1
|
Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, White IR, Caulfield MJ, Deanfield JE, Smeeth L, Williams B, Hingorani A, Hemingway H. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 2014; 383:1899-911. [PMID: 24881994 PMCID: PMC4042017 DOI: 10.1016/s0140-6736(14)60685-1] [Citation(s) in RCA: 1145] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND The associations of blood pressure with the different manifestations of incident cardiovascular disease in a contemporary population have not been compared. In this study, we aimed to analyse the associations of blood pressure with 12 different presentations of cardiovascular disease. METHODS We used linked electronic health records from 1997 to 2010 in the CALIBER (CArdiovascular research using LInked Bespoke studies and Electronic health Records) programme to assemble a cohort of 1·25 million patients, 30 years of age or older and initially free from cardiovascular disease, a fifth of whom received blood pressure-lowering treatments. We studied the heterogeneity in the age-specific associations of clinically measured blood pressure with 12 acute and chronic cardiovascular diseases, and estimated the lifetime risks (up to 95 years of age) and cardiovascular disease-free life-years lost adjusted for other risk factors at index ages 30, 60, and 80 years. This study is registered at ClinicalTrials.gov, number NCT01164371. FINDINGS During 5·2 years median follow-up, we recorded 83,098 initial cardiovascular disease presentations. In each age group, the lowest risk for cardiovascular disease was in people with systolic blood pressure of 90-114 mm Hg and diastolic blood pressure of 60-74 mm Hg, with no evidence of a J-shaped increased risk at lower blood pressures. The effect of high blood pressure varied by cardiovascular disease endpoint, from strongly positive to no effect. Associations with high systolic blood pressure were strongest for intracerebral haemorrhage (hazard ratio 1·44 [95% CI 1·32-1·58]), subarachnoid haemorrhage (1·43 [1·25-1·63]), and stable angina (1·41 [1·36-1·46]), and weakest for abdominal aortic aneurysm (1·08 [1·00-1·17]). Compared with diastolic blood pressure, raised systolic blood pressure had a greater effect on angina, myocardial infarction, and peripheral arterial disease, whereas raised diastolic blood pressure had a greater effect on abdominal aortic aneurysm than did raised systolic pressure. Pulse pressure associations were inverse for abdominal aortic aneurysm (HR per 10 mm Hg 0·91 [95% CI 0·86-0·98]) and strongest for peripheral arterial disease (1·23 [1·20-1·27]). People with hypertension (blood pressure ≥140/90 mm Hg or those receiving blood pressure-lowering drugs) had a lifetime risk of overall cardiovascular disease at 30 years of age of 63·3% (95% CI 62·9-63·8) compared with 46·1% (45·5-46·8) for those with normal blood pressure, and developed cardiovascular disease 5·0 years earlier (95% CI 4·8-5·2). Stable and unstable angina accounted for most (43%) of the cardiovascular disease-free years of life lost associated with hypertension from index age 30 years, whereas heart failure and stable angina accounted for the largest proportion (19% each) of years of life lost from index age 80 years. INTERPRETATION The widely held assumptions that blood pressure has strong associations with the occurrence of all cardiovascular diseases across a wide age range, and that diastolic and systolic associations are concordant, are not supported by the findings of this high-resolution study. Despite modern treatments, the lifetime burden of hypertension is substantial. These findings emphasise the need for new blood pressure-lowering strategies, and will help to inform the design of randomised trials to assess them. FUNDING Medical Research Council, National Institute for Health Research, and Wellcome Trust.
Collapse
|
Clinical Trial |
11 |
1145 |
2
|
Nicholson A, Kuper H, Hemingway H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur Heart J 2006; 27:2763-74. [PMID: 17082208 DOI: 10.1093/eurheartj/ehl338] [Citation(s) in RCA: 985] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS With negative treatment trials, the role of depression as an aetiological or prognostic factor in coronary heart disease (CHD) remains controversial. We quantified the effect of depression on CHD, assessing the extent of confounding by coronary risk factors and disease severity. METHODS AND RESULTS Meta-analysis of cohort studies measuring depression with follow-up for fatal CHD/incident myocardial infarction (aetiological) or all-cause mortality/fatal CHD (prognostic). We searched MEDLINE and Science Citation Index until December 2003. In 21 aetiological studies, the pooled relative risk of future CHD associated with depression was 1.81 (95% CI 1.53-2.15). Adjusted results were included for 11 studies, with adjustment reducing the crude effect marginally from 2.08 (1.69-2.55) to 1.90 (1.49-2.42). In 34 prognostic studies, the pooled relative risk was 1.80 (1.50-2.15). Results adjusted for left ventricular function result were available in only eight studies; and this attenuated the relative risk from 2.18 to 1.53 (1.11-2.10), a 48% reduction. Both aetiological and prognostic studies without adjusted results had lower unadjusted effect sizes than studies from which adjusted results were included (P<0.01). CONCLUSION Depression has yet to be established as an independent risk factor for CHD because of incomplete and biased availability of adjustment for conventional risk factors and severity of coronary disease.
Collapse
|
|
19 |
985 |
3
|
Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, Allison M, Hemingway H, Cleland JG, McMurray JJV, Rahimi K. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018; 391:572-580. [PMID: 29174292 PMCID: PMC5814791 DOI: 10.1016/s0140-6736(17)32520-5] [Citation(s) in RCA: 827] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Large-scale and contemporary population-based studies of heart failure incidence are needed to inform resource planning and research prioritisation but current evidence is scarce. We aimed to assess temporal trends in incidence and prevalence of heart failure in a large general population cohort from the UK, between 2002 and 2014. METHODS For this population-based study, we used linked primary and secondary electronic health records of 4 million individuals from the Clinical Practice Research Datalink (CPRD), a cohort that is representative of the UK population in terms of age and sex. Eligible patients were aged 16 years and older, had contributed data between Jan 1, 2002, and Dec 31, 2014, had an acceptable record according to CPRD quality control, were approved for CPRD and Hospital Episodes Statistics linkage, and were registered with their general practice for at least 12 months. For patients with incident heart failure, we extracted the most recent measurement of baseline characteristics (within 2 years of diagnosis) from electronic health records, as well as information about comorbidities, socioeconomic status, ethnicity, and region. We calculated standardised rates by applying direct age and sex standardisation to the 2013 European Standard Population, and we inferred crude rates by applying year-specific, age-specific, and sex-specific incidence to UK census mid-year population estimates. We assumed no heart failure for patients aged 15 years or younger and report total incidence and prevalence for all ages (>0 years). FINDINGS From 2002 to 2014, heart failure incidence (standardised by age and sex) decreased, similarly for men and women, by 7% (from 358 to 332 per 100 000 person-years; adjusted incidence ratio 0·93, 95% CI 0·91-0·94). However, the estimated absolute number of individuals with newly diagnosed heart failure in the UK increased by 12% (from 170 727 in 2002 to 190 798 in 2014), largely due to an increase in population size and age. The estimated absolute number of prevalent heart failure cases in the UK increased even more, by 23% (from 750 127 to 920 616). Over the study period, patient age and multi-morbidity at first presentation of heart failure increased (mean age 76·5 years [SD 12·0] to 77·0 years [12·9], adjusted difference 0·79 years, 95% CI 0·37-1·20; mean number of comorbidities 3·4 [SD 1·9] vs 5·4 [2·5]; adjusted difference 2·0, 95% CI 1·9-2·1). Socioeconomically deprived individuals were more likely to develop heart failure than were affluent individuals (incidence rate ratio 1·61, 95% CI 1·58-1·64), and did so earlier in life than those from the most affluent group (adjusted difference -3·51 years, 95% CI -3·77 to -3·25). From 2002 to 2014, the socioeconomic gradient in age at first presentation with heart failure widened. Socioeconomically deprived individuals also had more comorbidities, despite their younger age. INTERPRETATION Despite a moderate decline in standardised incidence of heart failure, the burden of heart failure in the UK is increasing, and is now similar to the four most common causes of cancer combined. The observed socioeconomic disparities in disease incidence and age at onset within the same nation point to a potentially preventable nature of heart failure that still needs to be tackled. FUNDING British Heart Foundation and National Institute for Health Research.
Collapse
|
research-article |
7 |
827 |
4
|
Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol 2015; 3:105-13. [PMID: 25466521 PMCID: PMC4303913 DOI: 10.1016/s2213-8587(14)70219-0] [Citation(s) in RCA: 789] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The contemporary associations of type 2 diabetes with a wide range of incident cardiovascular diseases have not been compared. We aimed to study associations between type 2 diabetes and 12 initial manifestations of cardiovascular disease. METHODS We used linked primary care, hospital admission, disease registry, and death certificate records from the CALIBER programme, which links data for people in England recorded in four electronic health data sources. We included people who were (or turned) 30 years or older between Jan 1, 1998, to March 25, 2010, who were free from cardiovascular disease at baseline. The primary endpoint was the first record of one of 12 cardiovascular presentations in any of the data sources. We compared cumulative incidence curves for the initial presentation of cardiovascular disease and used Cox models to estimate cause-specific hazard ratios (HRs). This study is registered at ClinicalTrials.gov (NCT01804439). FINDINGS Our cohort consisted of 1 921 260 individuals, of whom 1 887 062 (98·2%) did not have diabetes and 34 198 (1·8%) had type 2 diabetes. We observed 113 638 first presentations of cardiovascular disease during a median follow-up of 5·5 years (IQR 2·1-10·1). Of people with type 2 diabetes, 6137 (17·9%) had a first cardiovascular presentation, the most common of which were peripheral arterial disease (reported in 992 [16·2%] of 6137 patients) and heart failure (866 [14·1%] of 6137 patients). Type 2 diabetes was positively associated with peripheral arterial disease (adjusted HR 2·98 [95% CI 2·76-3·22]), ischaemic stroke (1·72 [1·52-1·95]), stable angina (1·62 [1·49-1·77]), heart failure (1·56 [1·45-1·69]), and non-fatal myocardial infarction (1·54 [1·42-1·67]), but was inversely associated with abdominal aortic aneurysm (0·46 [0·35-0·59]) and subarachnoid haemorrhage (0·48 [0·26-0.89]), and not associated with arrhythmia or sudden cardiac death (0·95 [0·76-1·19]). INTERPRETATION Heart failure and peripheral arterial disease are the most common initial manifestations of cardiovascular disease in type 2 diabetes. The differences between relative risks of different cardiovascular diseases in patients with type 2 diabetes have implications for clinical risk assessment and trial design. FUNDING Wellcome Trust, National Institute for Health Research, and Medical Research Council.
Collapse
|
research-article |
10 |
789 |
5
|
Hemingway H, Marmot M. Evidence based cardiology: psychosocial factors in the aetiology and prognosis of coronary heart disease. Systematic review of prospective cohort studies. BMJ (CLINICAL RESEARCH ED.) 1999; 318:1460-7. [PMID: 10346775 PMCID: PMC1115843 DOI: 10.1136/bmj.318.7196.1460] [Citation(s) in RCA: 776] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
Review |
26 |
776 |
6
|
Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Funck-Brentano C, Filippatos G, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Altiner A, Bonora E, Durrington PN, Fagard R, Giampaoli S, Hemingway H, Hakansson J, Kjeldsen SE, Larsen ML, Mancia G, Manolis AJ, Orth-Gomer K, Pedersen T, Rayner M, Ryden L, Sammut M, Schneiderman N, Stalenhoef AF, Tokgözoglu L, Wiklund O, Zampelas A. European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). ACTA ACUST UNITED AC 2007; 14 Suppl 2:S1-113. [PMID: 17726407 DOI: 10.1097/01.hjr.0000277983.23934.c9] [Citation(s) in RCA: 720] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Other experts who contributed to parts of the guidelines: Edmond Walma, Tony Fitzgerald, Marie Therese Cooney, Alexandra Dudina European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG): Alec Vahanian (Chairperson), John Camm, Raffaele De Caterina, Veronica Dean, Kenneth Dickstein, Christian Funck-Brentano, Gerasimos Filippatos, Irene Hellemans, Steen Dalby Kristensen, Keith McGregor, Udo Sechtem, Sigmund Silber, Michal Tendera, Petr Widimsky, Jose Luis Zamorano Document reviewers: Irene Hellemans (CPG Review Co-ordinator), Attila Altiner, Enzo Bonora, Paul N. Durrington, Robert Fagard, Simona Giampaoli, Harry Hemingway, Jan Hakansson, Sverre Erik Kjeldsen, Mogens Lytken Larsen, Giuseppe Mancia, Athanasios J. Manolis, Kristina Orth-Gomer, Terje Pedersen, Mike Rayner, Lars Ryden, Mario Sammut, Neil Schneiderman, Anton F. Stalenhoef, Lale Tokgözoglu, Olov Wiklund, Antonis Zampelas
Collapse
|
Practice Guideline |
18 |
720 |
7
|
Marmot MG, Bosma H, Hemingway H, Brunner E, Stansfeld S. Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet 1997; 350:235-9. [PMID: 9242799 DOI: 10.1016/s0140-6736(97)04244-x] [Citation(s) in RCA: 620] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The first Whitehall Study showed an inverse social gradient in mortality from coronary heart disease (CHD) among British civil servants--namely, that there were higher rates in men of lower employment grade. About a quarter of this gradient could be attributed to coronary risk factors. We analysed 5-year CHD incidence rates from the Whitehall II study to assess the contribution to the social gradient of psychosocial work environment, social support, coronary risk factors, and physical height. METHODS Data were collected in the first three phases of examination of men and women in the Whitehall II study. 7372 people were contacted on all three occasions. Mean length of follow-up was 5.3 years. Characteristics from the baseline, phase 1, questionnaire, and examination were related to newly reported CHD in people without CHD at baseline. Three self-reported CHD outcomes were examined: angina and chest pain from the Rose questionnaire, and doctor-diagnosed ischaemia. The contribution of different factors to the socioeconomic differences in incident CHD was assessed by adjustment of odds ratios. FINDINGS Compared with men in the highest grade (administrators), men in the lowest grade (clerical and office-support staff) had an age-adjusted odds ratio of developing any new CHD of 1.50. The largest difference was for doctor-diagnosed ischaemia (odds ratio for the lowest compared with the highest grade 2.27). For women, the odds ratio in the lowest grade was 1.47 for any CHD. Of factors examined, the largest contribution to the socioeconomic gradient in CHD frequency was from low control at work. Height and standard coronary risk factors made smaller contributions. Adjustment for all these factors reduced the odds ratios for newly reported CHD in the lowest grade from 1.5 to 0.95 in men, and from 1.47 to 1.07 in women. INTERPRETATION Much of the inverse social gradient in CHD incidence can be attributed to differences in psychosocial work environment. Additional contributions were made by coronary risk factors--mainly smoking--and from factors that act early in life, as represented by physical height.
Collapse
|
Comparative Study |
28 |
620 |
8
|
Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams K, Kyzas PA, Malats N, Briggs A, Schroter S, Altman DG, Hemingway H. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research. PLoS Med 2013; 10:e1001380. [PMID: 23393429 PMCID: PMC3564757 DOI: 10.1371/journal.pmed.1001380] [Citation(s) in RCA: 544] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prognostic factor research aims to identify factors associated with subsequent clinical outcome in people with a particular disease or health condition. In this article, the second in the PROGRESS series, the authors discuss the role of prognostic factors in current clinical practice, randomised trials, and developing new interventions, and explain why and how prognostic factor research should be improved.
Collapse
|
Review |
12 |
544 |
9
|
Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, Lai FY, Kaptoge S, Brozynska M, Wang T, Ye S, Webb TR, Rutter MK, Tzoulaki I, Patel RS, Loos RJF, Keavney B, Hemingway H, Thompson J, Watkins H, Deloukas P, Di Angelantonio E, Butterworth AS, Danesh J, Samani NJ. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol 2018; 72:1883-1893. [PMID: 30309464 PMCID: PMC6176870 DOI: 10.1016/j.jacc.2018.07.079] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) has substantial heritability and a polygenic architecture. However, the potential of genomic risk scores to help predict CAD outcomes has not been evaluated comprehensively, because available studies have involved limited genomic scope and limited sample sizes. OBJECTIVES This study sought to construct a genomic risk score for CAD and to estimate its potential as a screening tool for primary prevention. METHODS Using a meta-analytic approach to combine large-scale, genome-wide, and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS) consisting of 1.7 million genetic variants. We externally tested metaGRS, both by itself and in combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 noncases from the UK Biobank. RESULTS The hazard ratio (HR) for CAD was 1.71 (95% confidence interval [CI]: 1.68 to 1.73) per SD increase in metaGRS, an association larger than any other externally tested genetic risk score previously published. The metaGRS stratified individuals into significantly different life course trajectories of CAD risk, with those in the top 20% of metaGRS distribution having an HR of 4.17 (95% CI: 3.97 to 4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (95% CI: 2.61 to 3.07) among individuals on lipid-lowering or antihypertensive medications. The metaGRS had a higher C-index (C = 0.623; 95% CI: 0.615 to 0.631) for incident CAD than any of 6 conventional factors (smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk of CAD was reached by 48 years of age. CONCLUSIONS The genomic score developed and evaluated here substantially advances the concept of using genomic information to stratify individuals with different trajectories of CAD risk and highlights the potential for genomic screening in early life to complement conventional risk prediction.
Collapse
|
research-article |
7 |
525 |
10
|
Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto J, Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J, Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn ME, Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM, van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber ME, Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W, Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL, Stender S, Stott DJ, Svensson P, et alShah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÅK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto J, Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J, Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn ME, Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM, van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber ME, Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W, Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL, Stender S, Stott DJ, Svensson P, Tammesoo ML, Taylor KD, Teder-Laving M, Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Trompet S, Tyl B, Uitterlinden AG, Veluchamy A, Völker U, Voors AA, Wang X, Wareham NJ, Waterworth D, Weeke PE, Weiss R, Wiggins KL, Xing H, Yerges-Armstrong LM, Yu B, Zannad F, Zhao JH, Hemingway H, Samani NJ, McMurray JJV, Yang J, Visscher PM, Newton-Cheh C, Malarstig A, Holm H, Lubitz SA, Sattar N, Holmes MV, Cappola TP, Asselbergs FW, Hingorani AD, Kuchenbaecker K, Ellinor PT, Lang CC, Stefansson K, Smith JG, Vasan RS, Swerdlow DI, Lumbers RT. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 2020; 11:163. [PMID: 31919418 PMCID: PMC6952380 DOI: 10.1038/s41467-019-13690-5] [Show More Authors] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
Collapse
|
Meta-Analysis |
5 |
516 |
11
|
Bosma H, Marmot MG, Hemingway H, Nicholson AC, Brunner E, Stansfeld SA. Low job control and risk of coronary heart disease in Whitehall II (prospective cohort) study. BMJ (CLINICAL RESEARCH ED.) 1997; 314:558-65. [PMID: 9055714 PMCID: PMC2126031 DOI: 10.1136/bmj.314.7080.558] [Citation(s) in RCA: 466] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the association between adverse psychosocial characteristics at work and risk of coronary heart disease among male and female civil servants. DESIGN Prospective cohort study (Whitehall II study). At the baseline examination (1985-8) and twice during follow up a self report questionnaire provided information on psychosocial factors of the work environment and coronary heart disease. Independent assessments of the work environment were obtained from personnel managers at baseline. Mean length of follow up was 5.3 years. SETTING London based office staff in 20 civil service departments. SUBJECTS 10,308 civil servants aged 35-55 were examined-6895 men (67%) and 3413 women (33%). MAIN OUTCOME MEASURES New cases of angina (Rose questionnaire), severe pain across the chest, diagnosed ischaemic heart disease, and any coronary event. RESULTS Men and women with low job control, either self reported or independently assessed, had a higher risk of newly reported coronary heart disease during follow up. Job control assessed on two occasions three years apart, although intercorrelated, had cumulative effects on newly reported disease. Subjects with low job control on both occasions had an odds ratio for any subsequent coronary event of 1.93 (95% confidence interval 1.34 to 2.77) compared with subjects with high job control at both occasions. This association could not be explained by employment grade, negative affectivity, or classic coronary risk factors. Job demands and social support at work were not related to the risk of coronary heart disease. CONCLUSIONS Low control in the work environment is associated with an increased risk of future coronary heart disease among men and women employed in government offices. The cumulative effect of low job control assessed on two occasions indicates that giving employees more variety in tasks and a stronger say in decisions about work may decrease the risk of coronary heart disease.
Collapse
|
research-article |
28 |
466 |
12
|
Hemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, Briggs A, Udumyan R, Moons KGM, Steyerberg EW, Roberts I, Schroter S, Altman DG, Riley RD. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ 2013; 346:e5595. [PMID: 23386360 PMCID: PMC3565687 DOI: 10.1136/bmj.e5595] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2012] [Indexed: 12/27/2022]
|
other |
12 |
413 |
13
|
Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman DE, Jubb M, World M, Thomas EL, Brynes AE, Saeed N, Barnard M, Bell JD, Prasad K, Rayson M, Talmud PJ, Humphries SE. Human gene for physical performance. Nature 1998; 393:221-2. [PMID: 9607758 DOI: 10.1038/30374] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
Letter |
27 |
402 |
14
|
Chandola T, Britton A, Brunner E, Hemingway H, Malik M, Kumari M, Badrick E, Kivimaki M, Marmot M. Work stress and coronary heart disease: what are the mechanisms? Eur Heart J 2008; 29:640-8. [PMID: 18216031 DOI: 10.1093/eurheartj/ehm584] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS To determine the biological and behavioural factors linking work stress with coronary heart disease (CHD). METHODS AND RESULTS A total of 10 308 London-based male and female civil servants aged 35-55 at phase 1 (1985-88) of the Whitehall II study were studied. Exposures included work stress (assessed at phases 1 and 2), and outcomes included behavioural risk factors (phase 3), the metabolic syndrome (phase 3), heart rate variability, morning rise in cortisol (phase 7), and incident CHD (phases 2-7) on the basis of CHD death, non-fatal myocardial infarction, or definite angina. Chronic work stress was associated with CHD and this association was stronger among participants aged under 50 (RR 1.68, 95% CI 1.17-2.42). There were similar associations between work stress and low physical activity, poor diet, the metabolic syndrome, its components, and lower heart rate variability. Cross-sectionally, work stress was associated with a higher morning rise in cortisol. Around 32% of the effect of work stress on CHD was attributable to its effect on health behaviours and the metabolic syndrome. CONCLUSION Work stress may be an important determinant of CHD among working-age populations, which is mediated through indirect effects on health behaviours and direct effects on neuroendocrine stress pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
400 |
15
|
Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, Hayward A, Hemingway H, Horby P, Mehta N, Benger J, Khunti K, Spiegelhalter D, Sheikh A, Valabhji J, Lyons RA, Robson J, Semple MG, Kee F, Johnson P, Jebb S, Williams T, Hippisley-Cox J. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ 2020; 371:m3731. [PMID: 33082154 PMCID: PMC7574532 DOI: 10.1136/bmj.m3731] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. DESIGN Population based cohort study. SETTING AND PARTICIPANTS QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. MAIN OUTCOME MEASURES The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. RESULTS 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R2); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell's C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. CONCLUSION The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves.
Collapse
|
research-article |
5 |
356 |
16
|
Brunner EJ, Hemingway H, Walker BR, Page M, Clarke P, Juneja M, Shipley MJ, Kumari M, Andrew R, Seckl JR, Papadopoulos A, Checkley S, Rumley A, Lowe GDO, Stansfeld SA, Marmot MG. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 2002; 106:2659-65. [PMID: 12438290 DOI: 10.1161/01.cir.0000038364.26310.bd] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The causes of metabolic syndrome (MS), which may be a precursor of coronary disease, are uncertain. We hypothesize that disturbances in neuroendocrine and cardiac autonomic activity (CAA) contribute to development of MS. We examine reversibility and the power of psychosocial and behavioral factors to explain the neuroendocrine adaptations that accompany MS. METHODS AND RESULTS This was a double-blind case-control study of working men aged 45 to 63 years drawn from the Whitehall II cohort. MS cases (n=30) were compared with healthy controls (n=153). Cortisol secretion, sensitivity, and 24-hour cortisol metabolite and catecholamine output were measured over 2 days. CAA was obtained from power spectral analysis of heart rate variability (HRV) recordings. Twenty-four-hour cortisol metabolite and normetanephrine (3-methoxynorepinephrine) outputs were higher among cases than controls (+ 0.49, +0.45 SD, respectively). HRV and total power were lower among cases (both -0.72 SD). Serum interleukin-6, plasma C-reactive protein, and viscosity were higher among cases (+0.89, +0.51, and +0.72 SD). Lower HRV was associated with higher normetanephrine output (r=-0.19; P=0.03). Among former cases (MS 5 years previously, n=23), cortisol output, heart rate, and interleukin-6 were at the level of controls. Psychosocial factors accounted for 37% of the link between MS and normetanephrine output, and 7% to 19% for CAA. Health-related behaviors accounted for 5% to 18% of neuroendocrine differences. CONCLUSIONS Neuroendocrine stress axes are activated in MS. There is relative cardiac sympathetic predominance. The neuroendocrine changes may be reversible. This case-control study provides the first evidence that chronic stress may be a cause of MS. Confirmatory prospective studies are required.
Collapse
|
|
23 |
345 |
17
|
Hingorani AD, Windt DAVD, Riley RD, Abrams K, Moons KGM, Steyerberg EW, Schroter S, Sauerbrei W, Altman DG, Hemingway H. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ 2013; 346:e5793. [PMID: 23386361 PMCID: PMC3565686 DOI: 10.1136/bmj.e5793] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In patients with a particular disease or health condition, stratified medicine seeks to identify those who will have the most clinical benefit or least harm from a specific treatment. In this article, the fourth in the PROGRESS series, the authors discuss why prognosis research should form a cornerstone of stratified medicine, especially in regard to the identification of factors that predict individual treatment response
Collapse
|
other |
12 |
337 |
18
|
Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am J Epidemiol 2014; 179:764-74. [PMID: 24589914 PMCID: PMC3939843 DOI: 10.1093/aje/kwt312] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemiologic research. The “true” imputation model may contain nonlinearities which are not included in default imputation models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and interactions and does not require a particular regression model to be specified. We compared parametric MICE with a random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000 persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Records; 2001–2010) with complete data on all covariates. Variables were artificially made “missing at random,” and the bias and efficiency of parameter estimates obtained using different imputation methods were compared. Both MICE methods produced unbiased estimates of (log) hazard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was better. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in which some patients have missing data.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
333 |
19
|
Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, Noursadeghi M, Pillay D, Sebire N, Holmes C, Pagel C, Wong WK, Langenberg C, Williams B, Denaxas S, Hemingway H. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet 2020; 395:1715-1725. [PMID: 32405103 PMCID: PMC7217641 DOI: 10.1016/s0140-6736(20)30854-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The medical, societal, and economic impact of the coronavirus disease 2019 (COVID-19) pandemic has unknown effects on overall population mortality. Previous models of population mortality are based on death over days among infected people, nearly all of whom thus far have underlying conditions. Models have not incorporated information on high-risk conditions or their longer-term baseline (pre-COVID-19) mortality. We estimated the excess number of deaths over 1 year under different COVID-19 incidence scenarios based on varying levels of transmission suppression and differing mortality impacts based on different relative risks for the disease. METHODS In this population-based cohort study, we used linked primary and secondary care electronic health records from England (Health Data Research UK-CALIBER). We report prevalence of underlying conditions defined by Public Health England guidelines (from March 16, 2020) in individuals aged 30 years or older registered with a practice between 1997 and 2017, using validated, openly available phenotypes for each condition. We estimated 1-year mortality in each condition, developing simple models (and a tool for calculation) of excess COVID-19-related deaths, assuming relative impact (as relative risks [RRs]) of the COVID-19 pandemic (compared with background mortality) of 1·5, 2·0, and 3·0 at differing infection rate scenarios, including full suppression (0·001%), partial suppression (1%), mitigation (10%), and do nothing (80%). We also developed an online, public, prototype risk calculator for excess death estimation. FINDINGS We included 3 862 012 individuals (1 957 935 [50·7%] women and 1 904 077 [49·3%] men). We estimated that more than 20% of the study population are in the high-risk category, of whom 13·7% were older than 70 years and 6·3% were aged 70 years or younger with at least one underlying condition. 1-year mortality in the high-risk population was estimated to be 4·46% (95% CI 4·41-4·51). Age and underlying conditions combined to influence background risk, varying markedly across conditions. In a full suppression scenario in the UK population, we estimated that there would be two excess deaths (vs baseline deaths) with an RR of 1·5, four with an RR of 2·0, and seven with an RR of 3·0. In a mitigation scenario, we estimated 18 374 excess deaths with an RR of 1·5, 36 749 with an RR of 2·0, and 73 498 with an RR of 3·0. In a do nothing scenario, we estimated 146 996 excess deaths with an RR of 1·5, 293 991 with an RR of 2·0, and 587 982 with an RR of 3·0. INTERPRETATION We provide policy makers, researchers, and the public a simple model and an online tool for understanding excess mortality over 1 year from the COVID-19 pandemic, based on age, sex, and underlying condition-specific estimates. These results signal the need for sustained stringent suppression measures as well as sustained efforts to target those at highest risk because of underlying conditions with a range of preventive interventions. Countries should assess the overall (direct and indirect) effects of the pandemic on excess mortality. FUNDING National Institute for Health Research University College London Hospitals Biomedical Research Centre, Health Data Research UK.
Collapse
|
research-article |
5 |
324 |
20
|
Herrett E, Shah AD, Boggon R, Denaxas S, Smeeth L, van Staa T, Timmis A, Hemingway H. Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ 2013; 346:f2350. [PMID: 23692896 PMCID: PMC3898411 DOI: 10.1136/bmj.f2350] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the completeness and diagnostic validity of myocardial infarction recording across four national health record sources in primary care, hospital care, a disease registry, and mortality register. DESIGN Cohort study. PARTICIPANTS 21 482 patients with acute myocardial infarction in England between January 2003 and March 2009, identified in four prospectively collected, linked electronic health record sources: Clinical Practice Research Datalink (primary care data), Hospital Episode Statistics (hospital admissions), the disease registry MINAP (Myocardial Ischaemia National Audit Project), and the Office for National Statistics mortality register (cause specific mortality data). SETTING One country (England) with one health system (the National Health Service). MAIN OUTCOME MEASURES Recording of acute myocardial infarction, incidence, all cause mortality within one year of acute myocardial infarction, and diagnostic validity of acute myocardial infarction compared with electrocardiographic and troponin findings in the disease registry (gold standard). RESULTS Risk factors and non-cardiovascular coexisting conditions were similar across patients identified in primary care, hospital admission, and registry sources. Immediate all cause mortality was highest among patients with acute myocardial infarction recorded in primary care, which (unlike hospital admission and disease registry sources) included patients who did not reach hospital, but at one year mortality rates in cohorts from each source were similar. 5561 (31.0%) patients with non-fatal acute myocardial infarction were recorded in all three sources and 11 482 (63.9%) in at least two sources. The crude incidence of acute myocardial infarction was underestimated by 25-50% using one source compared with using all three sources. Compared with acute myocardial infarction defined in the disease registry, the positive predictive value of acute myocardial infarction recorded in primary care was 92.2% (95% confidence interval 91.6% to 92.8%) and in hospital admissions was 91.5% (90.8% to 92.1%). CONCLUSION Each data source missed a substantial proportion (25-50%) of myocardial infarction events. Failure to use linked electronic health records from primary care, hospital care, disease registry, and death certificates may lead to biased estimates of the incidence and outcome of myocardial infarction. TRIAL REGISTRATION NCT01569139 clinicaltrials.gov.
Collapse
|
Evaluation Study |
12 |
277 |
21
|
Pujades-Rodriguez M, Duyx B, Thomas SL, Stogiannis D, Rahman A, Smeeth L, Hemingway H. Rheumatoid Arthritis and Incidence of Twelve Initial Presentations of Cardiovascular Disease: A Population Record-Linkage Cohort Study in England. PLoS One 2016; 11:e0151245. [PMID: 26978266 PMCID: PMC4792375 DOI: 10.1371/journal.pone.0151245] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION While rheumatoid arthritis is an established risk factor for cardiovascular disease (CVD), our knowledge of how the pattern of risk varies for different cardiovascular phenotypes is incomplete. The association between rheumatoid arthritis and the initial presentation of 12 types of CVDs were examined in a contemporary population of men and women of a wide age range. METHODS CALIBER data, which links primary care, hospital and mortality data in England, was analysed. A cohort of people aged ≥18 years and without history of CVD was assembled and included all patients with prospectively recorded rheumatoid arthritis from January 1997, until March 2010, matched with up to ten people without rheumatoid arthritis by age, sex and general practice. The associations between rheumatoid arthritis and the initial presentation of 12 types of CVDs were estimated using multivariable random effects Poisson regression models. RESULTS The analysis included 12,120 individuals with rheumatoid arthritis and 121,191 comparators. Of these, 2,525 patients with and 18,146 without rheumatoid arthritis developed CVDs during a median of 4.2 years of follow-up. Patients with rheumatoid arthritis had higher rates of myocardial infarction (adjusted incidence ratio [IRR] = 1.43, 95%CI 1.21-1.70), unheralded coronary death (IRR = 1.60, 95%CI 1.18-2.18), heart failure (IRR = 1.61, 95%CI 1.43-1.83), cardiac arrest (HR = 2.26, 95%CI 1.69-3.02) and peripheral arterial disease (HR = 1.36, 95%CI 1.14-1.62); and lower rates of stable angina (HR = 0.83, 95%CI 0.73-0.95). There was no evidence of association with cerebrovascular diseases, abdominal aortic aneurysm or unstable angina, or of interactions with sex or age. CONCLUSIONS The observed associations with some but not all types of CVDs inform both clinical practice and the selection of cardiovascular endpoints for trials and for the development of prognostic models for patients with rheumatoid arthritis.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
274 |
22
|
Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol (1985) 1999; 87:1313-6. [PMID: 10517757 DOI: 10.1152/jappl.1999.87.4.1313] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human physical performance is strongly influenced by genetic factors. A variation in the structure of the human angiotensin I-converting enzyme (ACE) gene has been reported in which the insertion (I) variant is associated with lower ACE levels than the deletion (D) gene. We have previously reported that the I variant was associated with improved endurance performance in high-altitude mountaineers and British Army recruits. We now examine this genotype distribution in 91 British Olympic-standard runners (79 Caucasians). DNA was extracted from the buccal cells contained in 10 ml of saline mouthwash donated by the subjects, and the I and D variants of the ACE gene were identified by PCR amplification of the polymorphic region. There was an increasing frequency of the I allele with distance run [0.35, 0.53, and 0.62 for </=200 m (n = 20), 400-3,000 m (n = 37), and >/=5,000 m (n = 34), respectively; P = 0.009 for linear trend]. Among 404 Olympic-standard athletes from 19 other mixed sporting disciplines (in which endurance performance was not necessarily a key factor), the I allele did not differ significantly from that found in control subjects: 0.50 vs. 0.49 (P = 0.526). These results support a positive association of the I allele with elite endurance performance.
Collapse
|
|
26 |
267 |
23
|
Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Funck-Brentano C, Filippatos G, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Altiner A, Bonora E, Durrington PN, Fagard R, Giampaoli S, Hemingway H, Hakansson J, Kjeldsen SE, Larsen ML, Mancia G, Manolis AJ, Orth-Gomer K, Pedersen T, Rayner M, Ryden L, Sammut M, Schneiderman N, Stalenhoef AF, Tokgözoglu L, Wiklund O, Zampelas A. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). ACTA ACUST UNITED AC 2007; 14 Suppl 2:E1-40. [PMID: 17726406 DOI: 10.1097/01.hjr.0000277984.31558.c4] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Other experts who contributed to parts of the guidelines: Edmond Walma, Schoonhoven (The Netherlands), Tony Fitzgerald, Dublin (Ireland), Marie Therese Cooney, Dublin (Ireland), Alexandra Dudina, Dublin (Ireland) European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG):, Alec Vahanian (Chairperson) (France), John Camm (UK), Raffaele De Caterina (Italy), Veronica Dean (France), Kenneth Dickstein (Norway), Christian Funck-Brentano (France), Gerasimos Filippatos (Greece), Irene Hellemans (The Netherlands), Steen Dalby Kristensen (Denmark), Keith McGregor (France), Udo Sechtem (Germany), Sigmund Silber (Germany), Michal Tendera (Poland), Petr Widimsky (Czech Republic), José Luis Zamorano (Spain) Document reviewers: Irene Hellemans (CPG Review Coordinator) (The Netherlands), Attila Altiner (Germany), Enzo Bonora (Italy), Paul N. Durrington (UK), Robert Fagard (Belgium), Simona Giampaoli(Italy), Harry Hemingway (UK), Jan Hakansson (Sweden), Sverre Erik Kjeldsen (Norway), Mogens Lytken Larsen (Denmark), Giuseppe Mancia (Italy), Athanasios J. Manolis (Greece), Kristina Orth-Gomer (Sweden), Terje Pedersen (Norway), Mike Rayner (UK), Lars Ryden (Sweden), Mario Sammut (Malta), Neil Schneiderman (USA), Anton F. Stalenhoef (The Netherlands), Lale Tokgözoglu (Turkey), Olov Wiklund (Sweden), Antonis Zampelas (Greece)
Collapse
|
Practice Guideline |
18 |
259 |
24
|
Colhoun HM, Hemingway H, Poulter NR. Socio-economic status and blood pressure: an overview analysis. J Hum Hypertens 1998; 12:91-110. [PMID: 9504351 DOI: 10.1038/sj.jhh.1000558] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mortality rates from hypertension related diseases such as coronary heart disease, hypertensive heart disease, stroke and end stage renal disease show an inverse association with socio-economic status (SES). OBJECTIVES To review the published literature in order to assess whether (i) there is an association between SES and blood pressure (BP), and if so whether this is explained by (ii) SES differences in treatment rates, or (iii) SES differences in established risk factors for hypertension, or (iv) psycho-social factors associated with SES. METHOD A narrative systematic review of published articles identified from a MEDLINE search from 1966-1996 and manual searching of the retrieved articles' bibliographies. RESULTS Lower SES was associated with higher mean BPs in almost all studies in developed countries. This inverse gradient was both stronger and more consistently found in women than in men. The magnitude of the association varied but generally was quite small, with age adjusted mean systolic BP differences of about 2-3 mm Hg between the highest and lowest SES groups. The finding of an SES gradient in BP, despite adjusting for treatment in some studies and the lack of consistent SES differences in hypertension treatment rates, makes differential treatment an unlikely explanation for the SES gradient in BP. A substantial part of the SES gradient was accounted for by the SES gradient in body mass index. Alcohol consumption across SES groups accounted for part of the association in men though few studies examined this issue specifically. In contrast, in undeveloped or developing countries a direct association between SES and BP has often been found which may reflect a higher prevalence of obesity, and higher salt and alcohol intakes among those of higher SES. The SES differences in BP were not detectable in most studies in children. There is little evidence that adverse psycho-social factors associated with low SES cause chronic elevations in BP. CONCLUSION A major challenge in reducing the SES gradient in BP is to understand and prevent the SES differences in obesity, which are particularly large in women. Future research should be directed to this question.
Collapse
|
Review |
27 |
252 |
25
|
Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 1997; 96:741-7. [PMID: 9264477 DOI: 10.1161/01.cir.96.3.741] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The absence (deletion allele [D]) of a 287-base pair marker in the ACE gene is associated with higher ACE levels than its presence (insertion allele [I]). If renin-angiotensin systems regulate left ventricular (LV) growth, then individuals of DD genotype might show a greater hypertrophic response than those of II genotype. We tested this hypothesis by studying exercise-induced LV hypertrophy. METHODS AND RESULTS Echocardiographically determined LV dimensions and mass (n=140), electrocardiographically determined LV mass and frequency of LV hypertrophy (LVH) (n=121), and plasma brain natriuretic peptide (BNP) levels (n=49) were compared at the start and end of a 10-week physical training period in male Caucasian military recruits. Septal and posterior wall thicknesses increased with training, and LV mass increased by 18% (all P<.0001). Response magnitude was strongly associated with ACE genotype: mean LV mass altered by +2.0, +38.5, and +42.3 g in II, ID and DD, respectively (P<.0001). The prevalence of electrocardiographically defined LVH rose significantly only among those of DD genotype (from 6 of 24 before training to 11 of 24 after training, P<.01). Plasma brain natriuretic peptide levels rose by 56.0 and 11.5 pg/mL for DD and II, respectively (P<.001). CONCLUSIONS Exercise-induced LV growth in young males is strongly associated with the ACE I/D polymorphism.
Collapse
|
Clinical Trial |
28 |
243 |