1
|
Shawki MM, Abido OY, Saif MA, Sobh MS, Gado AR, Elnaggar A, Nassif SA, El-Shall NA. Comparative pathogenicity of duck hepatitis A virus genotype 3 in different duck breeds: Implications of the diagnosis and prevention of duck viral hepatitis. Comp Immunol Microbiol Infect Dis 2024; 114:102256. [PMID: 39437532 DOI: 10.1016/j.cimid.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Duck hepatitis A virus (DHAV) infection in ducklings causes acute hepatitis with considerable economic losses. In this study, Pekin and Muscovy duckling flocks (n=9) suffering from high mortality and hepatic lesions were examined by RT-PCR for DVHA. 44.4 % (4/9) of samples were positive for DHAV (5' UTR region), of which 100 % (4/4) were DVHA-3 (VP1 gene). VP1 sequencing and phylogenetic analysis of an isolate originated from Muscovy ducklings showed that it shared 96.8 % -100 %, 88.5-89.2 %, and 86.5-88.2 % nucleotide similarity (ns) with the Egyptian, Korean-Vietnamese, and Chinese DVHA-3 strains, respectively. It was distinguished from the DHAV-1 vaccine (67.6 % ns). The sequenced DVHA-3 isolate was used to experimentally infect 5-day-old Pekin and Muscovy ducklings vs. control groups. No apparent clinical signs or deaths were reported in the experimentally-infected groups. Pekin ducklings showed greater cloacal viral shedding than Muscovy until the 6th dpi (P<0.05). DVHA-3 induced a significant rise in IFN-β and IL-1β serum levels, where Muscovy ducklings' levels were higher than Pekin ducklings. Among the biochemical parameters, AST was only increased on the 4th dpi in both breeds vs. control (P<0.05). Compared to Muscovy ducklings at 2, 4, and 6 day post infection (dpi), the infected Pekin group had lower lipase levels (P≥0.05, p<0.05, and p<0.05, respectively), while ALT was higher at 4 and 6 dpi (P<0.05). The histopathological lesions supported the gross lesions, and their scores were dominant at 2 and 4 dpi in both breeds. At 6 and 8 dpi, Pekin showed more severe histopathological changes compared to Muscovy for the liver, heart, brain, and intestines; the pancreas, kidney, and lung showed the opposite pattern. In conclusion, Pekin ducklings displayed distinct DHAV-3 infection results from Muscovy ducklings, and more research utilizing a variety of DHAV-3 strains has to be carried out.
Collapse
|
2
|
Shepherd FK, Roach SN, Sanders AE, Liu Y, Putri DS, Li R, Merrill N, Pierson MJ, Kotenko SV, Wang Z, Langlois RA. Experimental viral spillover across 25 million year gap in Rodentia reveals limited viral transmission and purifying selection of a picornavirus. mBio 2024; 15:e0165024. [PMID: 39240101 PMCID: PMC11481857 DOI: 10.1128/mbio.01650-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
When a virus crosses from one host species to another, the consequences can be devastating. However, animal models to empirically evaluate cross-species transmission can fail to recapitulate natural transmission routes, physiologically relevant doses of pathogens, and population structures of naturally circulating viruses. Here, we present a new model of cross-species transmission where deer mice (Peromyscus maniculatus) are exposed to the natural virome of pet store mice (Mus musculus). Using RNA sequencing, we tracked viral transmission via fecal-oral routes and found the evidence of transmission of murine astroviruses, coronaviruses, and picornaviruses. Deep sequencing of murine kobuvirus revealed tight bottlenecks during transmission and purifying selection that leaves limited diversity present after transmission from Mus to Peromyscus. This work provides a structure for studying viral bottlenecks across species while keeping natural variation of viral populations intact and a high resolution look at within-host dynamics that occur during the initial stages of cross-species viral transmission.IMPORTANCEViral spillover events can have devastating public health consequences. Tracking cross-species transmission in real-time and evaluating viral evolution during the initial spillover event are useful for understanding how viruses adapt to new hosts. Using our new animal model and next generation sequencing, we develop a framework for understanding intrahost viral evolution and bottleneck events, which are very difficult to study in natural transmission settings.
Collapse
|
3
|
Fu Q, Han X, Zhu C, Jiao W, Liu R, Feng Z, Huang Y, Chen Z, Wan C, Lai Z, Liang Q, Shi S, Cheng L, Chen H, Jiang N, Su J, Fu G, Huang Y. Development of the first officially licensed live attenuated duck hepatitis A virus type 3 vaccine strain HB80 in China and its protective efficacy against DHAV-3 infection in ducks. Poult Sci 2024; 103:104087. [PMID: 39094497 PMCID: PMC11345565 DOI: 10.1016/j.psj.2024.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Duck hepatitis A virus type 3 (DHAV-3) is an infectious virus that is highly fatal to ducklings and causes significant economic losses in the duck industry worldwide. Biosecurity and vaccination are required to control the pathogen. In the present study, we attenuated a lowly pathogenic DHAV-3 clinical isolate, named as HB, by serial passaging in duck embryos, and followed by several adaptive proliferations in specific-pathogen-free (SPF) chicken embryos. The virulence of DHAV-3 at different passages was assessed by infecting 3-day-old ducklings. We found that the HB strain lost pathogenicity to ducklings from the 55th passage onwards. The 80th passage strain (HB80), which achieved good growth capacity in duck embryos with a viral titer of 108.17 50% egg lethal dose per milliliter (ELD50/mL), was selected as a live attenuated vaccine candidate. The HB80 strain did not induce clinical symptoms or pathological lesions in 3-day-old ducklings and showed no virulence reversion after 5 rounds of in vivo back-passage. The minimum effective dose of HB80 was determined to be 104.5 ELD50 by hypodermic inoculation of the neck. Importantly, a single dose of HB80 elicited good immune responses and provided complete protection against challenge with the lethal DHAV-3 strain. Compared with the genomic sequence of the parental HB strain, HB80 had 7 amino acid substitutions, two of them are in the hypervariable region of the VP1 and polymerase-encoding 3D regions, which may play a role in virulence attenuation. Our data suggest that the attenuated HB80 strain is a promising vaccine candidate for the prevention of DHAV-3 infections in China. HB80 has been registered as a New Veterinary Drug Registration Certificate by the Chinese Ministry of Agriculture and Rural Affairs (MARA), and is the first live attenuated DHAV-3 vaccine strain to be officially licensed in China.
Collapse
|
4
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
|
5
|
Wang M, Liu Z, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J. Host miRNA and mRNA profiles during in DEF and duck after DHAV-1 infection. Sci Rep 2024; 14:22575. [PMID: 39343789 PMCID: PMC11439951 DOI: 10.1038/s41598-024-72992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
DHAV-1 is a highly infectious pathogen that can cause acute hepatitis in ducklings. MicroRNA (miRNA) plays an essential regulatory role in virus response. We characterized and compared miRNA and mRNA expression profiles in duck embryonic fibroblasts (DEF) and the liver of ducklings infected with DHAV-1. DHAV-1 infected DEF was divided into infection group (D group) and blank group (M group), and DHAV-1 infected duckling group was divided into infection group (H group) and blank group (N group). D vs. M have 130 differentially expressed (DE) miRNA (DEM) and 2204 differentially expressed (DE) mRNA (DEG), H vs. N have 72 DEM and 1976 DEG. By the intersection of D vs. M and H vs. N comparisons, 15 upregulated DEM, 5 downregulated DEM, 340 upregulated DEG and 50 downregulated DEG were found with both in vivo and in vitro DHAV-1 infection. In particular, we identified the same DE miRNA target genes and functional annotations of DE mRNA. We enriched with multiple gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may have important roles in viral virulence, host immunity, and metabolism. We selected miR-155, which is co-upregulated, and found that miR-155 targets SOCS1 to inhibit DHVA-1 replication.
Collapse
|
6
|
Zhao H, Wu Z, Wang Z, Ru J, Wang S, Li Y, Hou S, Zhang Y, Wang X. Genomic Landscape and Regulation of RNA Editing in Pekin Ducks Susceptible to Duck Hepatitis A Virus Genotype 3 Infection. Int J Mol Sci 2024; 25:10413. [PMID: 39408741 PMCID: PMC11476845 DOI: 10.3390/ijms251910413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
RNA editing is increasingly recognized as a post-transcriptional modification that directly affects viral infection by regulating RNA stability and recoding proteins. the duck hepatitis A virus genotype 3 (DHAV-3) infection is seriously detrimental to the Asian duck industry. However, the landscape and roles of RNA editing in the susceptibility and resistance of Pekin ducks to DHAV-3 remain unclear. Here, we profiled dynamic RNA editing events in liver tissue and investigated their potential functions during DHAV-3 infection in Pekin ducks. We identified 11,067 informative RNA editing sites in liver tissue from DHAV-3-susceptible and -resistant ducklings at three time points during virus infection. Differential RNA editing sites (DRESs) between S and R ducks were dynamically changed during infection, which were enriched in genes associated with vesicle-mediated transport and immune-related pathways. Moreover, we predicted and experimentally verified that RNA editing events in 3'-UTR could result in loss or gain of miRNA-mRNA interactions, thereby changing the expression of target genes. We also found a few DRESs in coding sequences (CDSs) that altered the amino acid sequences of several proteins that were vital for viral infection. Taken together, these data suggest that dynamic RNA editing has significant potential to tune physiological processes in response to virus infection in Pekin ducks, thus contributing to host differential susceptibility to DHAV-3.
Collapse
|
7
|
Hou L, Wu Z, Zeng P, Yang X, Shi Y, Guo J, Zhou J, Song J, Liu J. RSAD2 suppresses viral replication by interacting with the Senecavirus A 2 C protein. Vet Res 2024; 55:115. [PMID: 39334325 PMCID: PMC11430333 DOI: 10.1186/s13567-024-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.
Collapse
|
8
|
Xu C, Jiang Y, Wang M, Cheng A, Zhang W, Ou X, Sun D, Yang Q, Wu Y, Tian B, He Y, Wu Z, Zhang S, Zhao X, Huang J, Zhu D, Chen S, Liu M, Jia R. Duck hepatitis A virus utilizes PCBP2 to facilitate viral translation and replication. Vet Res 2024; 55:110. [PMID: 39300570 PMCID: PMC11414061 DOI: 10.1186/s13567-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Collapse
|
9
|
Oba M, Shimotori M, Teshima N, Yamaguchi L, Takemae H, Sakaguchi S, Ishida H, Murakami H, Mizutani T, Nagai M. Isolation and genetic characterization of novel bovine parechoviruses from Japanese black cattle. Arch Virol 2024; 169:200. [PMID: 39285064 PMCID: PMC11405471 DOI: 10.1007/s00705-024-06120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/21/2024] [Indexed: 09/22/2024]
Abstract
Novel bovine parechoviruses (Bo ParVs) were isolated from the feces of Japanese black cattle. Phylogenetic analysis revealed that the novel Bo ParVs formed an independent cluster, exhibiting 72.2-75.6% nucleotide sequence identity to previous Bo ParVs, suggesting that they represent a new genotype. Bo ParVs, including the novel Bo ParVs, shared sequence similarity with each other in the 3' untranslated region (3'UTR) and exhibited low sequence similarity (<38.9% identity) to other parechoviruses. However, a secondary structure prediction of the 3'UTR revealed that the Bo ParVs shared conserved motifs in domain 2 with parechovirus B and E, suggesting some evolutionary constrains in this region.
Collapse
|
10
|
Maung Maung Khin ST, Sheikhi MJ, Takemae H, Mizutani T, Furuya T. First report of fesavirus 4 detection from cats in Japan. J Vet Med Sci 2024; 86:986-991. [PMID: 39069477 PMCID: PMC11422691 DOI: 10.1292/jvms.24-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Fesaviruses, picorna-like RNA viruses, were discovered in 2014 in feces from cats in an animal shelter in the United States but have not since been reported elsewhere. In this study, we collected cat fecal samples from 20 adult cats from an animal shelter in Tokyo, Japan, and examined them for viral pathogens. Next generation sequencing (NGS) was performed to detect both RNA and DNA virus sequences. Sequences of a total of 7 RNA viruses including some common feline pathogenic viruses were detected across 8 samples, while no DNA virus sequences were identified in any sample. Of the RNA virus sequences detected in the samples, two sequences, 4,746 and 4,439 bp, demonstrated 90.3% and 85.0% similarity, respectively, to the fesavirus 4 sequence in the database. To confirm the NGS results, quantitative RT-PCR (qRT-PCR) assays were developed using specific primers and probes designed based on the contig sequences. Based on the qRT-PCR assays, we detected relatively high copy-numbers of fesavirus 4 RNA in the two fecal samples from which the fesavirus 4 sequences were originally obtained, and low copy numbers in other samples. These results demonstrate the presence of fesavirus 4 in cats in Japan for the first time.
Collapse
|
11
|
Cao N, Li Y, Zhang H, Liu X, Liu S, Lu M, Hu Z, Tian L, Li X, Qian P. A nanoparticle vaccine based on the VP1 21-26 and VP2 structural proteins of Senecavirus A induces robust protective immune responses. Vet Microbiol 2024; 296:110198. [PMID: 39067145 DOI: 10.1016/j.vetmic.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using β-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-β-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using β-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.
Collapse
|
12
|
Chae JB, Shin SU, Kim S, Chae H, Kim WG, Chae JS, Song H, Kang JW. Identification of a new bovine picornavirus ( Boosepivirus) in the Republic of Korea. J Vet Sci 2024; 25:e59. [PMID: 39237364 PMCID: PMC11450388 DOI: 10.4142/jvs.24148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
IMPORTANCE Despite advancements in herd management, feeding, and pharmaceutical interventions, neonatal calf diarrhea (NCD) remains a major global health concern. Bacteria, viruses, and parasites are the major contributors to NCD. Although several pathogens have been identified in the Republic of Korea (ROK), the etiological agents of numerous NCD cases have not been identified. OBJECTIVE To identify, for the first time, the prevalence and impact of Boosepivirus (BooV) on calf diarrhea in the ROK. METHODS Here, the unknown cause of calf diarrhea was determined using metagenomics We then explored the prevalence of certain pathogens, including BooV, that cause NCD. Seventy diarrheal fecal samples from Hanwoo (Bos taurus coreanae) calves were analyzed using reverse transcriptase and quantitative real-time polymerase chain reaction for pathogen detection and BooV isolate sequencing. RESULTS The complete genome of BooV was detected from unknown causes of calf diarrhea. And also, BooV was the most frequently detected pathogen (35.7%) among 8 pathogens in 70 diarrheic feces from Hanwoo calves. Co-infection analyses indicated that most BooV-positive samples were solely infected with BooV, indicating its significance in NCD in the ROK. All isolates were classified as BooV B in phylogenetic analysis. CONCLUSIONS AND RELEVANCE This is the first study to determine the prevalence and molecular characteristics of BooV in calf diarrhea in the ROK, highlighting the potential importance of BooV as a causative agent of calf diarrhea and highlighting the need for further research on its epidemiology and pathogenicity.
Collapse
|
13
|
Carrascosa-Sàez M, Buigues J, Viñals A, Andreu-Moreno I, Martínez-Recio R, Soriano-Tordera C, Monrós JS, Cuevas JM, Sanjuán R. Genetic diversity and cross-species transmissibility of bat-associated picornaviruses from Spain. Virol J 2024; 21:193. [PMID: 39175061 PMCID: PMC11342490 DOI: 10.1186/s12985-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Emerging zoonotic diseases arise from cross-species transmission events between wild or domesticated animals and humans, with bats being one of the major reservoirs of zoonotic viruses. Viral metagenomics has led to the discovery of many viruses, but efforts have mainly been focused on some areas of the world and on certain viral families. METHODS We set out to describe full-length genomes of new picorna-like viruses by collecting feces from hundreds of bats captured in different regions of Spain. Viral sequences were obtained by high-throughput Illumina sequencing and analyzed phylogenetically to classify them in the context of known viruses. Linear discriminant analysis (LDA) was performed to infer likely hosts based on genome composition. RESULTS We found five complete or nearly complete genomes belonging to the family Picornaviridae, including a new species of the subfamily Ensavirinae. LDA suggested that these were true vertebrate viruses, rather than viruses from the bat diet. Some of these viruses were related to picornaviruses previously found in other bat species from distant geographical regions. We also found a calhevirus genome that most likely belongs to a proposed new family within the order Picornavirales, and for which genome composition analysis suggested a plant host. CONCLUSIONS Our findings describe new picorna-like viral species and variants circulating in the Iberian Peninsula, illustrate the wide geographical distribution and interspecies transmissibility of picornaviruses, and suggest new hosts for calheviruses.
Collapse
|
14
|
Timurkan MÖ, Aydin H, Polat E. Detection and Molecular Characterization of Kobuviruses: An Agent of Canine Viral Diarrhea. Curr Microbiol 2024; 81:309. [PMID: 39150576 DOI: 10.1007/s00284-024-03831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Clarifying the etiology of diarrhea cases of unknown cause is important in the fight against enteric infections. In this study, we aimed to investigate the role of canine kobuvirus (CaKoV), in cases of diarrhea of unknown origin in dogs. A total 121 swab samples from dogs with diarrhea were collected. Molecular analyses of the samples were performed. For this purpose, after the sequence reaction, a phylogenetic tree was created, and bioinformatics analyses were performed. The prevalence rate of CaKoV in the sampled population was determined as 16.5% (20/121). The presence of parvovirus and coronavirus, which are common viral agents in CaKoV-positive dogs, was determined as 35% (7/20) and 10% (2/20), respectively. The rate of dogs with only CaKoV detected was 65% (13/20). Phylogenetic analysis of CaKoV strains clustered together closely related to reference strains. There are very limited studies on the role of CaKoV in the etiology of diarrhea cases of unknown cause in dogs around the world. So far, only one study has been done on CaKoV in Turkey. In this report which includes molecular characterization and epidemiological data on CaKoV determined the importance of CaKoV in cases of diarrhea of unknown origin. More comprehensive studies are needed to better understand the pathogenesis, epidemiology, and biology of CaKoV and to determine effective strategies to combat it.
Collapse
|
15
|
Carella F, Prado P, García-March JR, Tena-Medialdea J, Melendreras EC, Porcellini A, Feola A. Measuring immunocompetence in the natural population and captive individuals of noble pen shell Pinna nobilis affected by Pinna nobilis Picornavirus (PnPV). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109664. [PMID: 38844186 DOI: 10.1016/j.fsi.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.
Collapse
|
16
|
Stasiak K, Dunowska M, Rola J. Prevalence and Sequence Analysis of Equine Rhinitis Viruses among Horses in Poland. Viruses 2024; 16:1204. [PMID: 39205178 PMCID: PMC11359465 DOI: 10.3390/v16081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Equine rhinitis A (ERAV) and B (ERBV) viruses are respiratory pathogens with worldwide distribution. The current study aimed to determine the frequency of infection of ERAV and ERBV among horses and foals at Polish national studs, and to determine genetic variability within the viruses obtained. Virus-specific quantitative RT-PCR assays targeting a 5' untranslated region were used to screen nasal swabs collected from 621 horses at 16 national horse studs from throughout Poland, including 553 healthy horses and 68 horses with respiratory disease. A partial DNA polymerase gene was amplified and sequenced from the qRT-PCR-positive samples. The obtained sequences were analysed using phylogeny and genetic network analysis. None of the nasal swabs were positive for ERAV, whereas ERBV was found in 11/621 (1.78%) samples collected from 10 healthy horses and one foal affected by respiratory disease. Partial DNA polymerase gene sequence variability was correlated with individual horses and studs from which samples were collected when only Polish sequences were analysed, but there was no correlation between country of origin and ERBV sequence when Polish and international sequences were included in the network. The report presents the first detection of ERBV in Poland.
Collapse
|
17
|
Faleye TOC, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling. Viruses 2024; 16:1188. [PMID: 39205161 PMCID: PMC11359023 DOI: 10.3390/v16081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Collapse
|
18
|
Song H, Waheed Abdullah S, Yin S, Dong H, Zhang Y, Tan S, Bai M, Ding Y, Teng Z, Sun S, Guo H. Virus-like particle-based multipathogen vaccine of FMD and SVA elicits balanced and broad protective efficacy in mice and pigs. Vaccine 2024; 42:3789-3801. [PMID: 38714448 DOI: 10.1016/j.vaccine.2024.04.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Inactivated vaccines lack the capability to serologically differentiate between infected and vaccinated animals, thereby impeding the effective eradication of pathogen. Conversely, vaccines based on virus-like particles (VLPs) emulate natural viruses in both size and antigenic structure, presenting a promising alternative to overcome these limitations. As the complexity of swine infectious diseases increases, the increase of vaccine types and doses may intensify the stress response. This exacerbation can lead to diminished productivity, failure of immunization, and elevated costs. Given the critical dynamics of co-infection and the clinically indistinguishable symptoms associated with foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), there is a dire need for an efficacious intervention. To address these challenges, we developed a combined vaccine composed of three distinct VLPs, specifically designed to target SVA and FMDV serotypes O and A. Our research demonstrates that this trivalent VLP vaccine induces antigen-specific and robust serum antibody responses, comparable to those produced by the respective monovalent vaccines. Moreover, the immune sera from the combined VLP vaccine strongly neutralized FMDV type A and O, and SVA, with neutralization titers comparable to those of the individual vaccines, indicating a high level of immunogenic compatibility among the three VLP components. Importantly, the combined VLPs vaccines-immunized sera conferred efficient protection against single or mixed infections with FMDV type A and O, and SVA viruses in pigs. In contrast, individual vaccines could only protect pigs against homologous virus infections and not against heterologous challenges. This study presents a novel combined vaccines candidate against FMD and SVA, and provides new insights for the development of combination vaccines for other viral swine diseases.
Collapse
|
19
|
Wang W, Meng J, Wu D, Ding J, Liu J. mRNA and miRNA expression profiles reveal the potential roles of RLRs signaling pathway and mitophagy in duck hepatitis A virus type 1 infection. Poult Sci 2024; 103:103839. [PMID: 38810565 PMCID: PMC11166875 DOI: 10.1016/j.psj.2024.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) is the primary cause of duck viral hepatitis, leading to sudden mortality in ducklings and significant economic losses in the duck industry. However, little is known about how DHAV-1 affects duckling liver at the molecular level. We conducted an analysis comparing the expression patterns of mRNAs and miRNAs in DHAV-1-infected duckling livers to understand the underlying mechanisms and dynamic changes. We identified 6,818 differentially expressed mRNAs (DEGs) and 144 differentially expressed microRNAs (DEMs) during DHAV-1 infection. Functional enrichment analysis of DEGs and miRNA target genes using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed their potential involvement in innate antiviral immunity, mitophagy, and pyroptosis. We constructed coexpression networks of mRNA-miRNA interactions and confirmed key DEMs (novel-mir333, novel-mir288, novel-mir197, and novel-mir71) using RT-qPCR. Further investigation demonstrated that DHAV-1 activates the RLRs signaling pathway, disrupts mitophagy, and induces pyroptosis. In conclusion, DHAV-1-induced antiviral immunity is closely linked to mitophagy, suggesting it could be a promising therapeutic target.
Collapse
MESH Headings
- Animals
- Ducks/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Poultry Diseases/virology
- Poultry Diseases/genetics
- Poultry Diseases/immunology
- Hepatitis Virus, Duck/physiology
- Hepatitis, Viral, Animal/virology
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Mitophagy
- Signal Transduction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Picornaviridae Infections/veterinary
- Picornaviridae Infections/virology
- Picornaviridae Infections/immunology
- Picornaviridae Infections/genetics
- Transcriptome
- Immunity, Innate/genetics
Collapse
|
20
|
Noel A, Zhang J, Shen H, Saxena A, Groeltz-Thrush J, Li G, Rahe MC. Bovine Rhinitis B Virus Variant as the Putative Cause of Bronchitis in Goat Kids. Viruses 2024; 16:1023. [PMID: 39066186 PMCID: PMC11281505 DOI: 10.3390/v16071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus related to bovine rhinitis B virus. Viral nucleic acid was localized to lesions of bronchitis using in situ hybridization. This marks the first report of a picornavirus putatively causing respiratory disease in goats and highlights the potential for cross-species transmission of aphthoviruses.
Collapse
|
21
|
Fonseca Júnior AA, Laguardia-Nascimento M, Barbosa AAS, da Silva Gonçalves VL, Camargos MF. Interfering factors in the diagnosis of Senecavirus A. Mol Biol Rep 2024; 51:777. [PMID: 38904698 DOI: 10.1007/s11033-024-09692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Senecavirus A (SV-A) is an RNA virus that belongs to the genus Senecavirus within the family Picornaviridae. This study aimed to analyze factors that can influence the molecular diagnosis of Senecavirus A, such as oligonucleotides, RNA extraction methods, and RT-qPCR kits. METHODS Samples from suspected cases of vesicular disease in Brazilian pigs were analyzed for foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis. All tested negative for these diseases but positive for SV-A. RT-qPCR tests were used, comparing different reagent kits and RNA extraction methods. Sensitivity and repeatability were evaluated, demonstrating efficacy in detecting SV-A in clinical samples. RESULTS In RNA extraction, significant reduction in Cq values was observed with initial dilutions, particularly with larger supernatant volumes. Trizol and Maxwell showed greater sensitivity in automated equipment protocols, though results varied in tissue tests. RT-qPCR kit comparison revealed differences in amplification using viral RNA but minimal differences with plasmid DNA. Sensitivity among methods was comparable, with slight variations in non-amplified samples. Repeatability tests showed consistent results among RT-qPCRs, demonstrating similarity between methods despite minor discrepancies in Cq values. CONCLUSIONS Trizol, silica columns, and semi-automated extraction were compared, as well as different RT-qPCR kits. The study found significant variations that could impact the final diagnosis.
Collapse
|
22
|
Tang Y, Zhao K, Yin HM, Yang LP, Wu YC, Li FY, Yang Z, Lu HX, Wang B, Yang Y, Zhang YZ, Yang XL. Identification and Genomic Characterization of Two Novel Hepatoviruses in Shrews from Yunnan Province, China. Viruses 2024; 16:969. [PMID: 38932262 PMCID: PMC11209087 DOI: 10.3390/v16060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.
Collapse
|
23
|
He W, Liao K, Li R, Peng W, Qian B, Zeng D, Tang F, Xue F, Jung YS, Dai J. Development of a CRISPR/Cas12a-based fluorescent detection method of Senecavirus A. BMC Vet Res 2024; 20:258. [PMID: 38877537 PMCID: PMC11179212 DOI: 10.1186/s12917-024-04116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread. METHODS In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system. RESULTS The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/µL of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours. CONCLUSIONS Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.
Collapse
|
24
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
|
25
|
Wu S, Gou F, Meng J, Jin X, Liu W, Ding W, Xu W, Gu C, Hu X, Cheng G, Tao P, Zhang W. Porcine kobuvirus enhances porcine epidemic diarrhea virus pathogenicity and alters the number of intestinal lymphocytes in piglets. Vet Microbiol 2024; 293:110100. [PMID: 38718527 DOI: 10.1016/j.vetmic.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.
Collapse
|