyrenoidosa cells during photosynthetic growth with CO2 fixation, three-dimensional (3D) organelle microstructures in three growth periods of meristem, elongation, and maturity were quantitatively determined and comprehensively reconstructed with focused ion beam scanning electron microscopy (FIB-SEM). The single round-pancake mitochondria in each cell split into a dumbbell and then into a circular ring, while the barycenter distance of mitochondria to chloroplast and nucleus was reduced to 45.5% and 88.3% to strengthen energy transfer, respectively. The single pyrenoid consisting of a large part and another small part in each chloroplast gradually developed to a mature state in which the two parts were nearly equal in size. The nucleolus progressively became larger with euchromatin replication. The number of starch grains gradually increased, but the mean grain volume remained nearly unchanged.
Collapse
|
15
|
D'Imprima E, Garcia Montero M, Gawrzak S, Ronchi P, Zagoriy I, Schwab Y, Jechlinger M, Mahamid J. Light and electron microscopy continuum-resolution imaging of 3D cell cultures. Dev Cell 2023; 58:616-632.e6. [PMID: 36990090 PMCID: PMC10114294 DOI: 10.1016/j.devcel.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Collapse
|
16
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
|
17
|
Hirashima S, Ohta K, Togo A, Tsuneyoshi R, Kusukawa J, Nakamura KI. Mesoscopic structural analysis via deep learning processing, with a special reference to in vitro alteration in collagen fibre induced by a gap junction inhibitor. Microscopy (Oxf) 2023; 72:18-26. [PMID: 36087097 DOI: 10.1093/jmicro/dfac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Dense connective tissue, including the ligament, tendon, fascia and cornea, is formed by regularly arranged collagen fibres synthesized by fibroblasts (Fbs). The mechanism by which fibre orientation is determined remains unclear. Periodontal ligament Fbs consistently communicate with their surroundings via gap junctions (GJs), leading to the formation of a wide cellular network. A method to culture Fb-synthesized collagen fibres was previously reported by Schafer et al. ('Ascorbic acid deficiency in cultured human fibroblasts'. J. Cell Biol. 34: 83-95, 1967). This method has been applied to investigate the ability and activity of Fb collagen synthesis/phagocytosis using conventional electron microscopy (EM). However, the three-dimensional mesoscopic architecture of collagen fibres and the influence of GJ inhibitors on collagen fibre formation in vitro are poorly understood. In this study, three-dimensional mesoscopic analysis was used to elucidate the mechanism of directional fibre formation. We investigated the influence of GJ inhibitors on collagen formation driven by periodontal ligament Fbs in vitro, histomorphometrically, and the structural properties of in vitro collagen fibre on a mesoscale quantitatively, using correlative light and EM optimized for picrosirius red staining and focused ion beam-scanning EM tomography. Our results indicate that under culture conditions, in the presence of a GJ inhibitor, the orientation of collagen fibres becomes more disordered than that in the control group. This suggests that the GJ might be involved in determining fibre orientation during collagen fibre formation. Elucidation of this mechanism may help develop novel treatment strategies for connective tissue orientation disorders. Graphical Abstract.
Collapse
|
18
|
Wouterlood FG. Techniques to Render Dendritic Spines Visible in the Microscope. ADVANCES IN NEUROBIOLOGY 2023; 34:69-102. [PMID: 37962794 DOI: 10.1007/978-3-031-36159-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A tiny detail visible on certain neurons at the limit of resolution in light microscopy went in 130 years of neuroscience research through a dazzling career from suspicious staining artifact to what we recognize today as a complex postsynaptic molecular machine: the dendritic spine.This chapter deals with techniques to make spines visible. The original technique, Golgi silver staining, is still being used today. Electron microscopy and automated field ion beam scanning electron microscopy are ultrahigh resolution techniques, albeit specialized. Other methods are intracellular injection, uptake of dyes, and recently the exploitation of genetically modified animals in which certain neurons express fluorescent protein in all their processes, including the nooks and crannies of their dendritic spines.
Collapse
|
19
|
Lu Z, Xu CS, Hayworth KJ, Pang S, Shinomiya K, Plaza SM, Scheffer LK, Rubin GM, Hess HF, Rivlin PK, Meinertzhagen IA. En bloc preparation of Drosophila brains enables high-throughput FIB-SEM connectomics. Front Neural Circuits 2022; 16:917251. [PMID: 36589862 PMCID: PMC9801301 DOI: 10.3389/fncir.2022.917251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly Drosophila, in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature en bloc staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the Drosophila brain. These requirements include: good preservation of ultrastructural detail, high level of en bloc staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.
Collapse
|
20
|
Marchesini S, Reed BP, Jones H, Matjacic L, Rosser TE, Zhou Y, Brennan B, Tiddia M, Jervis R, Loveridge MJ, Raccichini R, Park J, Wain AJ, Hinds G, Gilmore IS, Shard AG, Pollard AJ. Surface Analysis of Pristine and Cycled NMC/Graphite Lithium-Ion Battery Electrodes: Addressing the Measurement Challenges. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52779-52793. [PMID: 36382786 DOI: 10.1021/acsami.2c13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries are the most ubiquitous energy storage devices in our everyday lives. However, their energy storage capacity fades over time due to chemical and structural changes in their components, via different degradation mechanisms. Understanding and mitigating these degradation mechanisms is key to reducing capacity fade, thereby enabling improvement in the performance and lifetime of Li-ion batteries, supporting the energy transition to renewables and electrification. In this endeavor, surface analysis techniques are commonly employed to characterize the chemistry and structure at reactive interfaces, where most changes are observed as batteries age. However, battery electrodes are complex systems containing unstable compounds, with large heterogeneities in material properties. Moreover, different degradation mechanisms can affect multiple material properties and occur simultaneously, meaning that a range of complementary techniques must be utilized to obtain a complete picture of electrode degradation. The combination of these issues and the lack of standard measurement protocols and guidelines for data interpretation can lead to a lack of trust in data. Herein, we discuss measurement challenges that affect several key surface analysis techniques being used for Li-ion battery degradation studies: focused ion beam scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and time-of-flight secondary ion mass spectrometry. We provide recommendations for each technique to improve reproducibility and reduce uncertainty in the analysis of NMC/graphite Li-ion battery electrodes. We also highlight some key measurement issues that should be addressed in future investigations.
Collapse
|
21
|
Brunet MA, Gorman BL, Kraft ML. Depth Correction of 3D NanoSIMS Images Shows Intracellular Lipid and Cholesterol Distributions while Capturing the Effects of Differential Sputter Rate. ACS NANO 2022; 16:16221-16233. [PMID: 36218061 DOI: 10.1021/acsnano.2c05148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Knowledge of the distributions of drugs, metabolites, and drug carriers within cells is a prerequisite for the development of effective disease treatments. Intracellular component distribution may be imaged with high sensitivity and spatial resolution by using a NanoSIMS in the depth profiling mode. Depth correction strategies that capture the effects of differential sputtering without requiring additional measurements could enable producing accurate 3D NanoSIMS depth profiling images of intracellular component distributions. Here we describe an approach for depth correcting 3D NanoSIMS depth profiling images of cells that accounts for differential sputter rates. Our approach uses the secondary ion and secondary electron depth profiling images to reconstruct the cell's morphology at every raster plane. These cell morphology reconstructions are used to adjust the z-positions and heights of the voxels in the component-specific 3D NanoSIMS images. We validated this strategy using AFM topography data and reconstructions created from depth profiling images acquired with focused ion beam-secondary electron microscopy. Good agreement was found for the shapes and relative heights of the reconstructed morphologies. Application of this depth correction strategy to 3D NanoSIMS depth profiling images of a metabolically labeled cell better resolved the transport vesicles, organelles, and organellar membranes containing 18O-cholesterol and 15N-sphingolipids. Accurate 3D NanoSIMS images of intracellular component distributions may now be produced without requiring correlated analyses with separate instruments or the assumption of a constant sputter rate. This will allow visualization of the subcellular distributions of lipids, metabolites, drugs, and nanoparticles in 3D, information pivotal to understanding and treating disease.
Collapse
|
22
|
Conny JM, Willis RD, Ortiz-Montalvo DL. Optical Modeling of Single Asian Dust and Marine Air Particles: A Comparison with Geometric Particle Shapes for Remote Sensing. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2022; 254:10.1016/j.jqsrt.2020.107197. [PMID: 38567026 PMCID: PMC10986421 DOI: 10.1016/j.jqsrt.2020.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We compare the optical properties of various geometric shapes with single atmospheric Asian dust and marine background air particles collected at Mauna Loa Observatory. Three-dimensional representations of the particles were acquired with focused ion-beam (FIB) tomography, which involves FIB milling of individual particles followed by imaging and elemental mapping with scanning electron microscopy. Particles were heterogeneous with mainly dolomite or calcite and a minor amount of iron; marine air particles contained gypsum but no iron. Extinction and backscatter fraction were calculated with the discrete dipole approximation method. Geometric shapes were grouped as ellipsoids (sphere, spheroid, ellipsoid), cuboids (cube, square prism, rectangular prism), and pyramids (tetrahedron, triangular pyramid). Each group represented a progression of shapes with 1, 2, or 3 non-identical axes. Most shapes underestimated particle extinction and overestimated the backscatter fraction. Not surprisingly, extinction and the backscatter fraction of the sphere and cube were furthest from those of the particles. While the 3-axis ellipsoid and rectangular prism were closer dimensionally to the particles, extinction and the backscatter fraction for the 2-axis spheroid and square prism, respectively, were often closer to the particles. The extinction and backscatter fraction for the tetrahedron and triangular pyramid were closer on average to the actual particles than were the other shapes. Tetrahedra have the advantage that parameterization of an aerosol model for remote sensing would not require an aspect ratio distribution. Particle surface roughness invariably decreased the backscatter fraction. While surface roughness typically contributes a minor part to overall scattering, in some cases the larger surface area of the tetrahedron and triangular pyramid sufficiently accounted for enhanced forward scattering of particles from surface roughness.
Collapse
|
23
|
Sheu SH, Upadhyayula S, Dupuy V, Pang S, Deng F, Wan J, Walpita D, Pasolli HA, Houser J, Sanchez-Martinez S, Brauchi SE, Banala S, Freeman M, Xu CS, Kirchhausen T, Hess HF, Lavis L, Li Y, Chaumont-Dubel S, Clapham DE. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell 2022; 185:3390-3407.e18. [PMID: 36055200 PMCID: PMC9789380 DOI: 10.1016/j.cell.2022.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 12/27/2022]
Abstract
Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.
Collapse
|
24
|
Yao PJ, Kapogiannis D. Seeing Is Perceiving (Believing). Neuromolecular Med 2022; 24:257-260. [PMID: 35083700 PMCID: PMC9985070 DOI: 10.1007/s12017-021-08701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Our perception of distinct structures in brain cells and understanding of their function has been revised and updated overtime. Past approaches combined with current powerful technologies provide a more complete picture of the brain's organization, from how the neurons connect with each other to finer details of every corner inside the neurons.
Collapse
|
25
|
Clark AG, Wang R, Qin Y, Wang Y, Zhu A, Lomeo J, Bao Q, Burgess DJ, Chen J, Qin B, Zou Y, Zhang S. Assessing microstructural critical quality attributes in PLGA microspheres by FIB-SEM analytics. J Control Release 2022; 349:580-591. [PMID: 35803326 DOI: 10.1016/j.jconrel.2022.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The distribution of the active pharmaceutical ingredient (API) within polymer-based controlled release drug products is a critical quality attribute (CQA). It is crucial for the development of such products, to be able to accurately characterize phase distributions in these products to evaluate performance and microstructure (Q3) equivalence. In this study, polymer, API, and porosity distributions in poly(lactic-co-glycolic acid) (PLGA) microspheres were characterized using a combination of focused ion beam scanning electron microscopy (FIB-SEM) and quantitative artificial intelligence (AI) image analytics. Through in-depth investigations of nine different microsphere formulations, microstructural CQAs were identified including the abundance, domain size, and distribution of the API, the polymer, and the microporosity. 3D models, digitally transformed from the FIB-SEM images, were reconstructed to predict controlled drug release numerically. Agreement between the in vitro release experiments and the predictions validated the image-based release modelling method. Sensitivity analysis revealed the dependence of release on the distribution and size of the API particles and the porosity within the polymeric microspheres, as captured through FIB-SEM imaging. To our knowledge, this is the first report showing that microstructural CQAs in PLGA microspheres derived from imaging can be quantitatively and predictively correlated with formulation and manufacturing parameters.
Collapse
|