326
|
Xu XQ, Wu XB, Cui Y, Cai YX, Liu RW, Long MN, Chen QX. Enzymatic saccharification of cassava residues and glucose inhibitory kinetics on β-glucosidase from Hypocrea orientalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11512-11518. [PMID: 25393891 DOI: 10.1021/jf5039663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cassava residues are byproducts of the starch industry containing abundant cellulose for bioproduction of green fuel. To obtain maximum sugar yields from cassava residues, the optimal conditions for hydrolyzing the residues were determined using cellulase prepared from a novel Hypocrea orientalis strain. The optimal pH value and optimal temperature for the cellulase hydrolysis were 5.0 and 50 °C, respectively. The concentration of NaOH was determined to be 1% for pretreatment of cassava residues to gain enough soluble sugars suitably. The yield of released sugars was 10 mg/mL in the optimal conditions after 24 h of reaction, which was similar to that of bagasse and wheat grass. Inhibition kinetics of H. orientalis β-glucosidase (BG) by glucose was first studied using the progress-of-substrate-reaction method as described by Tsou (Tsou, C. L. Adv. Enzymol. Related Areas Mol. Biol. 1988, 61, 381-436), and the microscopic inhibition rate constants of glucose were determined. The results showed that glucose could inhibit BG reversibly and competitively. The rate constants of forward (k(+0)) and reverse (k(-0)) reaction were measured to be 4.88 × 10(-4) (mM·s)(-1) and 2.7 × 10(-4) s(-1), respectively. Meanwhile, the inhibition was more significant than that of L-glucose, D-mannose, D-galactose, D-aminoglucose, acetyl-D-glucose, and D-fructose. This work reveals how to increase sugar yields and reduce product inhibition during enzymatic saccharification of cellulose.
Collapse
|
327
|
Xia Q, Wen YJ, Wang H, Li YF, Xu HH. β-Glucosidase involvement in the bioactivation of glycosyl conjugates in plants: synthesis and metabolism of four glycosidic bond conjugates in vitro and in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11037-46. [PMID: 25354662 DOI: 10.1021/jf5034575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mobile glucose-pesticide conjugates in the phloem are often restricted by decreases in biological activity. However, plants can bioactivate endogenous glucosides, which are assumed as able to bioactivate exogenous conjugates. In this study, four glycosidic bonds (O-, S-, N-, and C-glycosidic bonds) of glucose-pesticide conjugates were designed and synthesized, and then metabolism assays were carried out in vitro and in vivo. Results showed that β-glucosidases played a role in the hydrolysis of O-glycosidic bond conjugates in Ricinus communis L. The liberated aglycons possessed insecticidal activities against Plutella xylostella L. and Spodoptera litura F. These results could help establish methods of circumventing the mutual exclusivity of phloem mobility and biological activity by hydrolyzing endogenous β-glucosidases.
Collapse
|
328
|
Boaro AA, Kim YM, Konopka AE, Callister SJ, Ahring BK. Integrated 'omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture. FEMS Microbiol Ecol 2014; 90:802-15. [PMID: 25290699 DOI: 10.1111/1574-6941.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 09/30/2014] [Indexed: 01/14/2023] Open
Abstract
Integrated 'omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated 'omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function in terms of cellulose degradation. However, 16S rDNA gene pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members over the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes 2 days after the perturbation followed by increased protein abundances 6 days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing 2 days after the perturbation and increasing after 6 days. This study demonstrated that community 'omics data provide valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.
Collapse
|
329
|
Pengthaisong S, Ketudat Cairns JR. Effects of active site cleft residues on oligosaccharide binding, hydrolysis, and glycosynthase activities of rice BGlu1 and its mutants. Protein Sci 2014; 23:1738-52. [PMID: 25252199 DOI: 10.1002/pro.2556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 11/06/2022]
Abstract
Rice BGlu1 (Os3BGlu7) is a glycoside hydrolase family 1 β-glucosidase that hydrolyzes cellooligosaccharides with increasing efficiency as the degree of polymerization (DP) increases from 2 to 6, indicating six subsites for glucosyl residue binding. Five subsites have been identified in X-ray crystal structures of cellooligosaccharide complexes with its E176Q acid-base and E386G nucleophile mutants. X-ray crystal structures indicate that cellotetraose binds in a similar mode in BGlu1 E176Q and E386G, but in a different mode in the BGlu1 E386G/Y341A variant, in which glucosyl residue 4 (Glc4) interacts with Q187 instead of the eliminated phenolic group of Y341. Here, we found that the Q187A mutation has little effect on BGlu1 cellooligosaccharide hydrolysis activity or oligosaccharide binding in BGlu1 E176Q, and only slight effects on BGlu1 E386G glycosynthase activity. X-ray crystal structures showed that cellotetraose binds in a different position in BGlu1 E176Q/Y341A, in which it interacts directly with R178 and W337, and the Q187A mutation had little effect on cellotetraose binding. Mutations of R178 and W337 to A had significant and nonadditive effects on oligosaccharide hydrolysis by BGlu1, pNPGlc cleavage and cellooligosaccharide inhibition of BGlu1 E176Q and BGlu1 E386G glycosynthase activity. Hydrolysis activity was partially rescued by Y341 for longer substrates, suggesting stacking of Glc4 on Y341 stabilizes binding of cellooligosaccharides in the optimal position for hydrolysis. This analysis indicates that complex interactions between active site cleft residues modulate substrate binding and hydrolysis.
Collapse
|
330
|
Nakajima M, Yoshida R, Miyanaga A, Taguchi H. Crystallization and preliminary X-ray diffraction analysis of Lin1840, a putative β-glucosidase from Listeria innocua. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1398-401. [PMID: 25286948 DOI: 10.1107/s2053230x14018597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/14/2014] [Indexed: 11/11/2022]
Abstract
Lin1840 is a putative β-glucosidase that is predicted to be involved in 1,2-β-glucan metabolism since the lin1839 gene encoding a 1,2-β-oligoglucan phosphorylase and the lin1840 gene are located in the same gene cluster. Here, Lin1840 was crystallized. The crystals of Lin1840 diffracted to beyond 1.8 Å resolution. The crystal belonged to space group I121, with unit-cell parameters a = 89.75, b = 95.10, c = 215.00 Å, α = 90.00, β = 96.34, γ = 90.00°.
Collapse
|
331
|
Ramírez E, Medina E, Brenes M, Romero C. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9569-75. [PMID: 25209163 DOI: 10.1021/jf5027982] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The main Spanish table olive varieties supplied by different olive cooperatives were investigated for their polyphenol compositions and the endogenous enzymes involved in their transformations during two growing seasons. Olives of the Manzanilla variety had the highest concentration in total polyphenols, followed by the Hojiblanca and Gordal varieties. The Gordal and Manzanilla cultivars showed the highest polyphenol oxidase activities. The Gordal cultivar presented a greater β-glucosidase and esterase activity than the others. An important influence of pH and temperature on the optimal activity of these enzymes was also observed. The polyphenol oxidase activity increased with temperature, and peroxidase activity was optimal at 35 °C. The β-glucosidase and esterase activities were at their maximum at 30 and 55 °C, respectively. The oxidase and β-glucosidase activities were at their maximum at the pH of the raw fruit. These results will contribute to the knowledge of the enzyme transformation of oleuropein in natural table olives.
Collapse
|
332
|
Nowak A, Śliżewska K, Błasiak J, Libudzisz Z. The influence of Lactobacillus casei DN 114 001 on the activity of faecal enzymes and genotoxicity of faecal water in the presence of heterocyclic aromatic amines. Anaerobe 2014; 30:129-36. [PMID: 25280921 DOI: 10.1016/j.anaerobe.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
High activity of bacterial enzymes in human colon and genotoxicity of faecal water (FW) are biomarkers of the harmful action of microbiota. The aim of the present study was to assess the activity of β-glucuronidase and β-glucosidase and the genotoxicity of FW in vitro after incubation with 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) or 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP) and probiotic Lactobacillus casei DN 114 001 (Actimel). Our results indicate, that IQ and PhIP greatly increased the activity of faecal enzymes (it was up to four times higher, as measured by spectrophotometric methods) and the genotoxicity of FW (% DNA in the tail was up to 3.2 times higher, as evaluated by the comet assay on Caco-2 cells) in 15 individuals from three age-dependent groups (breast-fed children, adults aged 30-40 years, elderly aged 75-85 years). Lb. casei DN 114 001 decreased the activity of faecal enzymes and the genotoxicity of FW exposed to PhIP and IQ mostly to control values. The activity of faecal enzymes after incubation with IQ was reduced by 71.8% in the FW of children, 37.5% in adults and 64.2% in elderly (β-glucuronidase); as well as by 59.9% in children and 87.9% in elderly (β-glucosidase). For PhIP the reduction was by 59.0% in the FW of children, 50.0% in adults and 81.2% in elderly (β-glucuronidase) and by 20.2% in children, 20.7% in adults and 84.1% in elderly (β-glucosidase). Lb. casei DN 114 001 also decreased the genotoxicity of FW to the greatest extent in adults after incubation with IQ (by 65.4%) and PhIP (by 69.6%) and it was found to correlate positively with the decrease in faecal enzymes activity. In conclusion, Lb. casei DN 114 001 may exert the protective effects against genotoxic and possibly pro-carcinogenic effects of food processing-derived chemicals present in faecal water.
Collapse
|
333
|
Wu P, Zhao X, Pan S. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β-glucosidase. BIOTECHNOL BIOTEC EQ 2014; 28:878-881. [PMID: 26019572 PMCID: PMC4434049 DOI: 10.1080/13102818.2014.955290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 10/28/2022] Open
Abstract
Improvement of production of an extracellular β-glucosidase with high activity by Brettanomyces anomalus PSY-001 was performed by using recursive protoplast fusion in a genome-shuffling format. The initial population was generated by ultraviolet irradiation, ultrasonic mutagenesis and, then, subjected to recursive protoplast fusion. Mutant strains exhibiting significantly higher β-glucosidase activities in liquid media were isolated. The best mutant strain showed increased cell growth in a flask culture, as well as increased β-glucosidase production. A recombinant strain, F3-25, was obtained after three rounds of genome shuffling and its production of β-glucosidase activity reached 4790 U L-1, which was a nearly eightfold increase compared to the original strain B. anomalus PSY-001. The subculture experiments indicated that F3-25 was genetically stable.
Collapse
|
334
|
Kara HE, Turan Y, Er A, Acar M, Tümay S, Sinan S. Purification and characterization of β-glucosidase from greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:209-219. [PMID: 24789069 DOI: 10.1002/arch.21171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The greater wax moth, Galleria mellonella, is one of the most ruinous pests of honeycomb in the world. Beta-glucosidases are a type of digestive enzymes that hydrolytically catalyzes the beta-glycosidic linkage of glycosides. Characterization of the beta-glucosidase in G. mellonella could be a significant stage for a better comprehending of its role and establishing a safe and effective control procedure primarily against G. mellonella and also some other insect pests. Laboratory reared final instar stage larvae were randomly selected and homogenized for beta-glucosidase activity assay and subsequent analysis. The enzyme was purified to apparent homogeneity by salting out with ammonium sulfate and using sepharose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purification was 58-fold with an overall enzyme yield of 29%. The molecular mass of the protein was estimated as ca. 42 kDa. The purified beta-glucosidase was effectively active on para/ortho-nitrophenyl-beta-d-glucopyranosides (p-/o-NPG) with Km values of 0.37 and 1.9 mM and Vmax values of 625 and 189 U/mg, respectively. It also exhibits different levels of activity against para-nitrophenyl-β-d-fucopyranoside (p-NPF), para/ortho-nitrophenyl β-d-galactopyranosides (p-/o-NPGal) and p-nitrophenyl 1-thio-β-d-glucopyranoside. The enzyme was competitively inhibited by beta-gluconolactone and also was very tolerant to glucose against p-NPG as substrate. The Ki and IC50 values of δ-gluconolactone were determined as 0.021 and 0.08 mM while the enzyme was more tolerant to glucose inhibition with IC50 value of 213.13 mM for p-NPG.
Collapse
|
335
|
Ballhorn DJ, Elias JD. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions. ANNALS OF BOTANY 2014; 114:357-66. [PMID: 25006176 PMCID: PMC4111384 DOI: 10.1093/aob/mcu141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/28/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Increasing soil salinity poses a major plant stress in agro-ecosystems worldwide. Surprisingly little is known about the quantitative effect of elevated salinity on secondary metabolism in many agricultural crops. Such salt-mediated changes in defence-associated compounds may significantly alter the quality of food and forage plants as well as their resistance against pests. In the present study, the effects of soil salinity on cyanogenesis in white clover (Trifolium repens), a forage crop of international importance, are analysed. METHODS Experimental clonal plants were exposed to five levels of soil salinity, and cyanogenic potential (HCNp, total amount of accumulated cyanide in a given plant tissue), β-glucosidase activity, soluble protein concentration and biomass production were quantified. The attractiveness of plant material grown under the different salt treatments was tested using cafeteria-style feeding trials with a generalist (grey garden slug, Deroceras reticulatum) and a specialist (clover leaf weevil, Hypera punctata) herbivore. KEY RESULTS Salt treatment resulted in an upregulation of HCNp, whereas β-glucosidase activity and soluble protein concentration showed no significant variation among treatments. Leaf area consumption of both herbivore species was negatively correlated with HCNp, indicating bottom-up effects of salinity-mediated changes in HCNp on plant consumers. CONCLUSIONS The results suggest that soil salinity leads to an upregulation of cyanogenesis in white clover, which results in enhanced resistance against two different natural herbivores. The potential implications for such salinity-mediated changes in plant defence for livestock grazing remain to be tested.
Collapse
|
336
|
Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:299-311. [PMID: 24861854 DOI: 10.1111/tpj.12561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 05/14/2023]
Abstract
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and β-hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β-glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non-flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β-glucosidase, resembling BGD2, and required no more than a single amino acid substitution.
Collapse
|
337
|
Rosales-Calderon O, Trajano HL, Duff SJB. Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions. PeerJ 2014; 2:e402. [PMID: 24949230 PMCID: PMC4060035 DOI: 10.7717/peerj.402] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5 L and Novozyme 188 decreased by as much as 45% at 50 °C after 4 days. The individual cocktails as well as a mixture of both were stable at 20 °C. At 50 °C, the protein concentration of Celluclast 1.5 was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50 °C which leads to protein aggregation and precipitation. Lyophilized β-glucosidase (P-β-glucosidase) at 50 °C exhibited an aggregation rate which was successfully modeled using first order kinetics (R2 = 0.97). By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled (R2 = 0.96). To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail (R2 = 0.98). By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases concentrations can be used to build mass balances of enzyme recycling processes and to techno-economically evaluate the viability of enzyme recycling.
Collapse
|
338
|
Zhou J, Zhang J, Gao W. Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles. Int J Nanomedicine 2014; 9:2905-17. [PMID: 24959078 PMCID: PMC4061166 DOI: 10.2147/ijn.s59556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The stability of enzyme-conjugated magnetic iron oxide nanoparticles in plasma is of great importance for in vivo delivery of the conjugated enzyme. In this study, β-glucosidase was conjugated on aminated magnetic iron oxide nanoparticles using the glutaraldehyde method (β-Glu-MNP), and further PEGylated via N-hydroxysuccinimide chemistry. The PEG-modified, β-glucosidase-immobilized magnetic iron oxide nanoparticles (PEG-β-Glu-MNPs) were characterized by hydrodynamic diameter distribution, zeta potential, Fourier transform infrared spectroscopy, transmission electron microscopy, and a superconducting quantum interference device. The results showed that the multidomain structure and magnetization properties of these nanoparticles were conserved well throughout the synthesis steps, with an expected diameter increase and zeta potential shifts. The Michaelis constant was calculated to evaluate the activity of conjugated β-glucosidase on the magnetic iron oxide nanoparticles, indicating 73.0% and 65.4% of enzyme activity remaining for β-Glu-MNP and PEG-β-Glu-MNP, respectively. Both magnetophoretic mobility analysis and pharmacokinetics showed improved in vitro/in vivo stability of PEG-β-Glu-MNP compared with β-Glu-MNP. In vivo magnetic targeting of PEG-β-Glu-MNP was confirmed by magnetic resonance imaging and electron spin resonance analysis in a mouse model of subcutaneous 9L-glioma. Satisfactory accumulation of PEG-β-Glu-MNP in tumor tissue was successfully achieved, with an iron content of 627±45 nmol Fe/g tissue and β-glucosidase activity of 32.2±8.0 mU/g tissue.
Collapse
|
339
|
Kataoka M, Ishikawa K. Complete saccharification of β-glucan using hyperthermophilic endocellulase and β-glucosidase from Pyrococcus furiosus. Biosci Biotechnol Biochem 2014; 78:1537-41. [PMID: 25209501 DOI: 10.1080/09168451.2014.923300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hyperthermophilic cellulase is an industrially important enzyme for biomass saccharification at high temperature. Two hyperthermophilic cellulases from the hyperthermophile Pyrococcus furiosus, endocellulase (EGPf) and β-glucosidase (BGLPf), exhibit optimal activity at 90-105 °C and a combination of two enzymes can hydrolyze a wide range of β-linked substrates. EGPf cleaves the β(1→4) bond of various substrates containing either only the β(1→4) linkage or β(1→3),(1→4) mixed-linkages. In contrast, BGLPf preferentially hydrolyzes the β(1→3) linkage over the β(1→4) linkage of disaccharides. β-Glucans are polysaccharides of D-glucose monomers formed by β(1→3),(1→4) mixed-linkage bonds. They occur most commonly as cellulose in plants, in the bran of cereal grains, the cell wall of baker's yeast, and in certain fungi, mushrooms, and bacteria. We reveal that β-glucan can be completely degraded to glucose at high temperature with a combination of EGPf and BGLPf.
Collapse
|
340
|
Thongpoo P, Srisomsap C, Chokchaichamnankit D, Kitpreechavanich V, Svasti J, Kongsaeree PT. Purification and characterization of three β-glycosidases exhibiting high glucose tolerance from Aspergillus niger ASKU28. Biosci Biotechnol Biochem 2014; 78:1167-76. [PMID: 25229852 DOI: 10.1080/09168451.2014.915727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Production and utilization of cellulosic ethanol has been limited, partly due to the difficulty in degradation of cellulosic feedstock. β-Glucosidases convert cellobiose to glucose in the final step of cellulose degradation, but they are inhibited by high concentrations of glucose. Thus, in this study, we have screened, isolated, and characterized three β-glycosidases exhibiting highly glucose-tolerant property from Aspergillus niger ASKU28, namely β-xylosidase (P1.1), β-glucosidase (P1.2), and glucan 1,3-β-glucosidase (P2). Results from kinetic analysis, inhibition study, and hydrolysis of oligosaccharide substrates supported the identification of these enzymes by both LC/MS/MS analysis and nucleotide sequences. Moreover, the highly efficient P1.2 performed better than the commercial β-glucosidase preparation in cellulose saccharification, suggesting its potential applications in the cellulosic ethanol industry. These results shed light on the nature of highly glucose-tolerant β-glucosidase activities in A. niger, whose kinetic properties and identities have not been completely determined in any prior investigations.
Collapse
|
341
|
Reis ALS, de Fátima Rodrigues de Souza R, Baptista Torres RRN, Leite FCB, Paiva PMG, Vidal EE, de Morais MA. Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain. SPRINGERPLUS 2014; 3:38. [PMID: 24498580 PMCID: PMC3909126 DOI: 10.1186/2193-1801-3-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 12/05/2022]
Abstract
The discovery of a novel yeast with a natural capacity to produce ethanol from lignocellulosic substrates (second-generation ethanol) is of great significance for bioethanol technology. While there are some yeast strains capable of assimilating cellobiose in aerobic laboratory conditions, the predominant sugar in the treatment of lignocellulosic material, little is known about this ability in real industrial conditions. Fermentations designed to simulate industrial conditions were conducted in synthetic medium with glucose, sucrose, cellobiose and hydrolyzed pre-treated cane bagasse as a different carbon source, with the aim of further characterizing the fermentation capacity of a promising Dekkera bruxellensis yeast strain, isolated from the bioethanol process in Brazil. As a result, it was found (for the first time in oxygen-limiting conditions) that the strain Dekkera bruxellensis GDB 248 could produce ethanol from cellobiose. Moreover, it was corroborated that the cellobiase activity characterizes the enzyme candidate in semi-purified extracts (β-glucosidase). In addition, it was demonstrated that GDB 248 strain had the capacity to produce a higher acetic acid concentration than ethanol and glycerol, which confirms the absence of the Custer effect with this strain in oxygen-limiting conditions. Moreover, it is also being suggested that D. bruxellensis could benefit Saccharomyces cerevisiae and outcompete it in the industrial environment. In this way, it was confirmed that D. bruxellensis GDB 248 has the potential to produce ethanol from cellobiose, and is a promising strain for the fermentation of lignocellulosic substrates.
Collapse
|
342
|
Inokuma K, Hasunuma T, Kondo A. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:8. [PMID: 24423072 PMCID: PMC3900695 DOI: 10.1186/1754-6834-7-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/24/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND The recombinant yeast strains displaying the heterologous cellulolytic enzymes on the cell surface using the glycosylphosphatidylinositol (GPI) anchoring system are considered promising biocatalysts for direct conversion of lignocellulosic materials to ethanol. However, the cellulolytic activities of the conventional cellulase-displaying yeast strains are insufficient for the hydrolysis of cellulose. In this study, we constructed novel gene cassettes for the efficient cellulose utilization by cellulase-displaying yeast strains. RESULTS The novel gene cassettes for the cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reeseii endoglucanase II (EGII) were constructed using the promoter and the GPI anchoring region derived from Saccharomyces cerevisiae SED1. The gene cassettes were integrated into the S. cerevisiae genome, then the β-glucosidase activity of these recombinant strains was evaluated. We revealed that simultaneous utilization of the SED1 promoter and Sed1 anchoring domain in a gene cassette enabled highly-efficient enzyme integration into the cell wall. The β-glucosidase activity of recombinant yeast cells transduced with the novel gene cassette was 8.4-fold higher than that of a conventional strain. The novel EGII-displaying strain also achieved 106-fold higher hydrolysis activity against the water-insoluble cellulose than a conventional strain. Furthermore, direct ethanol production from hydrothermally processed rice straw was improved by the display of T. reeseii EGII using the novel gene cassette. CONCLUSIONS We have developed novel gene cassettes for the efficient cell-surface display of exo- and endo-type cellulolytic enzymes. The results suggest that this gene cassette has the wide applicability for cell-surface display and that cellulase-displaying yeasts have significant potential for cost-effective bioethanol production from lignocellulosic biomass.
Collapse
|
343
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
|
344
|
Chang KH, Jo MN, Kim KT, Paik HD. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3. J Ginseng Res 2013; 38:47-51. [PMID: 24558310 PMCID: PMC3915331 DOI: 10.1016/j.jgr.2013.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/23/2022] Open
Abstract
The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (β-glucosidase) from A. niger KCCM 11239 hydrolyzed the β-(1→6)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing β-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.
Collapse
|
345
|
Cheng X, Hiras J, Deng K, Bowen B, Simmons BA, Adams PD, Singer SW, Northen TR. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production. Front Microbiol 2013; 4:365. [PMID: 24367356 PMCID: PMC3854461 DOI: 10.3389/fmicb.2013.00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/17/2013] [Indexed: 11/13/2022] Open
Abstract
Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.
Collapse
|
346
|
Gottschalk LMF, de Sousa Paredes R, Teixeira RSS, da Silva AS, da Silva Bon EP. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Braz J Microbiol 2013; 44:569-76. [PMID: 24294256 PMCID: PMC3833162 DOI: 10.1590/s1517-83822013000200037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 07/23/2012] [Indexed: 11/22/2022] Open
Abstract
The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.
Collapse
|
347
|
Zhou J, Zhang J, David AE, Yang VC. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles. NANOTECHNOLOGY 2013; 24:375102. [PMID: 23974977 PMCID: PMC4039207 DOI: 10.1088/0957-4484/24/37/375102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g(-1) tissue with 2.14 of tumor/non-tumor β-Glu activity.
Collapse
|
348
|
Lu J, Du L, Wei Y, Hu Y, Huang R. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochim Biophys Sin (Shanghai) 2013; 45:664-73. [PMID: 23752618 DOI: 10.1093/abbs/gmt061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A β-glucosidase gene unbgl1A was isolated by the function-based screening of a metagenomic library and the enzyme protein was expressed in Escherichia coli, purified, and biochemically characterized. The enzyme Unbgl1A had a Km value of 2.09 ± 0.31 mM, and a Vmax value of 183.90 ± 9.61 μmol min(-1) mg(-1) under the optimal reaction conditions, which were pH 6.0 at 50°C. Unbgl1A can be activated by a variety of monosaccharides, disaccharides, and NaCl, and exhibits a high level of stability at high concentration of NaCl. Two prominent features for this enzyme are: (i) high glucose tolerance. It can be tolerant to glucose as high as 2000 mM, with Ki = 1500 mM; (ii) high NaCl tolerance. Its activity is not affected by 600 mM NaCl. The enzyme showed transglucosylation activities resulting in the formation of cellotriose from cellobiose. These properties of Unbgl1A should have important practical implication in its potential applications for better industrial production of glucose or bioethanol started from lignocellulosic biomass.
Collapse
|
349
|
Teugjas H, Väljamäe P. Selecting β-glucosidases to support cellulases in cellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:105. [PMID: 23883540 PMCID: PMC3726394 DOI: 10.1186/1754-6834-6-105] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will eventually lead to the accumulation of cellobiose and the inhibition of CBHs. Therefore, the kinetic properties of candidate BGs must meet the requirements determined by both the kinetic properties of CBHs and the set-up of the hydrolysis process. RESULTS The kinetics of cellobiose hydrolysis and glucose inhibition of thermostable BGs from Acremonium thermophilum (AtBG3) and Thermoascus aurantiacus (TaBG3) was studied and compared to Aspergillus sp. BG purified from Novozyme®188 (N188BG). The most efficient cellobiose hydrolysis was achieved with TaBG3, followed by AtBG3 and N188BG, whereas the enzyme most sensitive to glucose inhibition was AtBG3, followed by TaBG3 and N188BG. The use of higher temperatures had an advantage in both increasing the catalytic efficiency and relieving the product inhibition of the enzymes. Our data, together with data from a literature survey, revealed a trade-off between the strength of glucose inhibition and the affinity for cellobiose; therefore, glucose-tolerant BGs tend to have low specificity constants for cellobiose hydrolysis. However, although a high specificity constant is always an advantage, in separate hydrolysis and fermentation, the priority may be given to a higher tolerance to glucose inhibition. CONCLUSIONS The specificity constant for cellobiose hydrolysis and the inhibition constant for glucose are the most important kinetic parameters in selecting BGs to support cellulases in cellulose hydrolysis.
Collapse
|
350
|
Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 2013; 36:418-24. [PMID: 23717145 PMCID: PMC3659600 DOI: 10.5142/jgr.2012.36.4.418] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 01/30/2023] Open
Abstract
This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant β-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for β-glucosidase had apparent Km values of 0.91±0.02 and 2.84±0.05 mM and Vmax values of 5.75±0.12 and 0.71±0.01 μmol·min-1·mg of protein-1 against p-nitrophenyl-β-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and 37℃, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.
Collapse
|