1
|
Tripathi G, Pandey VK, Ahmad S, Irum, Khujamshukurov NA, Farooqui A, Mishra V. Utilizing novel Aspergillus species for bio-flocculation: A cost-effective approach to harvest Scenedesmus microalgae for biofuel production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100272. [PMID: 39296489 PMCID: PMC11408997 DOI: 10.1016/j.crmicr.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
The present study aimed to isolate a bioflocculating fungal strain from wastewater collected from a local bike garage. The isolate showed maximum similarity to Aspergillus species. The fungus was identified as Aspergillus flavus species F_GTAF1 IU (accession no OP703382). The isolated fungus was evaluated in terms of biomass recovery efficiency in Scenedesmus Sp. GTAF01. The extent of algal fungal co-pelletization was evaluated as a function of the algae-to-fungi ratio, volume of fungal culture in broth, agitation rate, and pH. results showed that at fungal culture volume of 60 ░ %v/v, fungal culture volume of 1:3 ░ %w/w, 100 rpm, and pH 3, 93.6 ░ % biomass was obtained during the initial 5 h. At wavenumbers 1384 and 1024 cm-1 a significant alteration in the transmission percentage was observed in co-pellet compared to algae and fungal cells. This shows the significant role of C-H-H and C-N stretches in co-pellet formation. This study provides deep insight into effective microalgal harvesting along with the simultaneous extraction of lipids that can be used for the sustainable production of biodiesel.
Collapse
|
2
|
Dai D, Gu R, Qv M, Lv Y, Liu D, Tang C, Wang H, Huang L, Zhu L. Performance evaluation of typical flocculants for efficient harvesting of Chlorella sorokiniana under different carbon application modes. CHEMOSPHERE 2024; 361:142563. [PMID: 38851498 DOI: 10.1016/j.chemosphere.2024.142563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
In this study, the growth characteristics of microalgae cultured with different carbon sources were analyzed, and the flocculation characteristics under the influence of carbon sources were evaluated using three typical flocculants. The results showed that the organic carbon sources could significantly increase the content of extracellular proteins in microalgae. Specifically, the extracellular protein concentrations of microalgae cultured with pure BG-11, ethanol, sodium acetate and glucose were 18.2 29.2, 97.3, and 34.7 mg/g, respectively. During the flocculation process, microalgae cultured with sodium acetate exhibited a weak response to the flocculant because of excessive extracellular proteins inhibited flocculation. In addition, the flocculation efficiency was also less than 50.0% cultured with sodium acetate in all pH test ranges when alum and chitosan were used as flocculants. It could be inferred that the flocculant initially happened to charge neutralization with the negatively charged proteins in the solution and then bridged the charges with the microalgae. These findings provide insights into the effects of different carbon sources on microalgal flocculation, promising organic integration of microalgae wastewater treatment and harvesting.
Collapse
|
3
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
|
4
|
Liu Y, Zhang G, Li Y, Wu X, Shang S, Che W. Enhancing immobilized Chlorella vulgaris growth with novel buoyant barium alginate bubble beads. BIORESOURCE TECHNOLOGY 2024; 406:130996. [PMID: 38885729 DOI: 10.1016/j.biortech.2024.130996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microalgae immobilization in alginate beads shows promise for biomass production and water pollution control. However, carrier instability and mass transfer limitations are challenges. This study introduces buoyant barium alginate bubble beads (BABB), which offer exceptional stability and enhance Chlorella vulgaris growth. In just 12 days, compared to traditional calcium alginate beads, BABB achieved a 20 % biomass increase while minimizing cell leakage and simplifying harvesting. BABB optimization involved co-immobilization with BG-11 medium, enrichment of CO2 in internal bubbles, and the integration of Fe nanoparticles (FeNPs). In the open raceway pond reactor, these optimizations resulted in a 39 % increase in biomass over 7 days compared to the unoptimized setup in closed flasks. Furthermore, enhancements in pigment and organic matter production were observed, along with improved removal of ammonia nitrogen and phosphate. These results highlight the overall advantages of BABB for microalgae immobilization, offering a scientific foundation for their effective utilization.
Collapse
|
5
|
Kumari P, Kumar D. Cultivation of algal biofilm and mat communities from the Garhwal Himalayas for possible use in diverse biotechnological applications. Heliyon 2024; 10:e32057. [PMID: 38867987 PMCID: PMC11168400 DOI: 10.1016/j.heliyon.2024.e32057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
The current study aimed to screen biofilm-/mat-forming and fast-growing algal communities from the Garhwal Himalayas, India. A total of 15 biofilm/mat-forming algal samples were collected, 8 biofilms out of these could be cultured and analyzed for their growth and development with time. Light microscopy was used to identify different types of cyanobacteria and algae present in the different collected biofilms/mats. Four biofilm and mat communities, namely biofilms #E, #F, #G, and #H, were found to have fast growth and were quick to colonize the substratum. Nylon net was identified as the most cost-effective and best-supporting material for biofilm development and biomass production. The study also found that increasing the harvesting frequency from the nylon net-enmeshed biofilms at least once a week would enhance the final biomass yield compared to harvesting the community once after a longer growth duration. Nevertheless, the findings reported here will be useful for researchers in developing phototrophic biofilm-based technology using nylon net, as it will be mechanically strong, supportive, and easy to handle.
Collapse
|
6
|
Zahan I, Kamrujjaman M. Evolution of dispersal and the analysis of a resource flourished population model with harvesting. Heliyon 2024; 10:e30737. [PMID: 38770280 PMCID: PMC11103478 DOI: 10.1016/j.heliyon.2024.e30737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
This study explores a spatially distributed harvesting model that signifies the outcome of the competition of two species in a heterogeneous environment. The model is controlled by reaction-diffusion equations with resource-based diffusion strategies. Two different situations are maintained by the harvesting effects: when the harvesting rates are independent in space and do not exceed the intrinsic growth rate; and when they are proportional to the time-independent intrinsic growth rate. In particular, the competition between both species differs only by their corresponding migration strategy and harvesting intensity. We have computed the main results for the global existence of solutions that represent either coexistence or competitive exclusion of two competing species depending on the harvesting levels and different imposed diffusion strategies. We also established some estimates on harvesting efforts for which coexistence is apparent. Also, some numerical results are exhibited in one and two spatial dimensions, which shed some light on the ecological implementation of the model.
Collapse
|
7
|
Vu HP, Kuzhiumparambil U, Cai Z, Wang Q, Ralph PJ, Nghiem LD. Enhanced biomethane production from Scenedesmus sp. using polymer harvesting and expired COVID-19 disinfectant for pretreatment. CHEMOSPHERE 2024; 356:141869. [PMID: 38575081 DOI: 10.1016/j.chemosphere.2024.141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.
Collapse
|
8
|
Kositsky A, Stenroth L, Barrett RS, Korhonen RK, Vertullo CJ, Diamond LE, Saxby DJ. Muscle Morphology Does Not Solely Determine Knee Flexion Weakness After Anterior Cruciate Ligament Reconstruction with a Semitendinosus Tendon Graft: A Combined Experimental and Computational Modeling Study. Ann Biomed Eng 2024; 52:1313-1325. [PMID: 38421479 PMCID: PMC10995045 DOI: 10.1007/s10439-024-03455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The distal semitendinosus tendon is commonly harvested for anterior cruciate ligament reconstruction, inducing substantial morbidity at the knee. The aim of this study was to probe how morphological changes of the semitendinosus muscle after harvest of its distal tendon for anterior cruciate ligament reconstruction affects knee flexion strength and whether the knee flexor synergists can compensate for the knee flexion weakness. Ten participants 8-18 months after anterior cruciate ligament reconstruction with an ipsilateral distal semitendinosus tendon autograft performed isometric knee flexion strength testing (15°, 45°, 60°, and 90°; 0° = knee extension) positioned prone on an isokinetic dynamometer. Morphological parameters extracted from magnetic resonance images were used to inform a musculoskeletal model. Knee flexion moments estimated by the model were then compared with those measured experimentally at each knee angle position. A statistically significant between-leg difference in experimentally-measured maximal isometric strength was found at 60° and 90°, but not 15° or 45°, of knee flexion. The musculoskeletal model matched the between-leg differences observed in experimental knee flexion moments at 15° and 45° but did not well estimate between-leg differences with a more flexed knee, particularly at 90°. Further, the knee flexor synergists could not physiologically compensate for weakness in deep knee flexion. These results suggest additional factors other than knee flexor muscle morphology play a role in knee flexion weakness following anterior cruciate ligament reconstruction with a distal semitendinosus tendon graft and thus more work at neural and microscopic levels is required for informing treatment and rehabilitation in this demographic.
Collapse
|
9
|
Shah SV, Lamba BY, Tiwari AK, Sharma R. Self-flocculation behaviour of cellulose-based bioflocculant synthesized from sewage water grown Chlorella sorokiniana and Scenedesmus abundans. Bioprocess Biosyst Eng 2024; 47:725-736. [PMID: 38582779 DOI: 10.1007/s00449-024-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
The global energy crisis has spurred a shift from conventional to clean and sustainable energy sources. Biomass derived from microalgae is emerging as an alternative energy source with diverse applications. Despite the numerous advantages of microalgae, large-scale biomass harvesting is not economical and convenient. Self-flocculation is considered an effective phenomenon facilitated by extracting the flocculating substances from microalgae that assist aggregation of algal cells into flocs. A novel cellulose-based bioflocculant has been synthesized from sewage water grown Chlorella sorokiniana and Scenedesmus abundans for harvesting application. The produced bioflocculant amounted to 38.5% and 19.38% of the dry weight of S. abundans and C. sorokiniana, respectively. Analysis via FTIR, XRD, and FESEM-EDX revealed the presence of cellulose hydroxyapatite (HA) in algae-derived cellulose. Harvesting efficiencies of 95.3% and 89.16% were attained for S. abundans and C. sorokiniana, respectively, at a dosage of 0.5 g/L. Furthermore, the bioflocculant was recovered, enabling its reuse with recovery efficiencies of 52% and 10% for S. abundans and C. sorokiniana, respectively. This simple and efficient approach has the potential to replace other harvesting methods, thereby contributing to the economic algal biofuel production.
Collapse
|
10
|
Pereira ASADP, Silva TAD, Magalhães IB, Ferreira J, Braga MQ, Lorentz JF, Assemany PP, Couto EDAD, Calijuri ML. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170918. [PMID: 38354809 DOI: 10.1016/j.scitotenv.2024.170918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Microalgae biomass has attracted attention as a feedstock to produce biofuels, biofertilizers, and pigments. However, the high production cost associated with cultivation and separation stages is a challenge for the microalgae biotechnology application on a large scale. A promising approach to overcome the technical-economic limitations of microalgae production is using wastewater as a nutrient and water source for cultivation. This strategy reduces cultivation costs and contributes to valorizing sanitation resources. Therefore, this article presents a comprehensive literature review on the status of microalgae biomass cultivation in wastewater, focusing on production strategies and the accumulation of valuable compounds such as lipids, carbohydrates, proteins, fatty acids, and pigments. This review also covers emerging techniques for harvesting microalgae biomass cultivated in wastewater, discussing the advantages and limitations of the process, as well as pointing out the main research opportunities. The novelty of the study lies in providing a detailed analysis of state-of-the-art and potential advances in the cultivation and harvesting of microalgae, with a special focus on the use of wastewater and implementing innovative strategies to enhance productivity and the accumulation of compounds. In this context, the work aims to guide future research concerning emerging technologies in the field, emphasizing the importance of innovative approaches in cultivating and harvesting microalgae for advancing knowledge and practical applications in this area.
Collapse
|
11
|
Laubach M, Bessot A, Saifzadeh S, Savi FM, Hildebrand F, Bock N, Hutmacher DW, McGovern J. In vivo study to assess fat embolism resulting from the Reamer-Irrigator-Aspirator 2 system compared to a novel aspirator-based concept for intramedullary bone graft harvesting. Arch Orthop Trauma Surg 2024; 144:1535-1546. [PMID: 38367064 PMCID: PMC10965743 DOI: 10.1007/s00402-024-05220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Fat embolism (FE) following intramedullary (IM) reaming can cause severe pulmonary complications and sudden death. Recently, a new harvesting concept was introduced in which a novel aspirator is used first for bone marrow (BM) aspiration and then for subsequent aspiration of morselized endosteal bone during sequential reaming (A + R + A). In contrast to the established Reamer-Irrigator-Aspirator (RIA) 2 system, the new A + R + A concept allows for the evacuation of fatty BM prior to reaming. In this study, we hypothesized that the risk of FE, associated coagulopathic reactions and pulmonary FE would be comparable between the RIA 2 system and the A + R + A concept. MATERIALS AND METHODS Intramedullary bone graft was harvested from intact femora of 16 Merino sheep (age: 1-2 years) with either the RIA 2 system (n = 8) or the A + R + A concept (n = 8). Fat intravasation was monitored with the Gurd test, coagulopathic response with D-dimer blood level concentration and pulmonary FE with histological evaluation of the lungs. RESULTS The total number and average size of intravasated fat particles was similar between groups (p = 0.13 and p = 0.98, respectively). D-dimer concentration did not significantly increase within 4 h after completion of surgery (RIA 2: p = 0.82; A + R + A: p = 0.23), with an interaction effect similar between groups (p = 0.65). The average lung area covered with fat globules was similar between groups (p = 0.17). CONCLUSIONS The use of the RIA 2 system and the novel A + R + A harvesting concept which consists of BM evacuation followed by sequential IM reaming and aspiration of endosteal bone, resulted in only minor fat intravasation, coagulopathic reactions and pulmonary FE, with no significant differences between the groups. Our results, therefore, suggest that both the RIA 2 system and the new A + R + A concept are comparable technologies in terms of FE-related complications.
Collapse
|
12
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
|
13
|
Pan Q, Lu M, Huang J, Ruan S. Effects of whaling and krill fishing on the whale-krill predation dynamics: bifurcations in a harvested predator-prey model with Holling type I functional response. J Math Biol 2024; 88:42. [PMID: 38446242 DOI: 10.1007/s00285-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
In the Antarctic, the whale population had been reduced dramatically due to the unregulated whaling. It was expected that Antarctic krill, the main prey of whales, would grow significantly as a consequence and exploratory krill fishing was practiced in some areas. However, it was found that there has been a substantial decline in abundance of krill since the end of whaling, which is the phenomenon of krill paradox. In this paper, to study the krill-whale interaction we revisit a harvested predator-prey model with Holling I functional response. We find that the model admits at most two positive equilibria. When the two positive equilibria are located in the region{ ( N , P ) | 0 ≤ N < 2 N c , P ≥ 0 } , the model exhibits degenerate Bogdanov-Takens bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to 2 by rigorous bifurcation analysis. When the two positive equilibria are located in the region{ ( N , P ) | N > 2 N c , P ≥ 0 } , the model has no complex bifurcation phenomenon. When there is one positive equilibrium on each side of N = 2 N c , the model undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simulation reveals that the model not only can exhibit the krill paradox phenomenon but also has three limit cycles, with the outmost one crosses the line N = 2 N c under some specific parameter conditions.
Collapse
|
14
|
Stackhouse LA, Coops NC, Kuiper SD, Hinch SG, White JC, Tompalski P, Nonis A, Gergel SE. Modeling instream temperature from solar insolation under varying timber harvesting intensities using RPAS laser scanning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169459. [PMID: 38123099 DOI: 10.1016/j.scitotenv.2023.169459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Stream temperatures are influenced by the amount of solar insolation they receive. Increasing stream temperatures associated with climate warming pose detrimental health risks to freshwater ecosystems. In British Columbia (BC), Canada, timber harvesting along forested streams is managed using riparian buffer zones of varying widths and designations. Within buffer zones, depending on distance from the stream, selective thinning may be permitted or harvest may be forbidden. In this study, we used airborne laser scanning (ALS) point cloud data acquired via a remotely piloted aircraft system (RPAS) to derive forest canopy characteristics that were then used to estimate daily incoming summer and fall solar insolation for five stream reaches in coastal conifer-dominated temperate forests in Vancouver Island, BC, Canada. We then examined empirical relationships between estimated insolation and actual instream temperature measurements. Based on these empirical relationships, the potential effects of timber harvest on instream temperatures were simulated by comparing scenarios of different riparian forest harvest intensities. Our results indicated that modeled solar insolation explained 43-90 % of the variation in observed stream reach temperatures, and furthermore, when a single cold-water stream reach was excluded explained an overall 81 % of variation. Simulated harvesting scenarios generally projected increases in maximum stream reach temperatures 1-2 °C in summer and early fall months. However, in a full clearcut scenario (i.e. where all trees were removed), maximum stream reach temperatures increased as much as 5.8 °C. Our results emphasize the importance of retaining riparian vegetation for the maintenance of habitable temperatures for freshwater-reliant fish with thermal restrictions. In addition, we demonstrate the feasibility of RPAS-based monitoring of stream reach shading and canopy cover, enabling detailed assessment of environmental stressors faced by fish populations under climate warming.
Collapse
|
15
|
Corbin M, Alleyne K, Oxenford HA, Vallès H. Clinging fauna associated with nearshore pelagic sargassum rafts in the Eastern Caribbean: Implications for coastal in-water harvesting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120077. [PMID: 38242025 DOI: 10.1016/j.jenvman.2024.120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Tropical Atlantic blooms of pelagic Sargassum species are associated with severe inundation events along the coasts of Caribbean and West African nations that cause extensive ecological and socioeconomic harm. The use of in-water harvesting as a management strategy avoids the plethora of challenges associated with shoreline inundations. Moreover, with a growing interest in the valorisation of this raw material, in-water harvesting provides the best opportunity to collect substantial amounts of 'fresh' sargassum that can be used in a variety of applications. However, in-water harvesting of sargassum will remove organisms associated with the floating habitat, resulting in loss of biodiversity, thus creating a potential management dilemma. To address this management concern, we assessed the clinging fauna associated with sargassum rafts at various distances from shore. From a total of 119 dipnet samples of sargassum, we recorded 18 taxa, across 6 phyla (Arthropoda, Mollusca, Chordata, Platyhelminthes, Nemathelminthes, Annelida) with the phylum Arthropoda being the most speciose (n = 10). Our multivariate and model selection analyses support that distance from shore and season are the most important drivers of variability in community composition and that season is the most important driver of individual abundance and number of taxa across samples. Overall, rafts within 0-3000 m of the shoreline of Barbados harbored low biodiversity and were dominated by small invertebrates (mean size: 5.5 mm) of no commercial value. Results suggest that biodiversity trade-offs associated with in-water sargassum harvesting in coastal areas are likely to be negligible.
Collapse
|
16
|
Zou X, Zhao S, Xu K, Fang C, Shen Z, Yan C, Dong L, Qin Z, Zhao X, Zhao J, Liang X. Eco-friendly microalgae harvesting using lipid-cored particles with a comparative life-cycle assessment. BIORESOURCE TECHNOLOGY 2024; 392:130023. [PMID: 37972903 DOI: 10.1016/j.biortech.2023.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
This study proposed an innovative approach using lipid-cored particles (LCPs) aimed at addressing the efficiency, cost, and environmental impact challenges in microalgae harvesting. Cetyltrimethylammonium bromide (CTAB) and chitosan (CS) were used to modify LCPs and to optimize efficiency and investigate the mechanisms of harvesting with Chlorella vulgaris. Results showed that a maximum harvesting efficiency of 97.14 % was achieved using CS-LCPs. Zeta potential and microscopic images revealed the presence of embedded CS-LCPs within microalgal flocs. Fractal dimension data suggested looser aggregates of CS-LCPs and Chlorella vulgaris, corroborated by Excitation-emission matrices (EEM) analysis further confirmation the presence of bridging networks. Moreover, life cycle assessment of five harvesting methods pointed freshwater ecotoxicity potential (FEP) and terrestrial ecotoxicity potential (TEP) as major environmental impacts, mainly from flocculant use, carrier production, and electricity consumption. Notably, LCPs showed the lowest global warming potential (GWP) at 1.54 kg CO2 eq, offering a viable, low-carbon, cost-effective harvesting alternative.
Collapse
|
17
|
Postawa K, Klimek K, Maj G, Kapłan M, Szczygieł J. Advanced dual-artificial neural network system for biomass combustion analysis and emission minimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119543. [PMID: 37976638 DOI: 10.1016/j.jenvman.2023.119543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Management of agricultural waste is an important part of plantation operations. Not all wastes are suitable for composting or the process is simply inefficient and time-consuming. In their case, thermal treatment is acceptable, but it is necessary to optimize the process to minimize greenhouse gas emissions. This article investigates the feasibility of constructing artificial neural networks (ANNs) to predict feedstock and emission parameters from the combustion of vineyard biomass. In order to maximize accuracy while avoiding overfitting of the ANN, a novel dual-ANN system was proposed. It consisted of two cascade-forward ANNs trained on independent data, each with three hidden layers. A benchmark showed that the final networks had a relative error in the range of 0.81-2.83%, and the resulting dual-ANN up to a maximum of 2.09%. Based on the ANN, it was possible to make recommendations on the parameters of the feedstock that would be suitable for obtaining bioenergy. It was noted that the best calorific values are shown by waste from plants with an intermediate amount, distribution, and mass of leaves, with relatively low average leaf area. Emissivity reduction, however, requires significantly different conditions. Preference is given to waste from plants that have high amounts of leaves but are spread over many stems - that is, plants that are highly shrubby during the growing season. This proves that it is not possible to formulate universal recommendations that are both energy- and carbon-beneficial, but outlines a clear direction where consensus should be sought, depending on the goals adopted.
Collapse
|
18
|
Huang KX, Vadiveloo A, Zhong H, Li C, Gao F. High-efficiency harvesting of microalgae enabled by chitosan-coated magnetic biochar. BIORESOURCE TECHNOLOGY 2023; 390:129860. [PMID: 37838019 DOI: 10.1016/j.biortech.2023.129860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Magnetic flocculation which uses magnetic particles is an emerging technology for harvesting microalgae. However, the potential modification and use of cost-effective and sustainable biochar-based composites is still in its infancy. As such, this study aimed to compare the harvesting efficiency of peanut shell biochar (BC), biochar modified with FeCl3 (FeBC), and biochar dual-modified with chitosan and FeCl3 (CTS@FeBC) on microalgae. The results showed CTS@FeBC exhibited significantly higher microalgae harvesting efficiency compared to BC and FeBC. Both acidic and alkaline conditions were favorable for harvesting microalgae by CTS@FeBC. At pH 2 and pH 12, the harvesting efficiency reached 96.9% and 98.8% within 2 min, respectively. The primary adsorption mechanism of CTS@FeBC on microalgae mainly involved electrostatic attraction and sweeping flocculation. Furthermore, CTS@FeBC also showed good biocompatibility and reusability. This study clearly demonstrated a promising technique for microalgae harvesting using biochar-based materials, offering valuable insights and potential applications in sustainable bioresource management.
Collapse
|
19
|
Perales-Pérez Á, Macías-Sánchez MD, Ruiz J, Perales JA, Garrido-Pérez C. Process for nutrient recycling from intensive aquaculture through microalgae-bacteria consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165848. [PMID: 37536584 DOI: 10.1016/j.scitotenv.2023.165848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
This work studies a biological process based on a microalgae-bacteria consortium for recycling nutrients in a recirculating aquaculture system (RAS) implanted in an intensive marine aquaculture farm. Additionally, some techniques were used for microalgae biomass harvesting and tested the effectiveness of filtration by a column with multi-layer sand to reduce the solids concentrations in the effluent. The consortium was grown in photobioreactors in batch and semi-continuous operation modes using the solids concentrated stream generated in the RAS system. The semi-continuous operation showed a high percentage of TDN and TDP removal, achieving final concentrations of 1.09 ± 0.02 mg·L-1 and 0.01 ± 0.01 mg·L-1, respectively, while DOC was reduced to 3.87 ± 0.06 mg·L-1. The values of productivity 44 ± 9 mg TSS·L-1 indicated that the studied stream is a suitable culture medium for the growth of the microalgae-bacteria consortium. A combination of harvesting techniques was studied, coagulation-flocculation-settling and coagulation-flocculation-flotation. The first step was to optimise the dose of FeCl3 through the coagulation-flocculation test to pre-concentrate the biomass generated, achieving an optimal dose of 0.106 mg Fe·mg TSS-1. Then, two separation processes were applied to the stream and compared: settling and flotation. The maximum removal efficiency (90.2 ± 0.3 %) was obtained in the settling process, so the coagulation-flocculation-settling was select as the best combination of harvesting techniques. Finally, sand filtration was studied as an effluent refining process to improve solids reduction of the water obtained in the harvesting step resulting in an effluent with 17.18 ± 1.49 mg TSS·L-1. The proposed sequence process is capable of recycling nutrients from an intensive marine aquaculture farm by using these resources via transformation into microalgae biomass and generating quality effluent.
Collapse
|
20
|
Holleyman RJ, Barnard S, Bauer-Staeb C, Hughes A, Dunn S, Fox S, Newton JN, Fitzpatrick J, Waller Z, Deehan DJ, Charlett A, Gregson CL, Wilson R, Fryers P, Goldblatt P, Burton P. Adjusting expected deaths for mortality displacement during the COVID-19 pandemic: a model based counterfactual approach at the level of individuals. BMC Med Res Methodol 2023; 23:241. [PMID: 37853353 PMCID: PMC10585864 DOI: 10.1186/s12874-023-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/23/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Near-real time surveillance of excess mortality has been an essential tool during the COVID-19 pandemic. It remains critical for monitoring mortality as the pandemic wanes, to detect fluctuations in the death rate associated both with the longer-term impact of the pandemic (e.g. infection, containment measures and reduced service provision by the health and other systems) and the responses that followed (e.g. curtailment of containment measures, vaccination and the response of health and other systems to backlogs). Following the relaxing of social distancing regimes and reduction in the availability of testing, across many countries, it becomes critical to measure the impact of COVID-19 infection. However, prolonged periods of mortality in excess of the expected across entire populations has raised doubts over the validity of using unadjusted historic estimates of mortality to calculate the expected numbers of deaths that form the baseline for computing numbers of excess deaths because many individuals died earlier than they would otherwise have done: i.e. their mortality was displaced earlier in time to occur during the pandemic rather than when historic rates predicted. This is also often termed "harvesting" in the literature. METHODS We present a novel Cox-regression-based methodology using time-dependent covariates to estimate the profile of the increased risk of death across time in individuals who contracted COVID-19 among a population of hip fracture patients in England (N = 98,365). We use these hazards to simulate a distribution of survival times, in the presence of a COVID-19 positive test, and then calculate survival times based on hazard rates without a positive test and use the difference between the medians of these distributions to estimate the number of days a death has been displaced. This methodology is applied at the individual level, rather than the population level to provide a better understanding of the impact of a positive COVID-19 test on the mortality of groups with different vulnerabilities conferred by sociodemographic and health characteristics. Finally, we apply the mortality displacement estimates to adjust estimates of excess mortality using a "ball and urn" model. RESULTS Among the exemplar population we present an end-to-end application of our methodology to estimate the extent of mortality displacement. A greater proportion of older, male and frailer individuals were subject to significant displacement while the magnitude of displacement was higher in younger females and in individuals with lower frailty: groups who, in the absence of COVID-19, should have had a substantial life expectancy. CONCLUSION Our results indicate that calculating the expected number of deaths following the first wave of the pandemic in England based solely on historical trends results in an overestimate, and excess mortality will therefore be underestimated. Our findings, using this exemplar dataset are conditional on having experienced a hip fracture, which is not generalisable to the general population. Fractures that impede mobility in the weeks that follow the accident/surgery considerably shorten life expectancy and are in themselves markers of significant frailty. It is therefore important to apply these novel methods to the general population, among whom we anticipate strong patterns in mortality displacement - both in its length and prevalence - by age, sex, frailty and types of comorbidities. This counterfactual method may also be used to investigate a wider range of disruptive population health events. This has important implications for public health monitoring and the interpretation of public health data in England and globally.
Collapse
|
21
|
Laubach M, Bessot A, McGovern J, Saifzadeh S, Gospos J, Segina DN, Kobbe P, Hildebrand F, Wille ML, Bock N, Hutmacher DW. An in vivo study to investigate an original intramedullary bone graft harvesting technology. Eur J Med Res 2023; 28:349. [PMID: 37715198 PMCID: PMC10503043 DOI: 10.1186/s40001-023-01328-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Harvesting bone graft (BG) from the intramedullary canal to treat bone defects is largely conducted using the Reamer-Irrigator-Aspirator (RIA) system. The RIA system uses irrigation fluid during harvesting, which may result in washout of osteoinductive factors. Here, we propose a new harvesting technology dedicated to improving BG collection without the potential washout effect of osteoinductive factors associated with irrigation fluid. This novel technology involves the conceptual approach of first aspirating the bone marrow (BM) with a novel aspirator prototype, followed by reaming with standard reamers and collecting the bone chips with the aspirator (reaming-aspiration method, R-A method). The aim of this study was to assess the harvesting efficacy and osteoinductive profile of the BG harvested with RIA 2 system (RIA 2 group) compared to the novel harvesting concept (aspirator + R-A method, ARA group). METHODS Pre-planning computed tomography (CT) imaging was conducted on 16 sheep to determine the femoral isthmus canal diameter. In this non-recovery study, sheep were divided into two groups: RIA 2 group (n = 8) and ARA group (n = 8). We measured BG weight collected from left femur and determined femoral cortical bone volume reduction in postoperative CT imaging. Growth factor and inflammatory cytokine amounts of the BGs were quantified using enzyme-linked immunosorbent assay (ELISA) methods. RESULTS The use of the stand-alone novel aspirator in BM collection, and in harvesting BG when the aspirator is used in conjunction with sequential reaming (R-A method) was proven feasible. ELISA results showed that the collected BG contained relevant amounts of growth factors and inflammatory cytokines in both the RIA 2 and the ARA group. CONCLUSIONS Here, we present the first results of an innovative concept for harvesting intramedullary BG. It is a prototype of a novel aspirator technology that enables the stepwise harvesting of first BM and subsequent bone chips from the intramedullary canal of long bones. Both the BG collected with the RIA 2 system and the aspirator prototype had the capacity to preserve the BG's osteoinductive microenvironment. Future in vivo studies are required to confirm the bone regenerative capacity of BG harvested with the innovative harvesting technology.
Collapse
|
22
|
Lai YC, Ducoste JJ, de Los Reyes FL. Growth of Dunaliella viridis in multiple cycles of reclaimed media after repeated high pH-induced flocculation and harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164087. [PMID: 37209725 DOI: 10.1016/j.scitotenv.2023.164087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Minimizing the use of water for growing microalgae is crucial for lowering the energy and costs of animal feed, food, and biofuel production from microalgae. Dunaliella spp., a haloterant species that can accumulate high intracellular levels of lipids, carotenoids, or glycerol can be harvested effectively using low-cost and scalable high pH-induced flocculation. However, the growth of Dunaliella spp. in reclaimed media after flocculation and the impact of recycling on the flocculation efficiency have not been explored. In this study, repeated cycles of growth of Dunaliella viridis in repeatedly reclaimed media from high pH-induced flocculation were studied by evaluating cell concentrations, cellular components, dissolved organic matter (DOM), and bacterial community shifts in the reclaimed media. In reclaimed media, D. viridis grew to the same concentrations of cells and intracellular components as fresh media-107 cells/mL with cellular composition of 3 % lipids, 40 % proteins, and 15 % carbohydrates-even though DOM accumulated and the dominant bacterial populations changed. There was a decrease in the maximum specific growth rate and flocculation efficiency from 0.72 d-1 to 0.45 d-1 and from 60 % to 48 %, respectively. This study shows the potential of repeated (at least five times) flocculation and reuse of media as a possible way of reducing the costs of water and nutrients with some tradeoffs in growth rate and flocculation efficiency.
Collapse
|
23
|
Qin S, Wang K, Gao F, Ge B, Cui H, Li W. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:131. [PMID: 37644516 PMCID: PMC10466707 DOI: 10.1186/s13068-023-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Microalgal biomass represents a sustainable bioresource for various applications, such as food, nutraceuticals, pharmaceuticals, feed, and other bio-based products. For decades, its mass production has attracted widespread attention and interest. The process of microalgal biomass production involves several techniques, mainly cultivation, harvesting, drying, and pollution control. These techniques are often designed and optimized to meet optimal growth conditions for microalgae and to produce high-quality biomass at acceptable cost. Importantly, mass production techniques are important for producing a commercial product in sufficient amounts. However, it should not be overlooked that microalgal biotechnology still faces challenges, in particular the high cost of production, the lack of knowledge about biological contaminants and the challenge of loss of active ingredients during biomass production. These issues involve the research and development of low-cost, standardized, industrial-scale production equipment and the optimization of production processes, as well as the urgent need to increase the research on biological contaminants and microalgal active ingredients. This review systematically examines the global development of microalgal biotechnology for biomass production, with emphasis on the techniques of cultivation, harvesting, drying and control of biological contaminants, and discusses the challenges and strategies to further improve quality and reduce costs. Moreover, the current status of biomass production of some biotechnologically important species has been summarized, and the importance of improving microalgae-related standards for their commercial applications is noted.
Collapse
|
24
|
Zhao X, Liu L, Wang H, Fan M. Ecological Effects of Predator Harvesting and Environmental Noises on Oceanic Coral Reefs. Bull Math Biol 2023; 85:59. [PMID: 37243782 DOI: 10.1007/s11538-023-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Coral reefs provide refuge for prey and are important for the preservation of an oceanic ecosystem. However, they have been experiencing severe destruction by environmental changes and human activities. In this paper, we propose and analyze a tri-trophic food chain model consisting of coral, Crown-of-thorns starfish (CoTS), and triton in deterministic and stochastic environments. We investigate the effects of harvesting in the deterministic system and environmental noises in the stochastic system, respectively. The existence of possible steady states along with their stability is rigorously discussed. From the economic perspective, we examine the existence of the bionomic equilibrium and establish the optimal harvesting policy. Subsequently, the deterministic system is extended to a stochastic system through nonlinear perturbation. The stochastic system admits a unique positive global solution initiating from the interior of the positive quadrant. The long-time behaviors of the stochastic system are explored. Numerical simulations are provided to validate and complement our theoretical results. We show that over-harvesting of triton is not beneficial to coral reefs and modest harvesting of CoTS may promote sustainable growth in coral reefs. In addition, the presence of strong noises can lead to population extinction.
Collapse
|
25
|
Tong CY, Derek CJC. Bio-coatings as immobilized microalgae cultivation enhancement: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:163857. [PMID: 37149157 DOI: 10.1016/j.scitotenv.2023.163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Bio-coatings serve as artificial scaffolds for immobilizing microalgae to facilitate cell concentration and harvesting. It has been used as an additional step to enhance the natural microalgal biofilm cultivation and to promote new opportunities in artificially-immobilize cultivation technology of microalgae. This technique is able to enhance biomass productivities, enable energy and cost saving, water volume reduction and ease of biomass harvesting since the cells are physically isolated from the liquid medium. However, scientific discoveries of bio-coatings for process intensification are still lacking and their working principles remained unclear. Therefore, this critical review aims to shed light on the advancement of cell encapsulation systems (hydrogel coating, artificial leaf, bio-catalytic latex coating, and cellular polymeric coating) over the years and aid in the selection of appropriate bio-coating techniques for various applications. Discussion on the different preparation routes of bio-coatings, as well as the exploration towards the potential of bio-based coating materials such as natural/synthetic polymers, latex binders, and algal organic matters are also included, with a focus on sustainable pursuits. This review also presents in-depth investigations into the environmental applications of bio-coatings in wastewater remediation, air purification, carbon bio-fixation, and bio-electricity. The field of bio-coating in microalgae immobilization gives rise to a new ecofriendly strategy with scalable cultivation footprint and a balanced environmental risk aligning with the United Nation's Sustainable Development Goals with potential towards the contribution of Zero Hunger, Clean Water and Sanitation, Affordable and Clean Energy, and Responsible Consumption and Production.
Collapse
|