1
|
Liu H, Li X, He F, Li M, Zi Y, Long R, Zhao G, Zhu L, Hong L, Wang S, Kang J, Yang Q, Chen L. Genome-wide identification and analysis of abiotic stress responsiveness of the mitogen-activated protein kinase gene family in Medicago sativa L. BMC PLANT BIOLOGY 2024; 24:800. [PMID: 39179986 PMCID: PMC11344418 DOI: 10.1186/s12870-024-05524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) cascade is crucial cell signal transduction mechanism that plays an important role in plant growth and development, metabolism, and stress responses. The MAPK cascade includes three protein kinases, MAPK, MAPKK, and MAPKKK. The three protein kinases mediate signaling to downstream response molecules by sequential phosphorylation. The MAPK gene family has been identified and analyzed in many plants, however it has not been investigated in alfalfa. RESULTS In this study, Medicago sativa MAPK genes (referred to as MsMAPKs) were identified in the tetraploid alfalfa genome. Eighty MsMAPKs were divided into four groups, with eight in group A, 21 in group B, 21 in group C and 30 in group D. Analysis of the basic structures of the MsMAPKs revealed presence of a conserved TXY motif. Groups A, B and C contained a TEY motif, while group D contained a TDY motif. RNA-seq analysis revealed tissue-specificity of two MsMAPKs and tissue-wide expression of 35 MsMAPKs. Further analysis identified MsMAPK members responsive to drought, salt, and cold stress conditions. Two MsMAPKs (MsMAPK70 and MsMAPK75) responds to salt and cold stresses; two MsMAPKs (MsMAPK60 and MsMAPK73) responds to cold and drought stresses; four MsMAPKs (MsMAPK1, MsMAPK33, MsMAPK64 and MsMAPK71) responds to salt and drought stresses; and two MsMAPKs (MsMAPK5 and MsMAPK7) responded to all three stresses. CONCLUSION This study comprehensively identified and analysed the alfalfa MAPK gene family. Candidate genes related to abiotic stresses were screened by analysing the RNA-seq data. The results provide key information for further analysis of alfalfa MAPK gene functions and improvement of stress tolerance.
Collapse
|
2
|
Luo Y, Wang X, Zhang D, Zhan L, Li D, Li C, Cong C, Cai H. Overexpression of phosphoenolpyruvate carboxylase kinase gene MsPPCK1 from Medicago sativa L. increased alkali tolerance of alfalfa by enhancing photosynthetic efficiency and promoting nodule development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108764. [PMID: 38879983 DOI: 10.1016/j.plaphy.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The phosphoenolpyruvate carboxylase kinase of Medicago sativa L. (MsPPCK1) modulates the phosphorylation status and activity of the C4 pathway phosphoenolpyruvate carboxylase enzyme, which is pivotal for photosynthetic carbon assimilation in plants. This study investigated the role of MsPPCK1 in alfalfa by creating transgenic plants overexpressing MsPPCK1 under the control of the CaMV35S promoter. The enhanced alkali tolerance of transgenic plants indicated an important role of MsPPCK1 gene in regulating plant alkali tolerance. Transgenic plants exhibited heightened antioxidant activity (SOD, POD, and CAT), reduced MDA, H2O2, OFR and REC% content, increased activity of key photosynthetic enzymes (PEPC, PPDK, NADP-ME, and NADP-MDH), and enhanced photosynthetic parameters (Pn, E, Gs, and Ci). Moreover, MsPPCK1 overexpression increased the content of organic acids (oxaloacetic, malic, citric, and succinic acids) in the plants. The upregulation of MsPPCK1 under rhizobial inoculation showcased its other role in nodule development. In transgenic plants, MsDMI2, MsEnod12, and MsNODL4 expression increased, facilitating root nodule development and augmenting plant nodulation. Accelerated root nodule growth positively influences plant growth and yield and enhances alfalfa resistance to alkali stress. This study highlights the pivotal role of MsPPCK1 in fortifying plant alkali stress tolerance and improving yield, underscoring its potential as a key genetic target for developing alkali-tolerant and high-yielding alfalfa varieties.
Collapse
|
3
|
Sun N, Song T, Ma Z, Dong L, Zhan L, Xing Y, Liu J, Song J, Wang S, Cai H. Overexpression of MsSiR enhances alkali tolerance in alfalfa (Medicago sativa L.) by increasing the glutathione content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:538-546. [PMID: 32912487 DOI: 10.1016/j.plaphy.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The sulfite reductase gene in Medicago sativa L. (MsSiR) encodes sulfite reductase (SiR) and catalyses the conversion of sulfite to sulfate in the sulfite assimilation pathway. In this study, we investigated the role of MsSiR in alfalfa by generating transgenic alfalfa that ectopically expressed MsSiR under the control of the CaMV35S promoter. The differences in alkali tolerance between the MsSiR-overexpressing and wild-type (WT) plants were analyzed, and the MsSiR-overexpressing plants exhibited an improved phenotype under alkali stress. Compared to WT plants, these plants demonstrated improved antioxidant activity as well as decreased H2O2 and O2- contents and increased glutathione reduced (GSH), Cysteine (Cys) and glutathione oxidized (GSSG) contents. MsSiR-overexpressing plants also exhibited high levels of adenosyl phosphosulfate reductases (APR), sulfite oxidase (SO) and MsSiR expression under alkali stress. It was speculated that MsSiR is involved in sulfur metabolism pathways, including the stabilization of sulfate and sulfite levels and the synthesis of GSH. These two processes achieve alkali tolerance by positively regulating the detoxification and antioxidant activities of alfalfa.
Collapse
|
4
|
Aridhi F, Sghaier H, Gaitanaros A, Khadri A, Aschi-Smiti S, Brouquisse R. Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding. PLANTA 2020; 252:22. [PMID: 32676756 DOI: 10.1007/s00425-020-03422-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In Medicago sativa nodulated roots, NR-dependent NO production is involved in maintaining energy state, presumably through phytoglobin NO respiration, under both salinity and hypoxia stress. The response to low and average salinity stress and to a 5 day-long flooding period was analyzed in M. sativa nodulated roots. The two treatments result in a decrease in the biological nitrogen fixation capacity and the energy state (evaluated by the ATP/ADP ratio), and conversely in an increase nitric oxide (NO) production. Under salinity and hypoxia treatments, the use of either sodium tungstate, an inhibitor of nitrate reductase (NR), or carboxy-PTIO, a NO scavenger, results in a decrease in NO production and ATP/ADP ratio, meaning that NR-dependent NO production participates to the maintenance of the nodulated roots energy state.
Collapse
|
5
|
Ma J, Qiu D, Gao H, Wen H, Wu Y, Pang Y, Wang X, Qin Y. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC PLANT BIOLOGY 2020; 20:226. [PMID: 32429844 PMCID: PMC7238615 DOI: 10.1186/s12870-020-02424-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND α-Tocopherol is one of the most important vitamin E components present in plant. α-Tocopherol is a potent antioxidant, which can deactivate photoproduced reactive oxygen species (ROS) and prevent lipids from oxidation when plants suffer drought stress. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the formation of α-tocopherol in the tocopherol biosynthetic pathway. Our previous studies showed that over-expression of γ-TMT gene can increase the accumulation of α-tocopherol in alfalfa (Medicago sativa). However, whether these transgenic plants confer increased drought tolerance and the underlying mechanism are still unknown. RESULTS In the present study, we further evaluate transgenic alfalfa lines, and found that over-expression of MsTMT led to an increase in α-tocopherol and total tocopherol level in the transgenic lines compared with the control plant. It was revealed that drought tolerance of the transgenic alfalfa was remarkably increased, with alleviated oxidative damage and accumulation of more osmolytic substances. The stomatal development in transgenic plants was significantly inhibited on both sides of leaves, which may be resulted from the repression of MsSPCHLESS (MsSPCH) gene. The reduced stomatal density of transgenic plants contributes to a lower stomatal conductance and higher water use efficiency (WUE). Moreover, both RNA-seq and qRT-PCR analyses indicate that regulatory mechanism of MsTMT in drought involved in both ABA-dependent and ABA-independent pathways. CONCLUSION Our results suggest that MsTMT gene plays a positive role in regulating alfalfa response to PEG-simulated drought stress, which might involve complex mechanisms, including ROS scavenging system, stomatal development and multiple phytohormone signaling pathways. This study will broaden our view on the function of γ-TMT gene and provide new strategy for genetic engineering in alfalfa breeding.
Collapse
|
6
|
Padhi S, Grimes MM, Muro-Villanueva F, Ortega JL, Sengupta-Gopalan C. Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. PLANTA 2019; 250:1743-1755. [PMID: 31422508 DOI: 10.1007/s00425-019-03261-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
In alfalfa, the B form of Sucrose phosphate synthase synthesizes sucrose in the leaves while the A form participates in regulatory cycles of synthesis/breakdown of sucrose/starch in the root nodules. Sucrose (Suc) is the major stable product of photosynthesis that is transported to all heterotrophic organs as a source of energy and carbon. The enzyme sucrose phosphate synthase (SPS) catalyzes the synthesis of Suc. Besides the leaves, SPS is also found in heterotrophic organs. There are two isoforms of SPS in alfalfa (Medicago sativa): SPSA and SPSB. While SPSA is expressed in the vasculature of all the organs and in the N2-fixing zone in the nodules, SPSB is exclusively expressed in the photosynthetic cells. Two classes of alfalfa transformants were produced, one with a gene construct consisting of the alfalfa SPSA promoter and the other with the SPSB promoter-both driving the maize SPS coding region-referred to as SPSA-ZmSPS and SPSB-ZmSPS, respectively. Both classes of transformants showed increased growth compared to control plants. The SPSB-ZmSPS transformants showed increased SPS protein levels and activity along with a significant increase in the Suc levels in the leaves. The SPSA-ZmSPS transformants showed an increase in the SPS protein level and enzyme activity both in the leaves and the nodules with no increase in Suc content in the leaves but a substantial increase in the nodules. Both SPSA and SPSB have unique roles in the nodules (sink) and leaves (source). SPSB is responsible for the synthesis of Suc in the photosynthetic cells and SPSA participates in a regulatory cycle in which Suc is simultaneously degraded and re-synthesized; both these functions contribute to plant growth in rhizobia nodulated alfalfa plants.
Collapse
|
7
|
Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC PLANT BIOLOGY 2019; 19:434. [PMID: 31638916 PMCID: PMC6802326 DOI: 10.1186/s12870-019-2059-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/27/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Developing Medicago sativa L. (alfalfa) cultivars tolerant to drought is critical for the crop's sustainable production. miR156 regulates various plant biological functions by silencing SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. RESULTS To understand the mechanism of miR156-modulated drought stress tolerance in alfalfa we used genotypes with altered expression levels of miR156, miR156-regulated SPL13, and DIHYDROFLAVONOL-4-REDUCTASE (DFR) regulating WD40-1. Previously we reported the involvement of miR156 in drought tolerance, but the mechanism and downstream genes involved in this process were not fully studied. Here we illustrate the interplay between miR156/SPL13 and WD40-1/DFR to regulate drought stress by coordinating gene expression with metabolite and physiological strategies. Low to moderate levels of miR156 overexpression suppressed SPL13 and increased WD40-1 to fine-tune DFR expression for enhanced anthocyanin biosynthesis. This, in combination with other accumulated stress mitigating metabolites and physiological responses, improved drought tolerance. We also demonstrated that SPL13 binds in vivo to the DFR promoter to regulate its expression. CONCLUSIONS Taken together, our results reveal that moderate relative miR156 transcript levels are sufficient to enhance drought resilience in alfalfa by silencing SPL13 and increasing WD40-1 expression, whereas higher miR156 overexpression results in drought susceptibility.
Collapse
|
8
|
Kang J, Zhang Q, Jiang X, Zhang T, Long R, Yang Q, Wang Z. Molecular Cloning and Functional Identification of a Squalene Synthase Encoding Gene from Alfalfa ( Medicago sativa L.). Int J Mol Sci 2019; 20:ijms20184499. [PMID: 31514406 PMCID: PMC6770234 DOI: 10.3390/ijms20184499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023] Open
Abstract
The quality of alfalfa, a main forage legume worldwide, is of great importance for the dairy industry and is affected by the content of triterpene saponins. These natural terpenoid products of triterpene aglycones are catalyzed by squalene synthase (SQS), a highly conserved enzyme present in eukaryotes. However, there is scare information on alfalfa SQS. Here, an open reading frame (ORF) of SQS was cloned from alfalfa. Sequence analysis showed MsSQS had the same exon/intron composition and shared high homology with its orthologs. Bioinformatic analysis revealed the deduced MsSQS had two transmembrane domains. When transiently expressed, GFP-MsSQS fusion protein was localized on the plasma membrane of onion epidermal cells. Removal of the C-terminal transmembrane domain of MsSQS improved solubility in Escherichia coli. MsSQS was preferably expressed in roots, followed by leaves and stems. MeJA treatment induced MsSQS expression and increased the content of total saponins. Overexpression of MsSQS in alfalfa led to the accumulation of total saponins, suggesting a correlation between MsSQS expression level with saponins content. Therefore, MsSQS is a canonical squalene synthase and contributes to saponin synthesis in alfalfa. This study provides a key candidate gene for genetic manipulation of the synthesis of triterpene saponins, which impact both plant and animal health.
Collapse
|
9
|
Zhao Y, Wei X, Ji X, Ma W. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:456-465. [PMID: 31247428 DOI: 10.1016/j.plaphy.2019.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important perennial legume and used as a forage crop worldwide, and has extensive resistance to various abiotic stresses. Nitric oxide (NO) plays a critical role in response to external and internal cues to regulate plant growth and development. However, endogenous NO-mediated molecular mechanisms of drought tolerance in alfalfa is poorly understood. To get a deeper insight into the regulate pathway of NO, RNA-Seq was used to profile transcriptome changes of alfalfa seedlings, which were treated with NO scavenger under normal and drought conditions. A total of 1,025 and 3,461 differently-expressed genes (FDR < 0.0001; fold change ≥ 2) were observed while NO absence under normal and drought conditions, respectively. Based on GO enrich and KEGG pathway analysis, we found NO absence induced photosynthesis, carbon fixation in photosynthetic organisms and primary metabolism were significantly up-enriched. Most oxidoreductase, dehydrogenase, reductase and transferase genes were down-regulated in the above processes. Moreover, NO absence restrained chlorophyll biosynthesis and decreased different sugar content. Therefore, this work provides insights into the mechanism that NO-mediated enhanced photosynthesis and carbohydrate metabolism in alfalfa under drought stress.
Collapse
|
10
|
Yang S, Zu Y, Li B, Bi Y, Jia L, He Y, Li Y. Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. CHEMOSPHERE 2019; 220:69-76. [PMID: 30579950 DOI: 10.1016/j.chemosphere.2018.12.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
Pot experiments were carried out to evaluate the response and intraspecific differences in nitrogen metabolism of 20 alfalfa cultivars under cadmium stress. To the aim, exogenous cadmium was added into soil with concentration of 0 (control) and 50 mg kg-1. Results showed that 20 alfalfa were ranked as following according to response index: Guochan (550.93) > Deqin (372.50) > Caoyuan No.1 (350.26) > Queen (345.45) > Xinmu No.2 (344.43) > Longzhong (274.85) > Victoria (233.13) > Emperor (233.13) > Giant (192.29) > Qianjing (101.21) > Xinjiangdaye (75.72) > Algonuin (-32.55) > Duoye (-62.44) > Altay (-102.77) > Sandeli (-155.02) > Turist (-193.24) > Gannong No.1 (-199.22) > Sijiwang (-245.14) > Zhongmu No.1 (-245.48) > WL525HQ (-268.26). Guochan was identified as cadmium tolerant cultivar. Compared with the control group, its plant height increased by 40.96%, shoot and root biomass respectively increased by 18.10% and 70.19%, total nitrogen content in shoot and root respectively increased by 26.69% and decreased by 12.59%, nitrate content decreased by 7.05%, content of ammonium, proline, free amino acid and soluble protein respectively increased by 13.67%, 89.63%, 28.09% and 14.86%, activity of nitrate reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase increased respectively 58.52%, 36.63%, 97.79% and 75.44%. WL525HQ, its above indicators appeared significant differences with those of Guochan, was identified as cadmium sensitive cultivar. In conclusion that the nitrogen metabolism process played an important role for alfalfa to adapt cadmium stress, and the response of nitrogen metabolism to cadmium stress varied with different alfalfa cultivars.
Collapse
|
11
|
Zhang P, Li S, Zhao P, Guo Z, Lu S. Comparative Physiological Analysis Reveals the Role of NR-Derived Nitric Oxide in the Cold Tolerance of Forage Legumes. Int J Mol Sci 2019; 20:E1368. [PMID: 30893759 PMCID: PMC6470781 DOI: 10.3390/ijms20061368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
The role of nitric oxide (NO) signaling in the cold acclimation of forage legumes was investigated in this study. Medicago sativa subsp. falcata (L.) Arcang. (hereafter M. falcata) is a forage legume with a higher cold tolerance than Medicago truncatula, a model legume. Cold acclimation treatment resulted in increased cold tolerance in both M. falcata and M. truncatula, which was suppressed by pretreatment with tungstate, an inhibitor of nitrate reductase (NR), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. Likely, NITRATE REDUCTASE 1 (NIA1), but not NIA2 transcript, NR activity, and NO production were increased after cold treatment. Treatments with exogenous NO donors resulted in increased cold tolerance in both species. Superoxide dismutase (SOD), catalase (CAT), and ascorbate-peroxidase (APX) activities and Cu,Zn-SOD2, Cu,Zn-SOD3, cytosolic APX1 (cAPX1), cAPX3 and chloroplastic APX1 (cpAPX1) transcript levels were induced in both species after cold treatment, which was suppressed by tungstate and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Treatment with exogenous NO resulted in enhanced activities of SOD, CAT, and APX. Moreover, higher levels of NIA1 transcript, NR activity, NO production, and antioxidant enzyme activities and transcripts were observed in M. falcata as compared with M. truncatula after cold treatment. The results suggest that NR-derived NO production and upregulated antioxidant defense are involved in cold acclimation in both species, while the higher levels of NO production and its derived antioxidant enzymes are associated with the higher cold tolerance in M. falcata as compared with M. truncatula.
Collapse
|
12
|
Cao Y, Zhang Z, Zhang T, You Z, Geng J, Wang Y, Hu T, Yang P. Overexpression of zeaxanthin epoxidase gene from Medicago sativa enhances the tolerance to low light in transgenic tobacco. Acta Biochim Pol 2018; 65:431-435. [PMID: 30188964 DOI: 10.18388/abp.2018_2551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/21/2018] [Accepted: 07/15/2018] [Indexed: 11/10/2022]
Abstract
Zeaxanthin epoxidase (ZEP) plays an important role in xanthophyll cycle which is a process closely related to photosynthesis. However, an impact of ZEP on low-light stress has not been studied. In this study, the functions of an alfalfa (Medicago sativa) zeaxanthin epoxidase gene, MsZEP, in response to low-light stress were investigated by heterologous expression in tobacco (Nicotiana tabacum). Under normal light conditions, the measured parameters were not significantly different between transgenic and wild-type (WT) plants except for non-photochemical quenching value and chlorophyll a content. However, the differences were detected under low-light stress. We found that MsZEP-overexpression tobacco grew faster than WT (p≤0.05). The leaf fresh weight and leaf area of transgenic plants were significantly higher, and the number of stomata was greater in MsZEP-overexpression tobacco. As for photosynthetic characteristics, quantum yield of PSII (ΦPSII) and maximal photochemical efficiency of PSII (Fv/Fm) were not significantly different, whereas non-photochemical quenching (NPQ), net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of MsZEP-overexpression tobacco were significantly higher than in WT plants. However, no significant difference was detected between the two types of tobacco in chlorophyll and carotenoids content. In conclusion, MsZEP can improve the ability of tobacco to withstand low-light stress, which might be due to its stronger photosynthetic activity and the improvement of stomatal density under low light.
Collapse
|
13
|
Duan C, Fang L, Yang C, Chen W, Cui Y, Li S. Reveal the response of enzyme activities to heavy metals through in situ zymography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:106-115. [PMID: 29547725 DOI: 10.1016/j.ecoenv.2018.03.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere.
Collapse
|
14
|
Amooaghaie R, Tabatabaie F. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H 2O 2 signaling and upregulation of heme oxygenase. PROTOPLASMA 2017; 254:1791-1803. [PMID: 28093607 DOI: 10.1007/s00709-016-1069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
The present study showed that osmopriming or pretreatment with low H2O2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H2O2 generation during osmopriming or H2O2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H2O2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H2O2) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H2O2 pretreatment, but H2O2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H2O2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H2O2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.
Collapse
|
15
|
Yuan X, Wen A, Desta ST, Dong Z, Shao T. Effects of four short-chain fatty acids or salts on the dynamics of nitrogen transformations and intrinsic protease activity of alfalfa silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2759-2766. [PMID: 27754550 DOI: 10.1002/jsfa.8103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Short-chain fatty salts have been widely used as food and forage preservatives because of their antimicrobial properties. This study evaluated the effects of four chemical compounds with antimicrobial properties on nitrogen transformations and intrinsic protease activity of alfalfa silage. RESULTS Potassium diformate (PD) and formic acid (FA) rapidly reduced silage pH. Silages treated with sodium diacetate (SD) and calcium propionate (CAP) had higher final peptide N concentrations than other silage. The free amino acid N contents in PD and FA treated silages were lower than other silages at all intervals of ensilage. The ammonia N concentrations in FA and PD silages were the lowest, followed by SD and CAP silages. As ensiling progressed, the aminopeptidase activity was completely lost by day 5 for FA and PD silages and inactive by day 7 for SD silage, while it remained active after day 7 for control and CAP silage. The carboxypeptidase activities in FA and PD silages were already reduced below 50% by day 1 of ensiling. CONCLUSION Potassium diformate was as effective as formic acid in depressing the proteolysis, while sodium diacetate and calcium propionate were inferior to formic acid in protecting alfalfa proteins from being hydrolysed. © 2016 Society of Chemical Industry.
Collapse
|
16
|
Yan Q, Shaw N, Qian L, Jiang D. Crystal structure of Rv1220c, a SAM-dependent O-methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2017; 73:315-320. [PMID: 28580918 PMCID: PMC5458387 DOI: 10.1107/s2053230x17006057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Rv1220c from Mycobacterium tuberculosis is annotated as an O-methyltransferase (MtbOMT). Currently, no structural information is available for this protein. Here, the crystal structure of MtbOMT refined to 2.0 Å resolution is described. The structure reveals the presence of a methyltransferase fold and shows clear electron density for one molecule of S-adenosylmethionine (SAM), which was apparently bound by the protein during its production in Escherichia coli. Although the overall structure of MtbOMT resembles the structures of O-methyltransferases from Cornybacterium glutamicum, Coxiella burnetti and Alfa alfa, differences are observed in the residues that make up the active site. Notably, substitution of Asp by His164 seems to abrogate metal binding by MtbOMT. A putative catalytic His-Asp pair located in the vicinity of SAM is absolutely conserved in MtbOMT homologues from all species of Mycobacterium, suggesting a conserved function for this protein.
Collapse
|
17
|
Sergeant K, Printz B, Gutsch A, Behr M, Renaut J, Hausman JF. Didehydrophenylalanine, an abundant modification in the beta subunit of plant polygalacturonases. PLoS One 2017; 12:e0171990. [PMID: 28207764 PMCID: PMC5313189 DOI: 10.1371/journal.pone.0171990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 01/07/2023] Open
Abstract
The structure and the activity of proteins are often regulated by transient or stable post- translational modifications (PTM). Different from well-known, abundant modifications such as phosphorylation and glycosylation some modifications are limited to one or a few proteins across a broad range of related species. Although few examples of the latter type are known, the evolutionary conservation of these modifications and the enzymes responsible for their synthesis suggest an important physiological role. Here, the first observation of a new, fold-directing PTM is described. During the analysis of alfalfa cell wall proteins a -2Da mass shift was observed on phenylalanine residues in the repeated tetrapeptide FxxY of the beta-subunit of polygalacturonase. This modular protein is known to be involved in developmental and stress-responsive processes. The presence of this modification was confirmed using in-house and external datasets acquired by different commonly used techniques in proteome studies. Based on these analyses it was found that all identified phenylalanine residues in the sequence FxxY of this protein were modified to α,β-didehydro-Phe (ΔPhe). Besides showing the reproducible identification of ΔPhe in different species arguments that substantiate the fold-determining role of ΔPhe are given.
Collapse
|
18
|
Sullivan ML. Identification of bean hydroxycinnamoyl-CoA:tetrahydroxyhexanedioate hydroxycinnamoyl transferase (HHHT): use of transgenic alfalfa to determine acceptor substrate specificity. PLANTA 2017; 245:397-408. [PMID: 27807616 DOI: 10.1007/s00425-016-2613-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/18/2016] [Indexed: 05/28/2023]
Abstract
Transgenic alfalfa ( Medicago sativa L.) provides a useful reverse genetics platform to elucidate acceptor substrate specificity for uncharacterized BAHD family hydroxycinnamoyl-CoA hydroxycinnamoyl transferases. Tissues of many plant species accumulate hydroxycinnamoyl derivatives, often esters, thought to serve in protection against biotic and abiotic stresses. In many cases, these specialized metabolites are produced by BAHD family hydroxycinnamoyl-CoA hydroxycinnamoyl transferases (HCTs). Bean (Phaseolus vulgaris) leaves contain both hydroxycinnamoyl-malate esters and an HCT activity capable of making them. In seeking to identify this HCT from bean, we identified a gene whose predicted protein showed a high degree of sequence similarity (75%) to the Trifolium pratense (red clover) enzyme that carries out this reaction. The encoded bean protein, however, failed to carry out the malate transfer reaction when expressed in Escherichia coli. Expression of the gene in alfalfa (Medicago sativa) resulted in accumulation of several new hydroxycinnamates not present in nontransformed alfalfa, many of which corresponded to phenolics present in bean. Using accurate mass and UV absorption spectral data, we identified the acceptor substrate for this HCT as tetrahydroxyhexanedioic acids and demonstrated this predicted transferase activity with the E. coli-expressed protein. This finding adds to the growing number of BAHD family HCTs that have been characterized with respect to substrate specificity. Such data, combined with primary sequence and protein structural data will allow for a better understanding of the structure/function relationships of these enzymes and may eventually aid the rational design of such enzymes for altered substrate specificities. Additionally, expression of HCTs of unknown substrate specificity in alfalfa and characterization of the resulting accumulated novel metabolites could be a useful approach to characterizing putative BAHD HCT enzymes.
Collapse
|
19
|
Dubrovskaya E, Pozdnyakova N, Golubev S, Muratova A, Grinev V, Bondarenkova A, Turkovskaya O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. CHEMOSPHERE 2017; 169:224-232. [PMID: 27880920 DOI: 10.1016/j.chemosphere.2016.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs.
Collapse
|
20
|
Nagy B, Majer P, Mihály R, Pauk J, Horváth GV. Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast. PHYTOCHEMISTRY 2016; 129:14-23. [PMID: 27469099 DOI: 10.1016/j.phytochem.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/21/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Barley represents one of the major crops grown worldwide; its genetic transformation provides an important tool for the improvement of crop quality and tolerance to environmental stress factors. Biotic and abiotic stresses produce reactive oxygen species in the plant cells that can directly oxidize the cellular components including lipid membranes; resulting in lipid peroxidation and subsequently the accumulation of reactive carbonyl compounds. In order to protect barley plants from the effects of stress-produced reactive carbonyls, an Agrobacterium-mediated transformation was carried out using the Medicago sativa aldose reductase (MsALR) gene. In certain transgenic lines the produced MsALR enzyme was targeted to the chloroplasts to evaluate its protective effect in these organelles. The dual fluorescent protein-based method was used for the evaluation of tolerance of young seedlings to diverse stresses; our results demonstrated that this technique could be reliably applied for the detection of cellular stress in a variety of conditions. The chlorophyll and carotenoid content measurements also supported the results of the fluorescent protein-based method and the stress-protective effect of the MsALR enzyme. Targeting of MsALR into the chloroplast has also resulted in increased stress tolerance, similarly to the observed effect of the cytosolic MsALR accumulation. The results of the DsRed/GFP fluorescent protein-based method indicated that both the cytosol and chloroplast accumulation of MsALR can increase the abiotic stress tolerance of transgenic barley lines.
Collapse
|
21
|
Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:439-53. [PMID: 26573680 DOI: 10.1007/s00299-015-1895-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Collapse
|
22
|
Gebril S, Seger M, Villanueva FM, Ortega JL, Bagga S, Sengupta-Gopalan C. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions. PLANTA 2015; 242:1009-24. [PMID: 26055333 DOI: 10.1007/s00425-015-2342-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/31/2015] [Indexed: 05/21/2023]
Abstract
Overexpression of SPS in alfalfa is accompanied by early flowering, increased plant growth and an increase in elemental N and protein content when grown under N2-fixing conditions. Sucrose phosphate synthase (SPS; EC 2.3.1.14) is the key enzyme in the synthesis of sucrose in plants. The outcome of overexpression of SPS in different plants using transgenic approaches has been quite varied, but the general consensus is that increased SPS activity is associated with the production of new sinks and increased sink strength. In legumes, the root nodule is a strong C sink and in this study our objective was to see how increasing SPS activity in a legume would affect nodule number and function. Here we have transformed alfalfa (Medicago sativa, cv. Regen SY), with a maize SPS gene driven by the constitutive CaMV35S promoter. Our results showed that overexpression of SPS in alfalfa, is accompanied by an increase in nodule number and mass and an overall increase in nitrogenase activity at the whole plant level. The nodules exhibited an increase in the level of key enzymes contributing to N assimilation including glutamine synthetase and asparagine synthetase. Moreover, the stems of the transformants showed higher level of the transport amino acids, Asx, indicating increased export of N from the nodules. The transformants exhibited a dramatic increase in growth both of the shoots and roots, and earlier flowering time, leading to increased yields. Moreover, the transformants showed an increase in elemental N and protein content. The overall conclusion is that increased SPS activity improves the N status and plant performance, suggesting that the availability of more C in the form of sucrose enhances N acquisition and assimilation in the nodules.
Collapse
|
23
|
Printz B, Guerriero G, Sergeant K, Renaut J, Lutts S, Hausman JF. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:13-25. [PMID: 26259170 DOI: 10.1016/j.plantsci.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/16/2015] [Indexed: 05/05/2023]
Abstract
The expanding interest for using lignocellulosic biomass in industry spurred the study of the mechanisms underlying plant cell-wall synthesis. Efforts using genetic approaches allowed the disentanglement of major steps governing stem fibre synthesis. Nonetheless, little is known about the relations between the stem maturation and the evolution of its proteome. During Medicago sativa L. maturation, the different internodes grow asynchronously allowing the discrimination of various developmental stages on a same stem. In this study, the proteome of three selected regions of the stem of alfalfa (apical, intermediate and basal) was analyzed and combined with a compositional analysis of the different stem parts. Interestingly, the apical and the median regions share many similarities: high abundance of chloroplast- and mitochondrial-related proteins together with the accumulation of proteins acting in the early steps of fibre production. In the mature basal region, forisomes and stress-related proteins accumulate. The RT-qPCR assessment of the expression of genes coding for members of the cellulose synthase family likewise indicates that fibres and the machinery responsible for the deposition of secondary cell walls are predominantly formed in the apical section. Altogether, this study reflects the metabolic change from the fibre production in the upper stem regions to the acquisition of defence-related functions in the fibrous basal part.
Collapse
|
24
|
Behr M, Legay S, Hausman JF, Guerriero G. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses. Int J Mol Sci 2015; 16:16104-24. [PMID: 26193255 PMCID: PMC4519941 DOI: 10.3390/ijms160716104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
Collapse
|
25
|
Wang Y, Ren H, Pan H, Liu J, Zhang L. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:269-275. [PMID: 25590820 DOI: 10.1016/j.jhazmat.2014.12.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/14/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,4-dichlorophenol (2,4-DCP) generally led to mixed contamination of soils as a result of commercial and agricultural activities. Their accumulation in the environment poses great risks to human and animal health. Therefore, the effective strategies for disposal of these pollutants are urgently needed. In this study, genetic engineering to enhance PCBs/2,4-DCP phytoremediation is a focus. We cloned the 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC.B) from a soil metagenomic library, which is the key enzyme of aerobic catabolism of a variety of aromatic compounds, and then it was expressed in alfalfa driven by CaMV 35S promoter using Agrobacterium-mediated transformation. Transgenic line BB11 was selected out through PCR, Western blot analysis and enzyme activity assays. Its disposal and tolerance to both PCBs and 2,4-DCP were examined. The tolerance capability of transgenic line BB11 towards complex contaminants of PCBs/2,4-DCP significantly increased compared with non-transgenic plants. Strong dissipation of PCBs and high removal efficiency of 2,4-DCP were exhibited in a short time. It was confirmed expressing BphC.B would be a feasible strategy to help achieving phytoremediation in mixed contaminated soils with PCBs and 2,4-DCP.
Collapse
|