1
|
Molenberghs P, Johnson H, Henry JD, Mattingley JB. Understanding the minds of others: A neuroimaging meta-analysis. Neurosci Biobehav Rev 2016; 65:276-91. [PMID: 27073047 DOI: 10.1016/j.neubiorev.2016.03.020] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
Theory of mind (ToM) is an important skill that refers broadly to the capacity to understand the mental states of others. A large number of neuroimaging studies have focused on identifying the functional brain regions involved in ToM, but many important questions remain with respect to the neural networks implicated in specific types of ToM tasks. In the present study, we conducted a series of activation likelihood estimation (ALE) meta-analyses on 144 datasets (involving 3150 participants) to address these questions. The ALE results revealed common regions shared across all ToM tasks and broader task parameters, but also some important dissociations. In terms of commonalities, consistent activation was identified in the medial prefrontal cortex and bilateral temporoparietal junction. On the other hand, ALE contrast analyses on our dataset, as well as meta-analytic connectivity modelling (MACM) analyses on the BrainMap database, indicated that different types of ToM tasks reliably elicit activity in unique brain areas. Our findings provide the most accurate picture to date of the neural networks that underpin ToM function.
Collapse
|
Review |
9 |
335 |
2
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
research-article |
6 |
323 |
3
|
Warburton EC, Brown MW. Neural circuitry for rat recognition memory. Behav Brain Res 2015; 285:131-9. [PMID: 25315129 PMCID: PMC4383363 DOI: 10.1016/j.bbr.2014.09.050] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
Abstract
Information concerning the roles of different brain regions in recognition memory processes is reviewed. The review concentrates on findings from spontaneous recognition memory tasks performed by rats, including memory for single objects, locations, object-location associations and temporal order. Particular emphasis is given to the potential roles of different regions in the circuit of interacting structures involving the perirhinal cortex, hippocampus, medial prefrontal cortex and medial dorsal thalamus in recognition memory for the association of objects and places. It is concluded that while all structures in this circuit play roles critical to such memory, these roles can potentially be differentiated and differences in the underlying synaptic and biochemical processes involved in each region are beginning to be uncovered.
Collapse
|
Review |
10 |
236 |
4
|
Stevens JS, Jovanovic T, Fani N, Ely TD, Glover EM, Bradley B, Ressler KJ. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J Psychiatr Res 2013; 47:1469-78. [PMID: 23827769 PMCID: PMC3743923 DOI: 10.1016/j.jpsychires.2013.05.031] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022]
Abstract
Many features of posttraumatic stress disorder (PTSD) can be linked to exaggerated and dysregulated emotional responses. Central to the neurocircuitry regulating emotion are functional interactions between the amygdala and the ventromedial prefrontal cortex (vmPFC). Findings from human and animal studies suggest that disruption of this circuit predicts individual differences in emotion regulation. However, only a few studies have examined amygdala-vmPFC connectivity in the context of emotional processing in PTSD. The aim of the present research was to investigate the hypothesis that PTSD is associated with disrupted functional connectivity of the amygdala and vmPFC in response to emotional stimuli, extending previous findings by demonstrating such links in an understudied, highly traumatized, civilian population. 40 African-American women with civilian trauma (20 with PTSD and 20 non-PTSD controls) were recruited from a large urban hospital. Participants viewed fearful and neutral face stimuli during functional magnetic resonance imaging (fMRI). Relative to controls, participants with PTSD showed an increased right amygdala response to fearful stimuli (p(corr) < .05). Right amygdala activation correlated positively with the severity of hyperarousal symptoms in the PTSD group. Participants with PTSD showed decreased functional connectivity between the right amygdala and left vmPFC (p(corr) < .05). The findings are consistent with previous findings showing PTSD is associated with an exaggerated response of amygdala-mediated emotional arousal systems. This is the first study to show that the amygdala response may be accompanied by disruption of an amygdala-vmPFC functional circuit that is hypothesized to be involved in prefrontal cortical regulation of amygdala responsivity.
Collapse
|
research-article |
12 |
213 |
5
|
Muscatell KA, Dedovic K, Slavich GM, Jarcho MR, Breen EC, Bower JE, Irwin MR, Eisenberger NI. Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav Immun 2015; 43:46-53. [PMID: 25016200 PMCID: PMC4368432 DOI: 10.1016/j.bbi.2014.06.201] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/20/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022] Open
Abstract
Psychological stress is implicated in the etiology of many common chronic diseases and mental health disorders. Recent research suggests that inflammation may be a key biological mediator linking stress and health. Nevertheless, the neurocognitive pathways underlying stress-related increases in inflammatory activity are largely unknown. The present study thus examined associations between neural and inflammatory responses to an acute laboratory-based social stressor. Healthy female participants (n=31) were exposed to a brief episode of stress while they underwent an fMRI scan. Blood samples were taken before and after the stressor, and plasma was assayed for markers of inflammatory activity. Exposure to the stressor was associated with significant increases in feelings of social evaluation and rejection, and with increases in levels of inflammation. Analyses linking the neural and inflammatory data revealed that heightened neural activity in the amygdala in response to the stressor was associated with greater increases in inflammation. Functional connectivity analyses indicated that individuals who showed stronger coupling between the amygdala and the dorsomedial prefrontal cortex (DMPFC) also showed a heightened inflammatory response to the stressor. Interestingly, activity in a different set of neural regions was related to increases in feelings of social rejection. These data show that greater amygdala activity in response to a stressor, as well as tighter coupling between the amygdala and the DMPFC, are associated with greater increases in inflammatory activity. Results from this study begin to identify neural mechanisms that might link stress with increased risk for inflammation-related disorders such as cardiovascular disease and depression.
Collapse
|
research-article |
10 |
162 |
6
|
Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 2013; 111:34-52. [PMID: 24025745 PMCID: PMC4975011 DOI: 10.1016/j.pneurobio.2013.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 12/17/2022]
Abstract
The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behavior related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioral evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the effects of a stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and behavioral flexibility, in addition to general behavior and aspects of metabolism.
Collapse
|
Review |
12 |
140 |
7
|
Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 2016; 53:39-48. [PMID: 26546831 PMCID: PMC4783304 DOI: 10.1016/j.bbi.2015.11.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0.05). Consistent with our previous findings in an overlapping sample, the KynA/3HK ratio and the log KynA/QA were reduced in the MDD group relative to the HC group (p's<0.05) and symptoms of anhedonia were negatively correlated with log KynA/QA in the MDD group (p<0.05). Both KynA/3HK and log KynA/QA at least partially mediated the relationship between diagnosis and cortical thickness of right BA32 (p's<0.05). CRP was inversely associated with BA32 thickness (p<0.01) and KynA/3HK partially mediated the relationship between CRP and the thickness of right BA32 (p<0.05). The results raise the possibility that the relative imbalance between KynA and neurotoxic kynurenine metabolites may partially explain the reductions in mPFC thickness observed in MDD, and further that these changes are more strongly linked to the putative effects of neuroactive kynurenine metabolites than those of inflammatory mediators.
Collapse
|
research-article |
9 |
130 |
8
|
Barrett FS, Griffiths RR. Classic Hallucinogens and Mystical Experiences: Phenomenology and Neural Correlates. Curr Top Behav Neurosci 2018; 36:393-430. [PMID: 28401522 PMCID: PMC6707356 DOI: 10.1007/7854_2017_474] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter begins with a brief review of descriptions and definitions of mystical-type experiences and the historical connection between classic hallucinogens and mystical experiences. The chapter then explores the empirical literature on experiences with classic hallucinogens in which claims about mystical or religious experiences have been made. A psychometrically validated questionnaire is described for the reliable measurement of mystical-type experiences occasioned by classic hallucinogens. Controlled laboratory studies show that under double-blind conditions that provide significant controls for expectancy bias, psilocybin can occasion complete mystical experiences in the majority of people studied. These effects are dose-dependent, specific to psilocybin compared to placebo or a psychoactive control substance, and have enduring impact on the moods, attitudes, and behaviors of participants as assessed by self-report of participants and ratings by community observers. Other studies suggest that enduring personal meaning in healthy volunteers and therapeutic outcomes in patients, including reduction and cessation of substance abuse behaviors and reduction of anxiety and depression in patients with a life-threatening cancer diagnosis, are related to the occurrence of mystical experiences during drug sessions. The final sections of the chapter draw parallels in human neuroscience research between the neural bases of experiences with classic hallucinogens and the neural bases of meditative practices for which claims of mystical-type experience are sometimes made. From these parallels, a functional neural model of mystical experience is proposed, based on changes in the default mode network of the brain that have been observed after the administration of classic hallucinogens and during meditation practices for which mystical-type claims have been made.
Collapse
|
Review |
7 |
128 |
9
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
|
Review |
8 |
121 |
10
|
Sebold M, Nebe S, Garbusow M, Guggenmos M, Schad DJ, Beck A, Kuitunen-Paul S, Sommer C, Frank R, Neu P, Zimmermann US, Rapp MA, Smolka MN, Huys QJM, Schlagenhauf F, Heinz A. When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence. Biol Psychiatry 2017; 82:847-856. [PMID: 28673442 DOI: 10.1016/j.biopsych.2017.04.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. METHODS Ninety detoxified, medication-free, alcohol-dependent patients and 96 age- and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. RESULTS Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. CONCLUSIONS These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies.
Collapse
|
Multicenter Study |
8 |
103 |
11
|
Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology 2016; 112:198-209. [PMID: 27211253 DOI: 10.1016/j.neuropharm.2016.05.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 11/18/2022]
Abstract
Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT]ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT]ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT]ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT]ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following the blockade of glutamatergic NMDA receptors. Tight interactions between mPFCx glutamatergic and serotonergic systems may explain the differences in this activity between ketamine and fluoxetine in vivo. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
98 |
12
|
Girgenti MJ, Ghosal S, LoPresto D, Taylor JR, Duman RS. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol Dis 2016; 100:1-8. [PMID: 28043916 DOI: 10.1016/j.nbd.2016.12.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023] Open
Abstract
Impaired fear extinction contributes to the persistence of post-traumatic stress disorder (PTSD), and can be utilized for the study of novel therapeutic agents. Glutamate plays an important role in the formation of traumatic memories, and in the pathophysiology and treatment of PTSD, highlighting several possible drug targets. Recent clinical studies demonstrate that infusion of ketamine, a glutamate NMDA receptor antagonist, rapidly and significantly reduces symptom severity in PTSD patients. In the present study, we examine the mechanisms underlying the actions of ketamine in a rodent model of fear conditioning, extinction, and renewal. Rats received ketamine or saline 24h after fear conditioning and were then subjected to extinction-training on each of the following three days. Ketamine administration enhanced extinction on the second day of training (i.e., reduced freezing behavior to cue) and produced a long-lasting reduction in freezing on exposure to cue plus context 8days later. Additionally, ketamine and extinction exposure increased levels of mTORC1 in the medial prefrontal cortex (mPFC), a region involved in the acquisition and retrieval of extinction, and infusion of the selective mTORC1 inhibitor rapamycin into the mPFC blocked the effects of ketamine on extinction. Ketamine plus extinction also increased cFos in the mPFC and administration of a glutamate-AMPA receptor antagonist blocked the effects of ketamine. These results support the hypothesis that ketamine produces long-lasting mTORC1/protein synthesis and activity dependent effects on neuronal circuits that enhance the expression of extinction and could represent a novel approach for the treatment of PTSD.
Collapse
|
Journal Article |
9 |
90 |
13
|
Liang Z, Liu X, Zhang N. Dynamic resting state functional connectivity in awake and anesthetized rodents. Neuroimage 2014; 104:89-99. [PMID: 25315787 DOI: 10.1016/j.neuroimage.2014.10.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/27/2014] [Accepted: 10/04/2014] [Indexed: 01/01/2023] Open
Abstract
Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
89 |
14
|
Rincel M, Aubert P, Chevalier J, Grohard PA, Basso L, Monchaux de Oliveira C, Helbling JC, Lévy É, Chevalier G, Leboyer M, Eberl G, Layé S, Capuron L, Vergnolle N, Neunlist M, Boudin H, Lepage P, Darnaudéry M. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun 2019; 80:179-192. [PMID: 30872090 DOI: 10.1016/j.bbi.2019.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored. We examined the effects of multifactorial early-life adversity on behavior and microbiota composition in C3H/HeN mice of both sexes exposed to a combination of maternal immune activation (lipopolysaccharide injection on embryonic day 17, 120 µg/kg, i.p.), maternal separation (3hr per day from postnatal day (PND)2 to PND14) and maternal unpredictable chronic mild stress. At adulthood, offspring exposed to multi-hit early adversity showed sex-specific behavioral phenotypes with males exhibiting deficits in social behavior and females showing increased anxiety in the elevated plus maze and increased compulsive behavior in the marble burying test. Early adversity also differentially regulated gene expression in the medial prefrontal cortex (mPFC) according to sex. Interestingly, several genes such as Arc, Btg2, Fosb, Egr4 or Klf2 were oppositely regulated by early adversity in males versus females. Finally, 16S-based microbiota profiling revealed sex-dependent gut dysbiosis. In males, abundance of taxa belonging to Lachnospiraceae and Porphyromonadaceae families or other unclassified Firmicutes, but also Bacteroides, Lactobacillus and Alloprevotella genera was regulated by early adversity. In females, the effects of early adversity were limited and mainly restricted to Lactobacillus and Mucispirillum genera. Our work reveals marked sex differences in a multifactorial model of early-life adversity, both on emotional behaviors and gut microbiota, suggesting that sex should systematically be considered in preclinical studies both in neurogastroenterology and psychiatric research.
Collapse
|
|
6 |
89 |
15
|
Gorka AX, Hanson JL, Radtke SR, Hariri AR. Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:12. [PMID: 25408863 PMCID: PMC4236295 DOI: 10.1186/2045-5380-4-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/30/2014] [Indexed: 11/30/2022]
Abstract
Background The experience of early life stress is a consistently identified risk factor for the development of mood and anxiety disorders. Preclinical research employing animal models of early life stress has made inroads in understanding this association and suggests that the negative sequelae of early life stress may be mediated by developmental disruption of corticolimbic structures supporting stress responsiveness. Work in humans has corroborated this idea, as childhood adversity has been associated with alterations in gray matter volumes of the hippocampus, amygdala, and medial prefrontal cortex. Yet, missing from this body of research is a full understanding of how these neurobiological vulnerabilities may mechanistically contribute to the reported link between adverse childhood experiences and later affective psychopathology. Results Analyses revealed that self-reported childhood maltreatment was associated with reduced gray matter volumes within the medial prefrontal cortex and left hippocampus. Furthermore, reduced left hippocampal and medial prefrontal gray matter volume mediated the relationship between childhood maltreatment and trait anxiety. Additionally, individual differences in corticolimbic gray matter volume within these same structures predicted the anxious symptoms as a function of life stress 1 year after initial assessment. Conclusions Collectively, these findings provide novel evidence that reductions in corticolimbic gray matter, particularly within the hippocampus and medial prefrontal cortex, are associated with reported childhood maltreatment and individual differences in adult trait anxiety. Furthermore, our results suggest that these structural alterations contribute to increased affective sensitivity to stress later in life in those that have experienced early adversity. More broadly, the findings contribute to an emerging literature highlighting the critical importance of early stress on the development of corticolimbic structures supporting adaptive functioning later in life.
Collapse
|
Journal Article |
11 |
89 |
16
|
Cooper PS, Karayanidis F, McKewen M, McLellan-Hall S, Wong ASW, Skippen P, Cavanagh JF. Frontal theta predicts specific cognitive control-induced behavioural changes beyond general reaction time slowing. Neuroimage 2019; 189:130-140. [PMID: 30639331 DOI: 10.1016/j.neuroimage.2019.01.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Investigations into the neurophysiological underpinnings of control suggest that frontal theta activity is increased with the need for control. However, these studies typically show this link by reporting associations between increased theta and RT slowing - a process that is contemporaneous with cognitive control but does not strictly reflect the specific use of control. In this study, we assessed frontal theta responses that underpinned the switch cost in task switching - a specific index of cognitive control that does not rely exclusively on RT slowing. Here, we utilised a single-trial regression approach to assess 1) how cognitive control demands beyond simple RT slowing were linked to midfrontal theta and 2) whether midfrontal theta effects remained stable over time. In a large cohort that included a longitudinal subsample, we found that midfrontal theta was modulated by switch costs, with enhanced theta power when preparing to switch vs. repeating a task. These effects were reliable after a two-year interval (Cronbach's α.39-0.74). In contrast, we found that trial-by-trial modulations of midfrontal theta power predicted the size of the switch cost - so that switch trials with increased theta produced smaller switch costs. Interestingly, these relationships between theta and behaviour were less stable over time (Cronbach's α 0-0.61), with participants first using both delta and theta bands to influence behaviour whereas after two years only theta associations with behaviour remained. Together, these findings suggest midfrontal theta supports the need for control beyond simple RT slowing and reveal that midfrontal theta effects remain relatively stable over time.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
88 |
17
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
|
Review |
11 |
85 |
18
|
Schlichting ML, Preston AR. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol Learn Mem 2015; 134 Pt A:91-106. [PMID: 26608407 DOI: 10.1016/j.nlm.2015.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/22/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
83 |
19
|
Olbrich S, Tränkner A, Chittka T, Hegerl U, Schönknecht P. Functional connectivity in major depression: increased phase synchronization between frontal cortical EEG-source estimates. Psychiatry Res 2014; 222:91-9. [PMID: 24674895 DOI: 10.1016/j.pscychresns.2014.02.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/28/2013] [Accepted: 02/19/2014] [Indexed: 02/02/2023]
Abstract
Structural and metabolic alterations in prefrontal brain areas, including the subgenual (SGPFC), medial (MPFC) and dorsolateral prefrontal cortex (DLPFC), have been shown in major depressive disorder (MDD). Still it remains largely unknown how brain connectivity within these regions is altered at the level of neuronal oscillations. Therefore, the goal was to analyze prefrontal electroencephalographic phase synchronization in MDD and its changes after antidepressant treatment. In 60 unmedicated patients and 60 healthy controls (HC), a 15-min resting electroencephalogram (EEG) was recorded in subjects at baseline and in a subgroup of patients after 2 weeks of antidepressant medication. EEG functional connectivity between the SGPFC and the MPFC/DLPFC was assessed with eLORETA (low resolution brain electromagnetic tomography) by means of lagged phase synchronization. At baseline, patients revealed increased prefrontal connectivity at the alpha frequency between the SGPFC and the left DLPFC/MPFC. After treatment, an increased connectivity between the SGPFC and the right DLPFC/MPFC at the beta frequency was found for MDD. A positive correlation was found for baseline beta connectivity and reduction in scores on the Hamilton depression rating scale. MDD is characterized by increased EEG functional connectivity within frontal brain areas. These EEG markers of disturbed neuronal communication might have potential value as biomarkers.
Collapse
|
|
11 |
82 |
20
|
Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology 2013; 76 Pt C:684-95. [PMID: 23747574 DOI: 10.1016/j.neuropharm.2013.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022]
Abstract
Brain derived neurotrophic factor (BDNF), a neurotrophin essential for nervous system development and synaptic plasticity, has been found to have a significant influence on affective behaviors. The notion that an impairment in BDNF signaling might be involved in affective disorders is originated primarily from the opposing effects of antidepressants and stress on BDNF signaling. Antidepressants enhance BDNF signaling and synaptic plasticity. On the other hand, negative environmental factors such as severe stress suppress BDNF signaling, impair synaptic activity and increase susceptibility to affective disorders. Postmortem studies provided strong support for decreased BDNF signaling in depressive disorders. Remarkably, studies in humans with a single nucleotide polymorphism in the BDNF gene, the BDNF Val66Met which affects regulated release of BDNF, showed profound deficits in hippocampal and prefrontal cortical (PFC) plasticity and cognitive behaviors. BDNF regulates synaptic mechanisms responsible for various cognitive processes including attenuation of aversive memories, a key process in the regulation of affective behaviors. The unique role of BDNF in cognitive and affective behaviors suggests that cognitive deficits due to altered BDNF signaling might underlie affective disorders. Understanding how BDNF modulates synapses in neural circuits relevant to affective behaviors, particularly the medial prefrontal cortical (mPFC)-hippocampus-amygdala pathway, and its interaction with development, sex, and environmental risk factors might shed light on potential therapeutic targets for affective disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
Review |
12 |
82 |
21
|
Goldfarb EV, Seo D, Sinha R. Sex differences in neural stress responses and correlation with subjective stress and stress regulation. Neurobiol Stress 2019; 11:100177. [PMID: 31304198 PMCID: PMC6603439 DOI: 10.1016/j.ynstr.2019.100177] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
Emotional stress responses, encompassing both stress reactivity and regulation, have been shown to differ between men and women, but the neural networks supporting these processes remain unclear. The current study used functional neuroimaging (fMRI) to investigate sex differences in neural responses during stress and the sex-specific relationships between these responses and emotional stress responses for men and women. A significant sex by condition interaction revealed that men showed greater stress responses in prefrontal cortex (PFC) regions, whereas women had stronger responses in limbic/striatal regions. Although men and women did not significantly differ in emotional stress reactivity or subjective reports of stress regulation, these responses were associated with distinct neural networks. Higher dorsomedial PFC responses were associated with lower stress reactivity in men, but higher stress reactivity in women. In contrast, while higher ventromedial PFC stress responses were associated with worse stress regulation in men (but better regulation in women), dynamic increases in vmPFC responses during stress were associated with lower stress reactivity in men. Finally, stress-induced hippocampal responses were more adaptive for women: for men, high and dynamically increasing responses in left hippocampus were associated with high stress reactivity, and dynamic increases in the left (but not right) hippocampus were associated with worse stress regulation. Together, these results reveal that men and women engage distinct neural networks during stress, and sex-specific neural stress responses facilitate optimal emotional stress responses.
Collapse
|
Journal Article |
6 |
77 |
22
|
Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology 2014; 45:31-42. [PMID: 24845174 PMCID: PMC4067951 DOI: 10.1016/j.psyneuen.2014.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/31/2023]
Abstract
The neuropeptide oxytocin (OT) is anxiolytic in rodents and humans. However, the specific brain regions where OT acts to regulate anxiety requires further investigation. The medial prefrontal cortex (mPFC) has been shown to play a role in the modulation of anxiety-related behavior. In addition, the mPFC contains OT-sensitive neurons, expresses OT receptors, and receives long range axonal projections from OT-producing neurons in the hypothalamus, suggesting that the mPFC may be a target where OT acts to diminish anxiety. To investigate this possibility, female rats were administered OT bilaterally into the prelimbic (PL) region of the mPFC and anxiety-like behavior assessed. In addition, to determine if the effects of OT on anxiety-like behavior are sex dependent and to evaluate the specificity of OT, male and female anxiety-like behavior was tested following delivery of either OT or the closely related neuropeptide arginine vasopressin (AVP) into the PL mPFC. Finally, the importance of endogenous OT in the regulation of anxiety-like behavior was examined in male and female rats that received PL infusions of an OT receptor antagonist (OTR-A). Overall, even though males and females showed some differences in their baseline levels of anxiety-like behavior, OT in the PL region of the mPFC decreased anxiety regardless of sex. In contrast, neither AVP nor an OTR-A affected anxiety-like behavior in males or females. Together, these findings suggest that although endogenous OT in the PL region of the mPFC does not influence anxiety, the PL mPFC is a site where exogenous OT may act to attenuate anxiety-related behavior independent of sex.
Collapse
|
research-article |
11 |
77 |
23
|
A cross-sectional and longitudinal analysis of reward-related brain activation: effects of age, pubertal stage, and reward sensitivity. Brain Cogn 2014; 89:3-14. [PMID: 24512819 DOI: 10.1016/j.bandc.2013.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
Abstract
Neurobiological models suggest that adolescents are driven by an overactive ventral striatum (VS) response to rewards that may lead to an adolescent increase in risk-taking behavior. However, empirical studies showed mixed findings of adolescents' brain response to rewards. In this study, we aimed to elucidate the relationship between reward-related brain activation and risky decision-making. In addition, we examined effects of age, puberty, and individuals' reward sensitivity. We collected two datasets: Experiment 1 reports cross-sectional brain data from 75 participants (ages 10-25) who played a risky decision task. Experiment 2 presents a longitudinal extension in which a subset of these adolescents (n=33) was measured again 2years later. Results showed that (1) a reward-related network including VS and medial PFC was consistently activated over time, (2) the propensity to choose the risky option was related to increased reward-related activation in VS and medial PFC, and (3) longitudinal comparisons indicated that self-reported reward sensitivity was specifically related to VS activation over time. Together, these results advance our insights in the brain circuitry underlying reward processing across adolescence.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
76 |
24
|
Deyama S, Bang E, Kato T, Li XY, Duman RS. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor. Biol Psychiatry 2019; 86:143-152. [PMID: 30712809 PMCID: PMC6597338 DOI: 10.1016/j.biopsych.2018.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Activity-dependent release of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) is essential for the rapid and sustained antidepressant actions of ketamine, and a recent study shows a similar requirement for vascular endothelial growth factor (VEGF). Since BDNF is reported to stimulate VEGF expression and/or release in neuroblastoma cells, the present study tested the hypothesis that the actions of BDNF are mediated by VEGF. METHODS The role of VEGF in the antidepressant behavioral actions of BDNF was tested by intra-mPFC coinfusion of a VEGF neutralizing antibody and by neuron-specific deletion of VEGF. The influence of BDNF on the release of VEGF and the role of VEGF in the neurotrophic actions of BDNF were determined in rat primary cortical neurons. The role of BDNF in the behavioral and neurotrophic actions of VEGF was also determined. RESULTS The results show that the rapid and sustained antidepressant-like actions of intra-mPFC BDNF are blocked by coinfusion of a VEGF neutralizing antibody, and that neuron-specific mPFC deletion of VEGF blocks the antidepressant-like actions of BDNF. Studies in primary cortical neurons demonstrate that BDNF stimulates the release of VEGF and that BDNF induction of dendrite complexity is blocked by a selective VEGF-fetal liver kinase 1 receptor antagonist. Surprisingly, the results also show reciprocal interactions, indicating that the behavioral and neurotrophic actions of VEGF are dependent on BDNF. CONCLUSIONS These findings indicate that the antidepressant-like and neurotrophic actions of BDNF require VEGF signaling, but they also demonstrate reciprocal interdependence for BDNF in the actions of VEGF.
Collapse
|
research-article |
6 |
76 |
25
|
Tottenham N. Early Adversity and the Neotenous Human Brain. Biol Psychiatry 2020; 87:350-358. [PMID: 31399257 PMCID: PMC6935437 DOI: 10.1016/j.biopsych.2019.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
Human brain development is optimized to learn from environmental cues. The protracted development of the cortex and its connections with subcortical targets has been argued to permit more opportunity for acquiring complex behaviors. This review uses the example of amygdala-medial prefrontal cortex circuitry development to illustrate a principle of human development-namely, that the extension of the brain's developmental timeline allows for the (species-expected) collaboration between child and parent in co-construction of the human brain. The neurobiology underlying affective learning capitalizes on this protracted timeline to develop a rich affective repertoire in adulthood. Humans are afforded this luxuriously slow development in part by the extended period of caregiving provided by parents, and parents aid in scaffolding the process of maturation during childhood. Just as adequate caregiving is a potent effector of brain development, so is adverse caregiving, which is the largest environmental risk factor for adult mental illness. There are large individual differences in neurobiological outcomes following caregiving adversity, indicating that these pathways are probabilistic, rather than deterministic, and prolonged plasticity in human brain development may also allow for subsequent amelioration by positive experiences. The extant research indicates that the development of mental health cannot be considered without consideration of children in the context of their families.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
72 |