326
|
Nässel DR, Persson MG, Muren JE. Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: distribution and actions in the cockroach and locust nervous systems. J Comp Neurol 2000; 422:267-86. [PMID: 10842231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
During the purification of tachykinin-related peptides from the brain of the cockroach Leucophaea maderae, a few other peptides were collected in adjacent high-performance liquid chromatography fractions. Edman degradation, mass spectrometry, and chemical synthesis revealed that one of these peptides had the sequence DNSQWGGFA. This nonamidated nonapeptide was designated baratin and appears not to be related to any known insect peptide. Baratin was not found to be bioactive in the L. maderae hindgut or oviduct muscle contraction assay. (Both synthetic nonamidated and amidated baratin were tested.) To screen for possible sites of action, we raised a rabbit antiserum to baratin. We found baratin-immunoreactive (BAR-IR) interneurons throughout the cockroach central nervous system. Some prominent brain neuropils were supplied by BAR-IR neuron processes: the central body, the calyx, and lobes of the mushroom bodies, parts of the optic lobe, and the tritocerebral neuropil. Additionally we found BAR-IR neurosecretory cells in the median neurosecretory cell group with processes supplying the storage lobe of the corpora cardiaca. In each of the thoracic and abdominal ganglia processes of BAR-IR projection neurons and local neurons were seen. The baratin antiserum also labeled neurons in the brain of the locust Locusta migratoria, some of which are similar to those of the cockroach. A prominent system of interganglionic BAR-IR processes was found in the locust subesophageal, thoracic, and abdominal ganglia. This was formed by four large projection neurons with cell bodies in the abdominal ganglia A1-2. The processes of these BAR-IR neurons are distributed dorsally and laterally in each of the ventral nerve cord ganglia. When baratin (10(-6)-10(-4) M) was applied to desheathed abdominal ganglia of locusts and cockroaches, we could monitor bursts of action potentials in neurons with axons in the anterior abdominal nerve (nerve 1), but not in the posterior nerve (nerve 2). In ganglia displaying spontaneous rhythmic firing in units of nerve 1, baratin strengthened the rhythmic pattern. Thus baratin appears to have a role in modulation of motor patterns in abdominal ganglia. The immunocytochemical findings suggest further modulatory actions of baratin in different circuits of the brain and ventral nerve cord.
Collapse
|
327
|
Gibson NJ, Nighorn A. Expression of nitric oxide synthase and soluble guanylyl cyclase in the developing olfactory system of Manduca sexta. J Comp Neurol 2000; 422:191-205. [PMID: 10842227 DOI: 10.1002/(sici)1096-9861(20000626)422:2<191::aid-cne4>3.0.co;2-c] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gaseous messenger nitric oxide (NO), with its ability to mediate both intercellular and intracellular communication, can play important roles in mediating cellular communication in both the development and the function of the nervous system. The authors investigated the possible role of NO signaling in the developing olfactory system (antennal lobe) of the moth Manduca sexta. NO synthase (NOS), the enzyme that generates NO, was localized by using immunocytochemistry, in situ hybridization, and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Although NADPH-d staining appears to be a poor indicator of the presence of NOS in this system, immunocytochemistry and in situ hybridization reveal that NOS is expressed in the axons of olfactory receptor neurons throughout development and in the perineurial sheath that covers the brain early in development. NOS is present in axon terminals as they form protoglomeruli, raising the possibility that NO mediates cell-cell interactions during antennal lobe development. NO-sensitive soluble guanylyl cyclase (sGC), one of the best characterized targets of NO, was localized in the developing olfactory system by using in situ hybridization and immunocytochemistry for the Manduca sexta sGCalpha1 subunit. The ability of the developing olfactory system to respond to exogenous NO also was examined by using cyclic guanosine monophosphate immunocytochemistry. sGC is expressed in mechanosensory neurons in the developing antenna and in many antennal lobe neurons in both the medial and lateral cell body clusters. Thus, NOS and sGC are expressed in a pattern that suggests that this signaling pathway may mediate intercellular communication during development of the olfactory system in Manduca sexta.
Collapse
|
328
|
Croll RP. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 2000; 49:570-8. [PMID: 10862113 DOI: 10.1002/1097-0029(20000615)49:6<570::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism.
Collapse
|
329
|
Zhang X, Wilson RJ, Li Y, Kleinhaus AL. Chemical and thermal stimuli have short-lived effects on the retzius cell in the medicinal leech. JOURNAL OF NEUROBIOLOGY 2000; 43:304-11. [PMID: 10842242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
During the appetitive phase of feeding, hungry leeches detect a prey by the integration of signals perceived by different sensory systems. Earlier reports suggested that chemical or thermal sensory stimulation of the lip was associated with increased afferent activity in cephalic nerves connecting the lip to the central nervous system. These authors further suggested that this activity was relayed to Retzius cells in segmental ganglia, which then released serotonin to initiate and control all aspects of feeding behavior. In this study, we show that chemosensory or thermal activation of the lip lasting for at least 5 min produces a distinct signal in the cephalic nerves consisting of action potentials of low amplitude. These small amplitude signals are clearly distinguishable from the large action potentials evoked by mechanosensory stimuli applied to the same area of the lip. Both types of sensory stimuli also evoke an increase in the firing frequency of the Retzius cells in segmental ganglia. However, the response recorded in the nerves and the Retzius cells during a maintained stimulus is not constant but decreases with an exponential time course. These results agree with our earlier observations on a semi-intact feeding preparation in which we showed that the firing frequency of the Retzius cell decreased as soon as the leech began to ingest its meal. Therefore, our data provide further evidence suggesting that it is unlikely that heat or chemical cues maintain the Retzius cell in an active state throughout the consummatory phase of feeding.
Collapse
|
330
|
Ghirardi M, Casadio A, Naretto G, Levi R, Montarolo PG. Influence of the target on distribution and functioning of the varicosities of Helix pomatia metacerebral cell C1 in dissociated cell culture. Neuroscience 2000; 96:843-53. [PMID: 10727802 DOI: 10.1016/s0306-4522(00)00015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serotonergic metacerebral giant cell (C1) of Helix pomatia was isolated with its bifurcate axon and plated in culture under five conditions: (i) with no target; (ii) with the appropriate target B2 near the stump of the bigger branch (CBC); (iii) with B2 near the stump of the smaller branch (CC); (iv) with a wrong target (C3) near the stump of the CBC branch and (v) with B2 and C3 positioned near the CBC and CC stump, respectively. The counting of anti-serotonin antibody-labelled varicosities of the C1 neuron showed that the presence of the appropriate target in either axonal domain both down-regulated the number of varicosities of the contralateral neuritic field, and increased their average size, whereas the wrong target induced an overall reduction of the number of C1 neuron varicosities, and inhibited the evoked transmitter release. The action potential-evoked calcium concentration increase in the neuritic terminals of the C1 neuron cultured alone, or in presence of the appropriate target, reached a value significantly higher than that reached in presence of the wrong target. These results provide evidence that the postsynaptic neuron regulates both morphological and functional development of presynaptic terminals.
Collapse
|
331
|
Sawada M, Ichinose M, Anraku M. Inhibition of the glutamate-induced K(+) current in identified Onchidium neurons by nitric oxide donors. J Neurosci Res 2000; 60:642-8. [PMID: 10820435 DOI: 10.1002/(sici)1097-4547(20000601)60:5<642::aid-jnr9>3.0.co;2-#] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) acts as a neurotransmitter and neuromodulator in the nervous system of many vertebrates and invertebrates. The effects of extracellularly applied sodium nitroprusside (SNP) and diethylamine NO (C(2)H(5))(2)N[N(O)NO]-Na(+) (DEA/NO), NO donors, on a glutamate (Glu)-induced K(+) current in identified Onchidium neurons were investigated using voltage clamp and pressure ejection techniques. Bath-applied SNP (10 microM) and DEA/NO (5-10 microM) reduced the Glu-induced K(+) current without affecting the resting membrane conductance and holding current. The Glu-induced K(+) current also was inhibited by the focal application of SNP to the neuron somata. The suppressing effects of NO donors were concentration-dependent and completely reversible. Pretreatment with hemoglobin (50 microM), a nitric oxide scavenger, and 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a specific inhibitor of NO-stimulated guanylate cyclase, decreased the SNP-induced inhibition of the Glu-induced current. Bath-applied 50 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, or intracellular injection of 1 mM guanosine 3',5'-cyclic monophosphate (cGMP) inhibited the Glu-induced current, mimicking the effect of NO donors. These results demonstrate that SNP and DEA/NO inhibit the Glu-induced K(+) current and that the mechanism of NO inhibition of the Glu-induced current involves cGMP-dependent protein kinase.
Collapse
|
332
|
Deitmer JW, Schneider HP. Enhancement of glutamate uptake transport by CO(2)/bicarbonate in the leech giant glial cell. Glia 2000; 30:392-400. [PMID: 10797619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glutamate uptake into glial cells via the excitatory amino acid transporter (EAAT) is accompanied by an influx of sodium and acid equivalents into the cells. The sodium-bicarbonate cotransport (NBC) in glial cells moves sodium and base equivalents across the glial membrane in both directions. We have studied possible interactions between these two electrogenic transporters in the giant glial cell of isolated ganglia of the leech Hirudo medicinalis. Changes in membrane potential, membrane current, intracellular sodium, and intracellular pH evoked by aspartate (1 mM), an EAAT agonist, were measured both in the absence and in the presence of CO(2)/bicarbonate. When 5% CO(2) and 24 mM bicarbonate was added to the saline (at constant pH 7.4), the aspartate-induced membrane current was increased, while the change in intracellular sodium was decreased. The acid influx evoked by aspartate was enhanced by CO(2)/bicarbonate but, because of the increased intracellular CO(2)/bicarbonate-dependent buffering power, the change in intracellular pH was decreased. 4,4'-Diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS, 0.5 mM), which inhibits the NBC, reversed the effects of CO(2)/bicarbonate on the aspartate-induced current and pH change. Our results suggest that the NBC helps counteract dissipation of the sodium and the acid-base gradients induced by the EAAT, enhancing the rate and capacity of glutamate uptake by glial cells.
Collapse
|
333
|
Rialas CM, Weeks B, Cadet P, Goumon Y, Stefano GB. Nociceptin, endomorphin-1 and -2 do not interact with invertebrate immune and neural mu 3 opiate receptor. Acta Pharmacol Sin 2000; 21:516-20. [PMID: 11360685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
AIM To determine if endomorphin-1, -2 and nociceptin (orphanin FQ) bind to the mu 3 opiate receptor subtype or release nitric oxide as mu 3 selective ligands do. METHODS These opioid peptides were examined for their ability to displace [3H]dihydromorphine (DHM) binding from the invertebrate (immunocytes and pedal ganglia) mu 3 opiate receptor in membrane homogenates. The ligands were also tested for their ability to release nitric oxide from the same intact tissues utilizing an amperometric probe that measures nitric oxide in real-time. RESULTS Endomorphin-1, -2 and nociceptin do not displace [3H]DHM binding from immunocyte or pedal ganglia membrane homogenates nor do they release nitric oxide from these tissues. CONCLUSION Since these newly discovered opioid peptides do not interact with the mu 3 opiate receptor subtype, endogenous morphine's significance is enhanced because it appears to be the only naturally occurring opiate ligand for the receptor. Furthermore, since this study involves invertebrate tissues, this signal system had to evolve early during evolution.
Collapse
|
334
|
Richer S, Stoffolano JG, Yin CM, Nichols R. Innervation of dromyosuppressin (DMS) immunoreactive processes and effect of DMS and benzethonium chloride on the Phormia regina (Meigen) crop. J Comp Neurol 2000; 421:136-42. [PMID: 10813776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Antibody to the dipteran myosuppressin peptide, dromyosuppressin, TDVDHVFLRFamide, stained cells and fibers in the brain, optic lobes, subesophageal ganglion, and thoracico-abdominal ganglion of the blow fly, Phormia regina (Meigen). Dromyosuppressin-like immunoreactive fibers were detected in the cardiac recurrent nerve, hypocerebral ganglion/corpora cardiaca complex, crop duct, and crop. In order to explore the mechanisms involved in regulating crop movement, we established an in vitro bioassay. The basal rate of crop movement was 50.8 +/- 1.5 contractions per minute. Application of 1 microl of saline to the crop did not significantly affect the rate of movement compared to the basal rate (46.1 +/- 1.1 contractions per minute, P < 0.05). Application of 1 microl 10(-6) M dromyosuppressin or 1 microl 10(-3) M benzethonium chloride to the crop slowed the rate to 2.2 +/- 0.2 and 6.1 +/- 0.7 contractions per minute, respectively. Although other data have previously been interpreted to suggest that dipteran crop contractions do not include a neural component, the neuropeptide dromyosuppressin affected P. regina crop motility. Innervation of the crop and crop duct by dromyosuppressin immunoreactive processes that originated in the central nervous system and the effect of dromyosuppressin on crop muscle contractions suggest that dromyosuppressin is released locally to modulate crop contractions and that crop motility is under neural regulation. Myosuppressins isolated from numerous insects have a high degree of structure identity and reduce spontaneous muscle contractions of the hindgut, oviduct, and heart. Benzethonium chloride, previously identified as a myosuppressin agonist on the cockroach hindgut and locust oviduct, mimicked the effect of dromyosuppressin on the crop. This suggests that structural requirements for myosuppressin receptor binding in the cockroach hindgut, locust oviduct, and fruit fly crop are similar.
Collapse
|
335
|
Kobayashi S, Ogawa H, Fujito Y, Ito E. Nitric oxide suppresses fictive feeding response in Lymnaea stagnalis. Neurosci Lett 2000; 285:209-12. [PMID: 10806323 DOI: 10.1016/s0304-3940(00)01079-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Fictive feeding activity was monitored in the buccal ganglia of semi-intact preparations of the pond snail, Lymnaea stagnalis, to examine the effects of nitric oxide (NO) released from motoneurons innervating the esophagus on the feeding response. The present results suggest that first; even the low concentration of constitutive NO precisely regulates the feeding rhythm by suppressing high frequency feeding responses; second, that the high concentration of NO released after activation of the feeding central pattern generator following appetitive stimulation of the lips suppresses the feeding rate, resulting in recurrent inhibition. This is the first direct evidence that NO can function to suppress rhythmic activity in the brain.
Collapse
|
336
|
Skiebe P, Ganeshina O. Synaptic neuropil in nerves of the crustacean stomatogastric nervous system: an immunocytochemical and electron microscopical study. J Comp Neurol 2000; 420:373-97. [PMID: 10754509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Patches of peptide-immunoreactive varicosities have been found in nerves of the stomatogastric nervous system (STNS) of decapod crustaceans. In the present study, these patches were examined in detail in the stomatogastric nerve (stn) and in the superior oesophageal nerve (son) of the crayfish Cherax destructor by using whole-mount immunocytochemical techniques combined with confocal microscopy and, in addition, electron microscopy. Double-labeling experiments with antibodies generated against the peptides allatostatin, FMRFamide and proctolin, combined with an antibody generated against the small vesicle protein synapsin, suggest that each patch contains small synaptic vesicles in addition to all three peptides. The neuropil regions of the ganglia of the STNS were also strongly stained by the synapsin antibody. Synapsin-like immunoreactivity was also studied in the crab Cancer pagurus and the lobster Homarus americanus. A similar pattern of staining was found for all three species, but the distribution within the stn varied. In H. americanus, a lightly stained weblike structure was found on the surface of nerves including the inferior oesophageal nerve, the son, and the anterior stn. By using electron microscopy, synapses were found in the core of the stn-son junction of C. destructor, in the same region where the synapsin-like and the peptide staining was localized. In addition, putative neurohemal release sites were found in the peripheral sheath of the stn. The presynaptic profiles found in the core of the stn seem to correspond to the types of presynaptic profiles found in the neuropil of the stomatogastric ganglion. These findings demonstrate that synaptic neuropil is present in the nerves of the STNS of a decapod crustacean.
Collapse
|
337
|
Stevenson PA, Hofmann HA, Schoch K, Schildberger K. The fight and flight responses of crickets depleted of biogenic amines. JOURNAL OF NEUROBIOLOGY 2000; 43:107-20. [PMID: 10770840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Aggressive and escape behaviors were analysed in crickets (Orthoptera) treated with either reserpine, a nonspecific depleter of biogenic amines, or the synthesis inhibitors alpha-methyltryptophan (AMTP) and alpha-methyl-p-tyrosine (AMT) to specifically deplete serotonin, respectively dopamine and octopamine. Standard immunocytochemical techniques were used to verify depletion from central nervous tissue, and determine the effective dosages. Reserpinized crickets became exceedingly lethargic and had severely depressed escape responses. However, they were still able to express all the major elements of the escalating sequences of stereotype motor performances that typifies normal aggressive behavior in the cricket. AMT and AMTP treatment had opposing influences on escape behavior, being enhanced by serotonin depletion, but depressed by dopamine/octopamine depletion. AMTP-induced serotonin depletion had no influence on aggressive or submissive behaviors. AMT-treated crickets could normally only be brought to fight by coaxing. Though capable of expressing aggressive behavior per se, agonistic encounters between AMT-treated crickets were shorter, and rarely involved actual physical interactions. Hence, although amines seem to have similar actions on escape behavior in insects and crustaceans, the aminergic control of aggression seems to be fundamentally different in these arthropods groups. We conclude that amines are not in principle required for the initiation and operation of the motor circuits underlying aggression in the cricket. However, octopamine and/or dopamine seem necessary for establishing a level of excitability sufficient for aggressive behavior to become overt in response to appropriate natural releasing stimuli.
Collapse
|
338
|
Huang Y, Williamson MS, Devonshire AL, Windass JD, Lansdell SJ, Millar NS. Cloning, heterologous expression and co-assembly of Mpbeta1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett 2000; 284:116-20. [PMID: 10771176 DOI: 10.1016/s0304-3940(00)00969-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a major role in excitatory synaptic transmission in insects and are also the target site for chloronicotinyl insecticides such as imidacloprid. Here we report the cloning and characterization of a novel nAChR beta subunit, Mpbeta1, from the aphid Myzus persicae, an economically important pest species. Sequence analysis has identified an open reading frame of 509 amino acids with features typical of nAChR subunits. The Mpbeta1 gene is expressed as a single major transcript of 4.6 kb, considerably larger than the predicted length of the Mpbeta1 open reading frame (1527 bp). By heterologous expression in Drosophila S2 cells, the Mpbeta1 subunit has been shown to co-assemble with the previously cloned nAChR subunits Mpalpha1 and Mpalpha2. In contrast, no co-assembly of Mpbeta1 could be detected with either Mpalpha3 or Mpalpha4. With the aim of gaining a clearer insight into the influence of subunit composition upon assembly, the ability of M. persicae nAChR subunits to co-assemble with vertebrate nAChR subunits has also been examined.
Collapse
|
339
|
Zayas RM, Qazi S, Morton DB, Trimmer BA. Neurons involved in nitric oxide-mediated cGMP signaling in the tobacco hornworm, Manduca sexta. J Comp Neurol 2000; 419:422-38. [PMID: 10742713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recently, both nitric oxide synthase (NOS), and nitric oxide (NO)-sensitive guanylyl cyclase were cloned in Manduca sexta and implicated in several cellular, developmental, and behavioral processes (Nighorn et al. [1998] J Neurosci 18:7244-7255). However, NO is a highly diffusive gas, and little is known about the range and specificity of its actions on neurons. To begin examining the role of NO as a neurotransmitter in the central nervous system (CNS) of larval Manduca, we have mapped potential NO-producing neurons using fixation-resistant NADPH-diaphorase staining and antisera that recognize a NOS-specific epitope. In addition, to detect NO-responsive neurons, we treated the CNS with NO donors and used antibodies that recognize elevated levels of cyclic 3;,5;-guanosine monophosphate (cGMP). Many potential NO-producing neurons were mapped, including the ventral unpaired median cells and three pairs of lateral cells in each abdominal ganglion. Additional neurons in the dorsal midline of ganglia A5-7 (PM2) appear to express NOS in a segment-specific manner. At the larval-to-pupal transition, this staining pattern changes; the PM2 neurons stain weakly or are undetectable and there is novel expression of NOS in cell 27. In response to NO donors, a small number of neurons produce detectable cGMP accumulation in a segment-specific pattern. These include a pair of posteriodorsally positioned interneurons (IN505) in all the abdominal ganglia, PM2 neurons in A5, and PM1 and PM2 neurons in A7. Hence, PM2 neurons in A5 and A7 are potentially capable of producing and responding to NO. These identified NO-producing and responding neurons provide a tractable model system for studying the dynamics and specificity of NO signaling in the CNS.
Collapse
|
340
|
Hegde AN, Broome BM, Qiang M, Schwartz JH. Structure and expression of the Aplysia polyubiquitin gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:424-8. [PMID: 10762722 DOI: 10.1016/s0169-328x(00)00021-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ubiquitin-proteasome pathway, which is up-regulated in response to sensitizing treatments with serotonin (5-HT), plays a critical role in inducing long-term facilitation (LTF) of sensory-to-motor synapses in Aplysia. We characterized the structure of the polyubiquitin gene of Aplysia and studied its expression. At least six ubiquitin coding units exist in tandem, one of which encodes a protein with an amino acid sequence identical to human ubiquitin. Although the synthesis of polyubiquitin is induced by strong stimuli in many organisms, we found that the expression of ubiquitin in Aplysia is not affected by protocols that produce LTF.
Collapse
|
341
|
Armengaud C, Causse N, Aït-Oubah J, Ginolhac A, Gauthier M. Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Res 2000; 859:390-3. [PMID: 10719093 DOI: 10.1016/s0006-8993(00)02016-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The variations of neural metabolism induced by surgical and chemical treatments were studied in the honeybee brain by the means of cytochrome oxidase (CO) histochemistry. CO staining is considerably reduced in the alpha-lobe by antennal input deprivation. Chemical stimulation (50 mM K(+)) was linked to an increase of CO staining in antennal lobes (AL) and to a decrease in the basal ring of calyces (Cal). Application of the nicotinic ligand imidacloprid (10(-4) M) resulted in increased CO labelling within 30 min in all the structures analysed. Treatment with a lower concentration (10(-8) M) resulted in reduced staining in Cal and central body (CB). We conclude that CO histochemistry can be used to identify the target structures of cholinergic ligands in the honeybee brain.
Collapse
|
342
|
Hatakeyama D, Ito E. Distribution and developmental changes in GABA-like immunoreactive neurons in the central nervous system of pond snail, Lymnaea stagnalis. J Comp Neurol 2000; 418:310-22. [PMID: 10701829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We examined three-dimensionally the arrangement of gamma-aminobutyric acid (GABA)-like immunoreactive neurons in the central nervous system (CNS) of the pond snail, Lymnaea stagnalis, by a combination of immunohistochemistry and confocal laser scanning microscopy on whole-mount preparations. GABA-like immunoreactivity was detected in all ganglia of the adult CNS. The following distribution of immunoreactive cell bodies was noted in the adult snail. Buccal ganglia: one cell body and five pairs of cell bodies, cerebral ganglia: one pair of cell bodies, pedal ganglia: two single cell bodies, two pairs of cell bodies, and three pairs of cell clusters, and pleural ganglia: one pair of cell bodies. In the asymmetrical parietal ganglia, three cell bodies were located in the left parietal ganglion; three cell bodies and three cell clusters were located in the right parietal ganglion. In the single visceral ganglion, a few scattered individual cell bodies and a cell cluster were GABA-like immunoreactive. Our results showed that the occurrence of GABA is widely spread in the CNS of adult L. stagnalis. GABA-like immunoreactivity in the CNS was not detected in the embryo but was observed after hatching, although the number of stained cells was less than in the adult, with the exception of those in the cerebral ganglia where their number decreased with maturation. Our results provide detailed maps of the central GABA-like immunoreactive neurons in juveniles, immatures, and adults of L. stagnalis.
Collapse
|
343
|
de Miguel FF, Vargas J. Native extracellular matrix induces a well-organized bipolar outgrowth pattern with neurite extension and retraction in cultured neurons. J Comp Neurol 2000; 417:387-98. [PMID: 10701862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cultured anterior pagoda (AP) neurons from the leech develop characteristic outgrowth patterns that depend on the molecular composition of the substrate. This article analyzes how native substrates from the central nervous system (CNS), such as the extracellular matrix (ECM) inside the capsules that enwrap the ganglia, determine the outgrowth patterns of AP neurons. When plated on the internal side of ganglion capsules, the remaining primary portion (stump) of AP neurons sprouted two main branches in opposite directions with bifurcations. This T-shaped pattern was distinctive for AP neurons and was different from the patterns of the same cell type plated on the external side of the capsule or on leech laminin extracts, in which they generated multiple neurites and branching points. AP neurons plated on tritonized CNS homogenates reproduced the outgrowth pattern displayed on ganglion capsules, in terms of the number of primary neurites, their length, their orientation, and the number of branch points. The development of the T-shaped outgrowth pattern of AP neurons on ganglion capsules and CNS homogenates started by the sprouting of one branch that later bifurcated, followed by a second branch in the opposite direction after a lag of several hours. Extension of the second branch and retraction of secondary neurites of the first were synchronous and contributed to refine the T-shaped pattern. These results suggest that during development or regeneration of the CNS, particular sets of ECM proteins have multiple effects regulating the number, direction, extension, and retraction of neurites.
Collapse
|
344
|
Zars T, Wolf R, Davis R, Heisenberg M. Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learn Mem 2000; 7:18-31. [PMID: 10706599 PMCID: PMC311318 DOI: 10.1101/lm.7.1.18] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most attempts to localize physical correlates of memory in the central nervous system (CNS) rely on ablation techniques. This approach has the limitation of defining just one of an unknown number of structures necessary for memory formation. We have used the Drosophila rutabaga type I Ca(2+)/CaM-dependent adenylyl cyclase (AC) gene to determine in which CNS region AC expression is sufficient for memory formation. Using pan-neural and restricted CNS expression with the GAL4 binary transcription activation system, we have rescued the memory defect of the rutabaga mutant in a fast robust spatial learning paradigm. The ventral ganglion, antennal lobes, and median bundle are likely the CNS structures sufficient for rutabaga AC- dependent spatial learning.
Collapse
|
345
|
Cadet P, Stefano GB. Mytilus edulis pedal ganglia express mu opiate receptor transcripts exhibiting high sequence identity with human neuronal mu1. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:242-6. [PMID: 10640698 DOI: 10.1016/s0169-328x(99)00287-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous pharmacological and biochemical evidence suggests that mu-subtype opiate receptors are expressed in the mollusk Mytilus edulis (Bivalve), including the organism's ganglia. In this study, we present molecular evidence of mu opiate receptor expression. Using primers derived from the human neuronal mu1 opiate receptor, we used reverse transcription-polymerase chain reaction (RT-PCR) to detect expression of mu transcripts from Mytilus pedal ganglia. Sequence analysis of the RT-PCR products revealed 95% identity with the neuronal human mu1 receptor. Furthermore, interleukin-1 and morphine exposure to excised pedal ganglia resulted in up- and down-regulation of the mu receptor transcripts, respectively. This study provides molecular evidence that mu-type opiate receptors are expressed in molluscan ganglia, suggesting that they first appear in invertebrate organisms and are retained during evolution.
Collapse
|
346
|
Yamamoto N, Hegde AN, Chain DG, Schwartz JH. Activation and degradation of the transcription factor C/EBP during long-term facilitation in Aplysia. J Neurochem 1999; 73:2415-23. [PMID: 10582601 DOI: 10.1046/j.1471-4159.1999.0732415.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term facilitation (LTF) of the sensory-to-motor synapses that mediate defensive reflexes in Aplysia requires induction of the transcription factor Aplysia CCAAT/enhancer binding protein (ApC/EBP) as an early response gene. We examined the time course of ApC/ EBP DNA binding during the induction of LTF: Binding activity was detected within 1 h of the sensitization treatment with serotonin, reached a maximum at 2 h, and decreased after 6 h. How are DNA binding and the turnover of ApC/EBP regulated? We find that phosphorylation of ApC/EBP by mitogen-activated protein (MAP) kinase is essential for binding. MAP kinase appears to be activated through protein kinase C. We also showed that ApC/EBP is degraded through the ubiquitin-proteasome pathway but that phosphorylation by MAP kinase renders it resistant to proteolysis. Thus, phosphorylation by MAP kinase is required for ApC/EBP to act as a transcription activator as well as to assure its stability early in the consolidation phase, when genes essential for the development of LTF begin to be expressed.
Collapse
|
347
|
Chang ES, Chang SA, Beltz BS, Kravitz EA. Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. J Comp Neurol 1999; 414:50-6. [PMID: 10494077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Crustacean hyperglycemic hormones (CHHs) are neuropeptides involved in the regulation of hemolymph glucose. The primary source of CHHs has been identified as the neurosecretory neurons of the eyestalk X-organ and its associated neurohemal organ, the sinus gland. We have identified another source of CHH-like peptides in the nervous system. With the use of immunocytochemistry, cells in the second roots of the thoracic ganglia have been observed to stain positively for CHH-reactive material. We also identified a pair of cells in the subesophageal ganglion that contain large amounts of CHH-reactive material. Depolarization of these cells with elevated potassium mediates a calcium-dependent release of CHH-like material from the ganglion as quantified with an enzyme-linked immunosorbent assay (ELISA).
Collapse
|
348
|
Fujisawa Y, Furukawa Y, Ohta S, Ellis TA, Dembrow NC, Li L, Floyd PD, Sweedler JV, Minakata H, Nakamaru K, Morishita F, Matsushima O, Weiss KR, Vilim FS. The Aplysia mytilus inhibitory peptide-related peptides: identification, cloning, processing, distribution, and action. J Neurosci 1999; 19:9618-34. [PMID: 10531464 PMCID: PMC6782896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1999] [Revised: 08/16/1999] [Accepted: 08/16/1999] [Indexed: 02/14/2023] Open
Abstract
Neuropeptides are a ubiquitous class of signaling molecules. In our attempt to understand the generation of feeding behavior in Aplysia, we have sought to identify and fully characterize the neuropeptides operating in this system. Preliminary evidence indicated that Mytilus inhibitory peptide (MIP)-like peptides are present and operating in the circuitry that generates feeding in Aplysia. MIPs were originally isolated from the bivalve mollusc Mytilus edulis, and related peptides have been identified in other invertebrate species, but no precursor has been identified. In this study, we describe the isolation and characterization of novel Aplysia MIP-related peptides (AMRPs) and their precursor. Several AMRPs appear to have some structural and functional features similar to vertebrate opioid peptides. We use matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to confirm that all 14 AMRPs predicted by the precursor are processed in isolated neurons. Northern analysis, whole-mount in situ hybridization, and immunohistochemistry are used to map the abundant expression of these peptides in the CNS and peripheral tissues such as the digestive tract, vasculature, and the reproductive organs. Physiological studies demonstrate that the rank order of the inhibitory actions of these peptides is different for three target muscles. These results underscore the importance of using a multidisciplinary approach to identifying and characterizing the actions of neuropeptides in an effort to gain understanding of their role in systems of interest. The widespread distribution of the AMRPs indicates that they may be operating in many different systems of Aplysia.
Collapse
|
349
|
Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS. Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci 1999; 19:7732-41. [PMID: 10479677 PMCID: PMC6782465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Revised: 06/28/1999] [Accepted: 07/02/1999] [Indexed: 02/13/2023] Open
Abstract
The first Aplysia californica insulin gene is characterized and its proteolytic processing from prohormone to final peptides elucidated using a combination of biochemical and mass spectrometric methods. Aplysia insulin (AI) is one of the largest insulins found, with a molecular weight of 9146 Da, and an extended A chain compared with other invertebrate and vertebrate insulins. The AI prohormone produces a series of C peptides and also a unique N-terminally acetylated D peptide. AI-producing cells are restricted to the central region of the cerebral ganglia mostly within the F and C clusters, and AI is transported to neurohemal release sites located on the upper labial and anterior tentacular nerves. The expression of AI mRNA decreases when the animal is deprived of food, and injections of AI reduce hemolymph glucose levels, suggesting that the function of insulin-regulating metabolism has been conserved.
Collapse
|
350
|
Fujita M, Kawano T, Ohta A, Sakamoto H. Neuronal expression of a Caenorhabditis elegans elav-like gene and the effect of its ectopic expression. Biochem Biophys Res Commun 1999; 260:646-52. [PMID: 10403820 DOI: 10.1006/bbrc.1999.0957] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the expression of a Caenorhabditis elegans (C. elegans) elav-like gene, which we designated elr-1. The elr-1 gene encodes a predicted 456-amino-acid protein containing three putative RNA-binding domains and belongs to the ELAV family, which is functionally involved in neuronal differentiation. Northern blot analysis suggested that the levels of elr-1 mRNA are regulated developmentally. A elr-1::gfp reporter gene under the control of the elr-1 promoter was expressed specifically in the ring ganglia near the nerve ring, the ventral nerve cord (VNC), and the pre-anal and lumbar ganglia. In the VNC, GFP-positive cells were shown to be acetylcholine-producing motor neurons which increased in number as development proceeded, suggesting that elr-1 is expressed in mature neurons. Ectopic expression of ELR-1 protein at the L4 larval and adult stages, but not earlier stages, caused irreversible death, accompanied by uncoordinated movement (Unc), clear (Clr), and egg-laying defective (Egl) phenotypes, which are often observed in mutants with neuronal defects. These results suggest that ELR-1 may have important functions in specific mature neurons in C. elegans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Caenorhabditis elegans/cytology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins
- Cloning, Molecular
- ELAV Proteins
- Ganglia, Invertebrate/cytology
- Ganglia, Invertebrate/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genes, Lethal/genetics
- Genes, Lethal/physiology
- Genes, Reporter/genetics
- Humans
- Molecular Sequence Data
- Motor Activity
- Motor Neurons/metabolism
- Neurons/metabolism
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Sequence Homology, Amino Acid
Collapse
|