1
|
Galal SAB, Madhat Mousa M, Elzanfaly ES, Hussien EM, Amer EAH, Zaazaa HE. Quantitative analysis of residual butylated hydroxytoluene and butylated hydroxyanisole in Salmo salar, milk, and butter by liquid chromatography-tandem mass spectrometry. Food Chem 2024; 453:139653. [PMID: 38788645 DOI: 10.1016/j.foodchem.2024.139653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are two commonly used antioxidants with potential health risks associated with excessive intake from multiple sources. Several countries have implemented strict regulations to curb these risks. This study presents a simple LC-MS/MS method for estimating BHT and BHA levels in Salmo salar, butter, and milk. To mitigate any potential interference from the three complex matrices with the ionisation of the target analytes, the method utilised the standard addition approach. The mobile phase used to elute the analytes consisted of 0.1 % formic acid in a mixture of water and acetonitrile (25:75 v/v). Both antioxidants were detected in negative ionisation mode. BHT was identified through single-ion monitoring at a mass-to-charge ratio (m/z) of 219.4, while BHA was detected using multiple-reaction monitoring, with a transition from m/z 164.0 to 149.0. The environmental assessment of the applied procedures verified that the approach is eco-friendly.
Collapse
|
2
|
Li W, Chen Y, Li X, Zhong Y, Xu P, Teng Y. Ultrasensitive SERS quantitative detection of antioxidants via diazo derivatization reaction and deep learning for signal fluctuation mitigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124086. [PMID: 38442618 DOI: 10.1016/j.saa.2024.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.
Collapse
|
3
|
Li Y, Wu X, Wu Z, Zhong M, Su X, Ye Y, Liu Y, Tan L, Liang Y. Colorimetric sensor array based on CoOOH nanoflakes for rapid discrimination of antioxidants in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2754-2760. [PMID: 35781305 DOI: 10.1039/d2ay00692h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of synthetic antioxidants has considerable significance in food safety. Here, we described the development of a colorimetric sensor array for rapid detection of eight antioxidants in food through the redox reaction between CoOOH and antioxidants in the presence of colorimetric signal indicators. The CoOOH nanoflakes exhibited high catalytic oxidation activity and can independently catalyze oxidation signal indicators showing different colors. The color reaction was inhibited to different degrees in the presence of antioxidants, which resulted in distinct signal response patterns for their discrimination. The method showed good linearity in the range from 50 to 1000 nM for butylated hydroxytoluene (BHT), butylhydroxyanisole (BHA), propyl gallate (PG) and tert-butyl hydroquinone (TBHQ). Moreover, different proportions of antioxidants were located in the middle pattern of each single antioxidant, and showed certain linear relationships among different concentration ratios. Finally, the proposed colorimetric sensor array was used for practical applications where TBHQ and BHT were detected in biscuits and sausages, and BHA and PG were detected in fried pork kebabs, respectively. The results were further confirmed by high-performance liquid chromatography, which demonstrated the great potential of the colorimetry sensor array for practical applications.
Collapse
|
4
|
Ousji O, Sleno L. Identification of In Vitro Metabolites of Synthetic Phenolic Antioxidants BHT, BHA, and TBHQ by LC-HRMS/MS. Int J Mol Sci 2020; 21:E9525. [PMID: 33333739 PMCID: PMC7765162 DOI: 10.3390/ijms21249525] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Butylated hydroxytoluene (BHT) and its analogs, butylated hydroxyanisole (BHA) and tert-butyl-hydroquinone (TBHQ), are widely used synthetic preservatives to inhibit lipid oxidation in the food, cosmetic and pharmaceutical industries. Despite their widespread use, little is known about their human exposure and related biotransformation products. The metabolism of these compounds was investigated using in vitro incubations with human and rat liver fractions. Liquid chromatography coupled to high-resolution tandem mass spectrometry was employed to detect and characterize stable and reactive species formed via oxidative metabolism, as well as phase II conjugates. Several oxidative metabolites have been detected, as well as glutathione, glucuronide, and sulfate conjugates, many of which were not previously reported. A combination of accurate mass measurements, MS/MS fragmentation behavior, and isotope-labeling studies were used to elucidate metabolite structures.
Collapse
|
5
|
Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A, Soltanzadeh M, Pateiro M, Lorenzo JM. Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life. Molecules 2020; 25:E5197. [PMID: 33171666 PMCID: PMC7664697 DOI: 10.3390/molecules25215197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
To extend the shelf-life of packaged donut without the addition of preservative, polypropylene-based active composite films loaded with a combination of sorbic acid, BHA and BHT were prepared by the extrusion moulding method: T1 (Control-pure PP-film), T2 (PP-BHT1%-SA2%), T3 (PP-BHA3%-SA2%) and T4 (PP-BHT1%-BHA1%-SA2%). The incorporation of active additives enhanced water vapour permeability (WVP) and increased oxygen permeability of films. Active films had higher antioxidant activity than pure PP in the order T4 > T2 > T3 (89.11, 83.40 and 79.16%). In vitro examinations demonstrated a significant antibacterial effect on Escherichia coli and S. aureus growth. Overall migration was not significantly different for watery food simulants, while in acidic and fatty foods increased it significantly. The effect of the active films on the fried and packaged donut samples showed significantly higher moisture contents and peroxide values, while acidity was lower. T2 film is proposed due to the preservation of the intrinsic properties of the film, increasing the storage period up to 25 to 50 days.
Collapse
|
6
|
Manoranjitham JJ, Narayanan SS. Electrochemical sensor for determination of butylated hydroxyanisole (BHA) in food products using poly O-cresolphthalein complexone coated multiwalledcarbon nanotubes electrode. Food Chem 2020; 342:128246. [PMID: 33277123 DOI: 10.1016/j.foodchem.2020.128246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have reported an electrochemical sensor for the determination of butylated hydroxyanisole (BHA) by electropolymerization of O-cresolphthalein complexone (OC) over the multiwalled carbon nanotubes (MWCNTs). In order to confirm the surface morphology, oxidation states, functional groups and charge transfer property of POC/MWCNTs electrode, the resulting POC film with MWCNTs electrode was characterized by spectroscopy, microscopy, and electrochemical techniques. The fabricated electrode was evaluated for its electrochemical performance in oxidation of BHA and the study showed that at POC/MWCNTs electrodes BHA oxidation occurred at 0.27 V. POC/MWCNTs electrode has shown a linear range for the detection of BHA from 0.33 µM to 110 µM with the detection limit of 0.11 µM (S/N = 3). Amperometric determination of BHA was also done using chronoamperometric techniques and the result was found to be linear. The real time analysis of sensors is also validated by analysing the packed potato chips samples.
Collapse
|
7
|
C. Palheta I, R. Ferreira L, K. L. Vale J, P. P. Silva O, M. Herculano A, R. H. M. Oliveira K, Neto AMJC, M. Campos J, B. R. Santos C, S. Borges R. Alkylated Sesamol Derivatives as Potent Antioxidants. Molecules 2020; 25:molecules25143300. [PMID: 32708143 PMCID: PMC7397082 DOI: 10.3390/molecules25143300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Sesamol is a phenolic derivative. Its antioxidant activity is low than that of Trolox and depends on benzodioxole moiety. Thus, a molecular modification strategy through alkylation, inspired by natural and synthetic antioxidants, was studied by molecular modeling at the DFT/B3LYP level of theory by comparing the 6-31+G(d,p) and 6-311++G(2d,2p) basis sets. All proposed derivatives were compared to classical related antioxidants such as Trolox, t-butylated hydroxytoluene (BHT) and t-butylated hydroxyanisole (BHA). According to our results, molecular orbitals, single electron or hydrogen-atom transfers, spin density distributions, and alkyl substitutions at the ortho positions related to phenol moiety were found to be more effective than any other positions. The trimethylated derivative was more potent than Trolox. t-Butylated derivatives were stronger than all other alkylated derivatives and may be new alternative forms of modified antioxidants from natural products with applications in the chemical, pharmaceutical, and food industries.
Collapse
|
8
|
Jianu C, Goleț I, Stoin D, Cocan I, Lukinich-Gruia AT. Antioxidant Activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus Essential Oil. Molecules 2020; 25:molecules25040869. [PMID: 32079080 PMCID: PMC7070583 DOI: 10.3390/molecules25040869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
In the last decade, there has been growing interest in the food industry in replacing synthetic chemicals with natural products with bioactive properties. This study's aims were to determine the chemical composition and the antioxidant properties of the essential oil of Pastianica sylvestris. The essential oil was isolated with a yield of 0.41% (w/v) by steam distillation from the dried seeds and subsequently analysed by GC-MS. Octyl acetate (78.49%) and octyl hexanoate (6.68%) were the main components. The essential oil exhibited an excellent activity for the inhibition of primary and secondary oxidation products for cold-pressed sunflower oil comparable with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), which were evaluated using peroxide and thiobarbituric acid values. The antioxidant activity of the essential oil was additionally validated using DPPH radical scavenging (0.0016 ± 0.0885 mg/mL), and β-carotene-linoleic acid bleaching assays. Also, the amounts of total phenol components (0.0053 ± 0.0023 mg GAE/g) were determined.
Collapse
|
9
|
Kozlowska M, Zbikowska A, Marciniak-Lukasiak K, Kowalska M. Herbal Extracts Incorporated into Shortbread Cookies: Impact on Color and Fat Quality of the Cookies. Biomolecules 2019; 9:biom9120858. [PMID: 31835857 PMCID: PMC6995587 DOI: 10.3390/biom9120858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/24/2023] Open
Abstract
This study aimed at determining the effect of aqueous ethanolic extracts from lemon balm, hyssop and nettle, and butylated hydroxyanisole (BHA) on properties of shortbread cookies. This was achieved by instrumental measurements of color and sensory properties of the cookies directly after baking and by determination of peroxide (PV) and p-anisidine (p-AnV) values, and specific extinction coefficients (K232 and K268 values) for fat extracted from the cookies stored for 3 months at room temperature. Increase of the herbal extracts’ concentration from 0.02% to 0.2% in the cookies caused a reduction of L* (the brightness) and a* values (the red coordinate), while b* values (the yellow coordinate) increased when the cookies were enriched with lemon balm and nettle extracts. Among the cookies studied, those prepared with BHA and 0.1 and 0.2% addition of lemon balm extracts were characterized by the highest scores for aroma, taste, and overall acceptability. Incorporation of BHA and 0.02% hyssop extract into the cookies caused a decrease of PV values (the peroxide value) for fat extracted from the cookies after 3 months of their storage compared to a (control) sample without additives and produced the lowest K232 values. Changes in the p-AnV values for the fat samples studied occurred gradually and slowly during the storage and the obtained values were lower compared to the control sample. All of the studied fat samples also showed a higher ability to scavenge DPPH radicals than the control sample. Considering both PV and p-AnV values as indicators of fat oxidation, BHA protected fat extracted from cookies against oxidation better than the herbal extracts used.
Collapse
|
10
|
Sun Z, Yang X, Liu QS, Li C, Zhou Q, Fiedler H, Liao C, Zhang J, Jiang G. Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120794. [PMID: 31238218 DOI: 10.1016/j.jhazmat.2019.120794] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Butylated hydroxyanisole (BHA) isomers, as the widely used anthropogenic antioxidants in food, have been revealed to induce endocrine disrupting effects, while the mechanism how BHA isomers regulate the lipogenic differentiation remains to be elucidated. Using 3T3-L1 differentiation model, the effects of BHA isomers, including 2-tert-butyl-4-hydroxyanisole (2-BHA), 3-tert-butyl-4-hydroxyanisole (3-BHA) and their mixture (BHA), on adipogenesis were tested. The results showed that 3-BHA and BHA promoted adipocyte differentiation and enhanced the cellular lipid accumulation through the regulation of the transcriptional and protein levels of the adipogenetic biomarkers, while 2-BHA had no effect. The effective window for 3-BHA induced lipogenesis was the first four days during 3T3-L1 differentiation. BHA isomers showed no binding affinities for peroxisome proliferator activated receptor γ (PPARγ). Instead, the upstream of PPARγ signaling pathway, i.e. the phosphorylation of cAMP-response element binding protein (CREB), upregulation of CAAT/enhancer-binding proteins β (C/EBPβ) and elevated cell proliferation during postconfluent mitosis stage were induced by 3-BHA exposure. Altogether, this study revealed the adipogenic effect of 3-BHA through interference with the upstream events of the PPARγ signaling pathway. The authorized usage of BHA as food additives and its occurrence in human sera can potentially contribute to the incidence of obesity, which is of high concern.
Collapse
|
11
|
Girardi NS, Garcia D, Passone MA, Nesci A, García J, Etcheverry M. Microencapsulated food-grade antioxidant applied as a preservative of peanut seed quality in microcosm- and pilot-scale trials. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2473-2480. [PMID: 30367496 DOI: 10.1002/jsfa.9456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In Argentina, peanuts are stored for 3-6 months. It is important to avoid proliferation of fungi and insect pests during this period. In this study, the potential of butylated hydroxyanisole (BHA) microcapsules to conserve peanut kernels was evaluated in microcosms and on a pilot scale. RESULTS In microcosm assays, microcapsules containing BHA at a dose of 1802 µg g-1 reduced 37% of total fungal count. Higher reductions (77-100%) were obtained with a combined treatment with BHA formulation (1802 µg g-1 ) plus fungicide (methyl thiophanate 0.0100 g L-1 and metalaxyl 0.0133 g L-1 ). However, germination levels of peanut seeds treated with the BHA formulation were less than 6% throughout the incubation time. In pilot-scale trials, the storage conditions allowed the control of fungal development and insect proliferation. Quantifiable levels of BHA were also detected throughout the entire storage period. The combined treatment significantly reduced fungal contamination at 2 months of storage (C1-2015: 37.41%; C1-2016: 28.48%; C2-2016: 45.02%). Seed germination of unshelled stored peanuts was not affected by the formulation. CONCLUSION The application of the BHA formulation during storage combined with pre-seeding treatment could be an appropriate strategy to maintain the quality of the peanut kernels destined for seed. © 2018 Society of Chemical Industry.
Collapse
|
12
|
Alagu K, Nagappan B, Jayaraman J, Arul Gnana Dhas A. Impact of antioxidant additives on the performance and emission characteristics of C.I engine fuelled with B20 blend of rice bran biodiesel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17634-17644. [PMID: 29667056 DOI: 10.1007/s11356-018-1934-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
This manuscript presents the impact of addition of antioxidant additives to rice bran biodiesel blend on the performance and emission characteristics of compression ignition (C.I) engine. Rice bran methyl ester (RBME) was produced from rice bran oil by transesterification using sodium hydroxide as catalyst. An experimental investigation was conducted on a single-cylinder four-stroke C.I engine to analyze the performance and emission characteristics of rice bran methyl ester (RBME) blended with diesel at 20% by volume (B20) with and without addition of 1000 ppm of two monophenolic antioxidant additives, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). The results showed that the BHA- and BHT-treated B20 blend decreased the brake specific fuel consumption (BSFC) by 2.1 and 1.2% and increased the brake thermal efficiency (BTE) by 1.04 and 0.5% compared to B20. The BHA- and BHT-treated B20 blend produced mean reductions in NOx emission of 12.2 and 9.6%, respectively, compared to B20. The carbon monoxide (CO) and hydrocarbon (HC) emissions of BHA- and BHT-treated B20 were increased by 14.8-16.6% and 10.6-11.2%, respectively, compared to B20. However the emission levels were lower than those of diesel.
Collapse
|
13
|
Murakami Y, Kawata A, Katayama T, Fujisawa S. Anti-inflammatory activity of the artificial antioxidants 2-tert-butyl-4-methoxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP), and their various combinations. In Vivo 2015; 29:197-206. [PMID: 25792646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND/AIM The artificial complex phenols, 2-tert-butyl-4-methoxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP) exert efficient antioxidant activity; however, they are considerable toxic and potentially tumor-promoting. These phenols, particularly in combinations, have enhanced antioxidant activity due to synergistic interactions and produce bioactive intermediates such as quinone methide. We investigated the anti-inflammatory activity of BHA, BHT and TBP, and combinations of BHT/BHA (in molar ratios of 1:1, 1:2, 1:3 and 2:1), BHT/TBP (1:1), and BHA/TBP (1:1), using gene-expression systems for cyclooxygenase-2 (Cox2) and tumor necrosis facto-alpha (Tnfa) in RAW264.7 cells. MATERIALS AND METHODS The inhibitory effects of BHA, BHT and TBP on expression of Cox2 and Tnfa genes upon stimulation with Escherichia coli lipopolysaccharide (LPS) or Porphyomonas gingivalis (Pg) fimbriae were determined using real-time polymerase chain reaction. RESULTS The inhibitory effect on expression of Cox2 and Tnfa genes upon stimulation with LPS and fimbriae was greatly enhanced by the combination of two antioxidants (molar ratio 1:1), BHT/BHA. In addition, that of the Cox2 gene, but not of Tnfa gene was slightly enhanced by a combination of equimolar BHT/TBP and BHA/TBP. None of the antioxidants alone exerted any anti-inflammatory activity upon stimulation with LPS, but a slight anti-inflammatory activity was observed upon stimulation with Pg fimbriae. The inhibitory effect of the BHT/BHA combination on expression of Cox2 mRNA upon stimulation with LPS was investigated at afferent molar ratios, and a molar ratio of 1:1 was found to have considerably less effect than a molar ratio of 1:2 or 2:1. The 1:3 combination had no effect. CONCLUSION The combination of BHT and BHA at a molar ratio of 0.5-2 exerts potent anti-inflammatory activity. This anti-inflammatory activity on the generation of inflammatory mediators in LPS-activated RAW264.7 cells may be attributable to complex synergistic antioxidant activity of the combination of BHT and BHA. Our results suggest the potential usefulness of the BHT/BHA combination at an appropriate molar ratio as an antioxidant in foods and pharmaceuticals, whereas either antioxidant alone is unlikely to be effective.
Collapse
|
14
|
Balachandran V, Karpagam V, Revathi B, Kavimani M, Santhi G. Conformational stability, vibrational and NMR analysis, chemical potential and thermodynamical parameter of 3-tert-butyl-4-hydroxyanisole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1039-1051. [PMID: 25173520 DOI: 10.1016/j.saa.2014.07.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/12/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The FT-IR and FT-Raman spectra of 3-tert-butyl-4-hydroxyanisole (TBHA) molecule have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Optimized geometrical structure, harmonic vibrational frequencies has been computed by B3LYP level using 6-31G (d,p) and 6-311+G (d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analyzed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the first-order hyperpolarizability of the investigated molecule were computed using DFT calculations. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) were calculated and analyzed. The isotropic chemical shift computed by (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the TBHA calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.
Collapse
|
15
|
Alaşalvar C, Soylu MS, Güder A, Albayrak Ç, Apaydın G, Dilek N. Molecular structure, quantum mechanical calculation and radical scavenging activities of (E)-4,6-dibromo-2-[(3,5-dimethylphenylimino)methyl]-3-methoxyphenol and (E)-4,6-dibromo-2-[(2,6-dimethylphenylimino)methyl]-3-methoxyphenol compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:357-366. [PMID: 24810021 DOI: 10.1016/j.saa.2014.03.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/03/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
In this study, (E)-4,6-dibromo-2-[(3,5-dimethylphenylimino)methyl]-3-methoxyphenol and (E)-4,6-dibromo-2-[(2,6-dimethylphenylimino)methyl]-3-methoxyphenol compounds have been synthesized and characterized by using X-ray crystallographic method, FT-IR and Density functional method. The molecular geometry, vibrational frequencies of the title compounds in the ground state have been calculated by using B3LYP with the 6-31G(d,p) basis set. The tautomeric form of the compounds has been demonstrated by using single crystal X-ray method, FT-IR spectrometer and DFT method. In addition, HOMO-LUMO energy gap, molecular electrostatic potential map and NBO analysis of the compounds are performed at B3LYP/6-31G(d,p) level. It may be remarked that the free radical scavenging activities of the title compounds were assessed using DPPH, DMPD+, and ABTS+ assays. The obtained results show that especially compound 2 has effective DPPH (SC50 1.52±0.14 μg/mL), DMPD+ (SC50 1.22±0.21 μg/mL), and ABTS+ (SC50 3.32±0.17 μg/mL) scavenging activities compared with standards (BHA, rutin, and trolox).
Collapse
|
16
|
Saravanan S, Balachandran V. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:604-620. [PMID: 24813291 DOI: 10.1016/j.saa.2014.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined.
Collapse
|
17
|
Kilic I, Yeşiloğlu Y, Bayrak Y. Spectroscopic studies on the antioxidant activity of ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:447-452. [PMID: 24813273 DOI: 10.1016/j.saa.2014.04.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.
Collapse
|
18
|
Kiliç I, Yeşiloğlu Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:719-724. [PMID: 23892112 DOI: 10.1016/j.saa.2013.06.110] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.
Collapse
|
19
|
Lima ES, Pinto ACS, Nogueira KL, e Silva LFR, de Almeida PDO, de Vasconcellos MC, Chaves FCM, Tadei WP, Pohlit AM. Stability and antioxidant activity of semi-synthetic derivatives of 4-nerolidylcatechol. Molecules 2012; 18:178-89. [PMID: 23262447 PMCID: PMC6269653 DOI: 10.3390/molecules18010178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 11/19/2022] Open
Abstract
4-nerolidylcatechol (4-NC) is an unstable natural product that exhibits important antioxidant, anti-inflammatory and other properties. It is readily obtainable on a multi-gram scale through straightforward solvent extraction of the roots of cultivated Piper peltatum or P. umbellatum, followed by column chromatography on the resulting extract. Semi-synthetic derivatives of 4-NC with one or two substituent groups (methyl, acetyl, benzyl, benzoyl) on the O atoms have been introduced that have increased stability compared to 4-NC and significant in vitro inhibitory activity against the human malaria parasite Plasmodium falciparum. Antioxidant and anti-inflammatory properties may be important for the antiplasmodial mode of action of 4-NC derivatives. Thus, we decided to investigate the antioxidant properties, cytotoxicity and stability of 4-NC derivatives as a means to explore the potential utility of these compounds. 4-NC showed high antioxidant activity in the DPPH and ABTS assays and in 3T3-L1 cells (mouse embryonic fibroblast), however 4-NC was more cytotoxic (IC50 = 31.4 µM) and more unstable than its derivatives and lost more than 80% of its antioxidant activity upon storage in solution at −20 °C for 30 days. DMSO solutions of mono-O-substituted derivatives of 4-NC exhibited antioxidant activity and radical scavenging activity in the DPPH and ABTS assays that was comparable to that of BHA and BHT. In the cell-based antioxidant model, most DMSO solutions of derivatives of 4-NC were less active on day 1 than 4-NC, quercetin and BHA and more active antioxidants than BHT. After storage for 30 days at −20 °C, DMSO solutions of most of the derivatives of 4-NC were more stable and exhibited more antioxidant activity than 4-NC, quercetin and BHA and exhibited comparable antioxidant activity to BHT. These findings point to the potential of derivatives of 4-NC as antioxidant compounds.
Collapse
|
20
|
Butylated hydroxyanisole. REPORT ON CARCINOGENS : CARCINOGEN PROFILES 2011; 12:78-80. [PMID: 21850118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
21
|
Ryu K. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. BIORESOURCE TECHNOLOGY 2010; 101 Suppl 1:S78-S82. [PMID: 19525107 DOI: 10.1016/j.biortech.2009.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel.
Collapse
|
22
|
Thomas SM, Bodour AA, Murray KE, Inniss EC. Sorption behavior of a synthetic antioxidant, polycyclic musk, and an organophosphate insecticide in wastewater sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2009; 60:145-154. [PMID: 19587412 DOI: 10.2166/wst.2009.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emerging contaminants (ECs) are chemicals that are currently unregulated due to limited understanding of health effects and limited data regarding occurrence. Wastewater treatment plants (WWTP) receive many ECs as components of influent waste and the removal of organic contaminants, such as ECs, occurs primarily by sorption to sludge. Therefore, it is important to develop measures of sorption behavior by ECs to sludge. This study evaluates sorption of three ECs: 3-tert-butyl-4-hydroxyanisole (BHA) a synthetic antioxidant, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta(g)-2-benzopyrane (HHCB) a polycyclic musk, and chlorpyrifos a organophosphate insecticide. Twenty-four hour laboratory-scale sorption experiments were conducted for each compound individually and then in combination, which allowed the quantification of sorption onto wastewater sludge and the affects of multiple compounds. ECs in both the liquid and solid phases were analyzed using a gas chromatograph with flame ionization detector (GC/FID). Isotherms of individual sorption behavior followed a linear trend (R2 > 0.9) for individual ECs, while K(d) averaged 2,689 L kg(-1), 27,786 L kg(-1) and 31,402 L kg(-1) for BHA, chlorpyrifos and HHCB, respectively. Sorption behavior for BHA was linear during combined studies with K(d) of 1,766 L kg(-1) or a decrease of 34%, while HHCB and chlorpyrifos followed non-linear isotherm models. Synergistic effects were observed with spike concentrations > or =25 mg L(-1) for HHCB and > or =20 mg L(-1) for chlorpyrifos. K(d) values ranged from 16,984-6,000,000 L kg(-1) for HHCB and 19,536-3,000,000 L kg(-1) for chlorpyrifos. These distribution coefficients differed substantially from previously published values, mainly because few studies used sludge as the sorption media. Results suggest that HHCB and chlorpyrifos may be contained in the sludge unlike BHA, which is more available in the aqueous phase. Future investigations should evaluate WWTP processes for degrading ECs to harmless products and releases of ECs from sludge.
Collapse
|
23
|
Kadoma Y, Ito S, Yokoe I, Fujisawa S. Comparative study of the alkyl and peroxy radical-scavenging activity of 2-t-butyl-4-methoxyphenol (BHA) and its dimer, and their theoretical parameters. In Vivo 2008; 22:289-296. [PMID: 18610738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND 2-t-Butyl-4-methoxyphenol (BHA) has considerable toxicity and undesirable potential tumor-promoting activities. To clarify the free radical mechanism of BHA-induced toxicity, the comparative radical-scavenging activity of BHA and its dimer (bis-BHA, 3,3'-ditert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diol) with or without 2-mercapto-1-methylimidazole (MMI) was studied using the induction period method. MATERIALS AND METHODS The induction period and propagation rate (Rp) were determined by differential scanning calorimetry (DSC) monitoring of polymerization of methyl methacrylate, initiated by the thermal decomposition of benzoyl peroxide (a source of the peroxy radical, PhCOO*) or 2,2'-azobisisobutyronitrile (a source of the alkyl radical, R*) under nearly anaerobic conditions. The anti-1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical- and O2(-)-scavenging activities were also investigated. Furthermore, theoretical parameters were calculated from the DEFT/B3LYP and HF/6-31G*//B3LYP levels. RESULTS For both PhCOO* and R* the inhibition rate constant (k(inh)) for BHA and bis-BHA was almost identical, but a marked decrease in the Rp(inh)/Rp(con) was found for the former. The BHA/MMI mixture (1:1 molar ratio) oxidized by R* reduced the total radical-scavenging activity by approximately 20% . BHA showed lower anti-DPPH radical- and higher O2(-)-scavenging activity. CONCLUSION Upon PhCOO* or R* scavenging, BHA with a lower BDE, IP(koopman's), electronegativity, and electrophilicity value, but not bis-BHA with higher corresponding values, highly suppressed propagation. This may be due to the formation of highly reactive free-radical intermediates, which are potentially toxic.
Collapse
|
24
|
Lindenmeier M, Burkon A, Somoza V. A novel method to measure both the reductive and the radical scavenging activity in a linoleic acid model system. Mol Nutr Food Res 2007; 51:1441-6. [PMID: 17680718 DOI: 10.1002/mnfr.200700210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to develop a combined method for measuring the total antioxidant activity, the reductive and the radical scavenging activity. Linoleic acid was used as the substrate for an iron-initiated lipid peroxidation to measure the total antioxidant activity. In addition, methyl esters of linoleic acid hydroperoxides were used as substrates to measure the reductive antioxidant activity. The radical scavenging antioxidant activity was calculated by subtracting the reductive antioxidative activity from the total antioxidative activity. As representative examples, the antioxidants alpha-tocopherol, ascorbic acid, trans-resveratrol and L-glutathione as well as commonly used food additives such as 2(3)-tert-butyl-4-hydroxyanisole (BHA) and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) were analyzed. The results for the novel antioxidation test showed that alpha-tocopherol, BHA and BHT are primarily acting as radical scavengers, whereas ascorbic acid and L-glutathione show a strong reductive capacity. As linoleic acid as well as its hydroperoxides both are present in foods and in the organism, the test presented here can be considered representative of radical reactions occurring in food matrixes and in vivo. Further experiments are required to document the comprehensive applicability in foods and in vivo.
Collapse
|
25
|
Felton LA, Yang J, Shah K, Omidian H, Rocca JG. A rapid technique to evaluate the oxidative stability of a model drug. Drug Dev Ind Pharm 2007; 33:683-9. [PMID: 17613032 DOI: 10.1080/03639040601012890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the current study was to investigate the oxidative induction time (OIT) as a measurement of the stability of an oxygen-sensitive model drug. The OIT was determined by differential scanning calorimetry and represents the time required for oxidative decomposition to occur at a given temperature. Samples were heated to a specific temperature under a nitrogen blanket then held isothermal while exposed to oxygen. The experiment proceeded until oxidative degradation of the sample was apparent from the real-time heat flow graphs. Variables investigated in this study included different lots and suppliers of a model drug as well as the addition of antioxidants. Results demonstrated that the stability of the drug was dependent on the supplier. All antioxidants investigated in this study improved oxygen stability of the model compound, as evidenced by a longer OIT. Butylated hydroxyanisole (BHA) was found to better stabilize the drug than butylated hydroxytoluene at equivalent concentrations. The combination of ascorbic acid and BHA provided the greatest protection against oxidation of the model compound. The results of this study demonstrate the usefulness of OIT to investigate the oxygen stability of pharmaceutical compounds.
Collapse
|