26
|
Dunn JC, Hamer KC, Morris AJ, Grice PV, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Quail MA, McCarthy SA, Uliano-Silva M, Howe K, Torrance J, Chow W, Pelan S, Sims Y, Challis R, Threlfall J, Mead D, Blaxter M. The genome sequence of the European turtle dove, Streptopelia turtur Linnaeus 1758. Wellcome Open Res 2021; 6:191. [PMID: 39021440 PMCID: PMC11252641 DOI: 10.12688/wellcomeopenres.17060.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 07/20/2024] Open
Abstract
We present a genome assembly from an individual female Streptopelia turtur (the European turtle dove; Chordata; Aves; Columbidae). The genome sequence is 1.18 gigabases in span. The majority of the assembly is scaffolded into 35 chromosomal pseudomolecules, with the W and Z sex chromosomes assembled.
Collapse
|
27
|
Gonzalez de la Rosa PM, Thomson M, Trivedi U, Tracey A, Tandonnet S, Blaxter M. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3-GENES GENOMES GENETICS 2021; 11:6026964. [PMID: 33561231 PMCID: PMC8022731 DOI: 10.1093/g3journal/jkaa020] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Eukaryotic chromosomes have phylogenetic persistence. In many taxa, each chromosome has a single functional centromere with essential roles in spindle attachment and segregation. Fusion and fission can generate chromosomes with no or multiple centromeres, leading to genome instability. Groups with holocentric chromosomes (where centromeric function is distributed along each chromosome) might be expected to show karyotypic instability. This is generally not the case, and in Caenorhabditis elegans, it has been proposed that the role of maintenance of a stable karyotype has been transferred to the meiotic pairing centers, which are found at one end of each chromosome. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60-Mb O. tipulae genome is resolved into six chromosomal molecules. We find the evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes, we identify seven ancestral chromosomal elements (Nigon elements) and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex chromosome-associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.
Collapse
|
28
|
Dunn JC, Liedvogel M, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Quail MA, Uliano-Silva M, McCarthy SA, Howe K, Torrance J, Wood J, Pelan S, Sims Y, Challis R, Threlfall J, Mead D, Blaxter M. The genome sequence of the European robin, Erithacus rubecula Linnaeus 1758. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16988.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We present a genome assembly from an individual female Erithacus rubecula (the European robin; Chordata; Aves; Passeriformes; Turdidae). The genome sequence is 1.09 gigabases in span. The majority of the assembly is scaffolded into 36 chromosomal pseudomolecules, with both W and Z sex chromosomes assembled.
Collapse
|
29
|
Mead D, Saccheri I, Yung CJ, Lohse K, Lohse C, Ashmole P, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Quail MA, Dolucan J, McCarthy SA, Howe K, Wood J, Torrance J, Tracey A, Whiteford S, Challis R, Durbin R, Blaxter M. The genome sequence of the ringlet, Aphantopus hyperantus Linnaeus 1758. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16983.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We present a genome assembly based on an individual female Aphantopus hyperantus, also known as Maniola hyperantus (the ringlet butterfly; Arthropoda; Insecta; Lepidoptera, Nymphalidae), scaffolded using data from a second, unrelated specimen. The genome sequence is 411 megabases in span. The majority of the assembly is scaffolded into 29 chromosomal pseudomolecules, including the Z sex chromosome.
Collapse
|
30
|
Carpenter AI, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Doulcan J, Quail MA, McCarthy SA, Uliano Da Silva M, Howe K, Torrance J, Wood J, Pelan S, Sims Y, Tricomi FF, Challis R, Threlfall J, Mead D, Blaxter M. The genome sequence of the European water vole, Arvicola amphibius Linnaeus 1758. Wellcome Open Res 2021; 6:162. [PMID: 35600244 PMCID: PMC9114827 DOI: 10.12688/wellcomeopenres.16753.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual male Arvicola amphibius (the European water vole; Chordata; Mammalia; Rodentia; Cricetidae). The genome sequence is 2.30 gigabases in span. The majority of the assembly is scaffolded into 18 chromosomal pseudomolecules, including the X sex chromosome. Gene annotation of this assembly on Ensembl has identified 21,394 protein coding genes.
Collapse
|
31
|
Yarra T, Ramesh K, Blaxter M, Hüning A, Melzner F, Clark MS. Transcriptomic analysis of shell repair and biomineralization in the blue mussel, Mytilus edulis. BMC Genomics 2021; 22:437. [PMID: 34112105 PMCID: PMC8194122 DOI: 10.1186/s12864-021-07751-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biomineralization by molluscs involves regulated deposition of calcium carbonate crystals within a protein framework to produce complex biocomposite structures. Effective biomineralization is a key trait for aquaculture, and animal resilience under future climate change. While many enzymes and structural proteins have been identified from the shell and in mantle tissue, understanding biomieralization is impeded by a lack of fundamental knowledge of the genes and pathways involved. In adult bivalves, shells are secreted by the mantle tissue during growth, maintenance and repair, with the repair process, in particular, amenable to experimental dissection at the transcriptomic level in individual animals. RESULTS Gene expression dynamics were explored in the adult blue mussel, Mytilus edulis, during experimentally induced shell repair, using the two valves of each animal as a matched treatment-control pair. Gene expression was assessed using high-resolution RNA-Seq against a de novo assembled database of functionally annotated transcripts. A large number of differentially expressed transcripts were identified in the repair process. Analysis focused on genes encoding proteins and domains identified in shell biology, using a new database of proteins and domains previously implicated in biomineralization in mussels and other molluscs. The genes implicated in repair included many otherwise novel transcripts that encoded proteins with domains found in other shell matrix proteins, as well as genes previously associated with primary shell formation in larvae. Genes with roles in intracellular signalling and maintenance of membrane resting potential were among the loci implicated in the repair process. While haemocytes have been proposed to be actively involved in repair, no evidence was found for this in the M. edulis data. CONCLUSIONS The shell repair experimental model and a newly developed shell protein domain database efficiently identified transcripts involved in M. edulis shell production. In particular, the matched pair analysis allowed factoring out of much of the inherent high level of variability between individual mussels. This snapshot of the damage repair process identified a large number of genes putatively involved in biomineralization from initial signalling, through calcium mobilization to shell construction, providing many novel transcripts for future in-depth functional analyses.
Collapse
|
32
|
Abstract
The Tree of Life Gateway uses Genome Note publications to announce the completion of genomes assembled by the Tree of Life programme, based at the Wellcome Sanger Institute and involving numerous partner organisations and institutes. Tree of Life participates in the Darwin Tree of Life Project, which aims to sequence the genomes of all 70,000+ eukaryotic species in the Atlantic archipelago of Britain and Ireland, the Aquatic Symbiosis Genomics Project, which will sequence 1000 species involved in 500 symbioses between eukaryotic hosts and their microbial 'cobionts', and other initiatives, such as the Vertebrate Genome Project. These Genome Notes report the origins of ethically sourced samples used for sequencing, give the methods used to generate the sequence and use statistics and interactive figures to demonstrate the quality of the genome sequences. In addition to describing the production of these sequences, each Genome Note gives citeable credit to those who participated in producing the genome assembly and announces the availability of the data for reuse by all. It is through the use and reuse of this openly and publicly released data that we hope effective and lasting solutions to the ongoing biodiversity crisis can be found.
Collapse
|
33
|
Abstract
Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalysed by enzymes and shell matrix proteins. Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization shell matrix proteins (SMP) derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid-base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.
Collapse
|
34
|
Howe K, Dwinell M, Shimoyama M, Corton C, Betteridge E, Dove A, Quail MA, Smith M, Saba L, Williams RW, Chen H, Kwitek AE, McCarthy SA, Uliano-Silva M, Chow W, Tracey A, Torrance J, Sims Y, Challis R, Threlfall J, Blaxter M. The genome sequence of the Norway rat, Rattus norvegicus Berkenhout 1769. Wellcome Open Res 2021; 6:118. [PMID: 34660910 PMCID: PMC8495504 DOI: 10.12688/wellcomeopenres.16854.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual male Rattus norvegicus (the Norway rat; Chordata; Mammalia; Rodentia; Muridae). The genome sequence is 2.44 gigabases in span. The majority of the assembly is scaffolded into 20 chromosomal pseudomolecules, with both X and Y sex chromosomes assembled. This genome assembly, mRatBN7.2, represents the new reference genome for R. norvegicus and has been adopted by the Genome Reference Consortium.
Collapse
|
35
|
Vine C, Teeling EC, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Doulcan J, Quail MA, McCarthy SA, Howe K, Torrance J, Wood J, Pelan S, Sims Y, Challis R, Threlfall J, Mead D, Blaxter M. The genome sequence of the common pipistrelle, Pipistrellus pipistrellus Schreber 1774. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16895.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual female Pipistrellus pipistrellus (the common pipistrelle; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 1.76 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal pseudomolecules, with the X sex chromosome assembled.
Collapse
|
36
|
Caurcel C, Laetsch DR, Challis R, Kumar S, Gharbi K, Blaxter M. MolluscDB: a genome and transcriptome database for molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200157. [PMID: 33813885 PMCID: PMC8059625 DOI: 10.1098/rstb.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As sequencing becomes more accessible and affordable, the analysis of genomic and transcriptomic data has become a cornerstone of many research initiatives. Communities with a focus on particular taxa or ecosystems need solutions capable of aggregating genomic resources and serving them in a standardized and analysis-friendly manner. Taxon-focussed resources can be more flexible in addressing the needs of a research community than can universal or general databases. Here, we present MolluscDB, a genome and transcriptome database for molluscs. MolluscDB offers a rich ecosystem of tools, including an Ensembl browser, a BLAST server for homology searches and an HTTP server from which any dataset present in the database can be downloaded. To demonstrate the utility of the database and verify the quality of its data, we imported data from assembled genomes and transcriptomes of 22 species, estimated the phylogeny of Mollusca using single-copy orthologues, explored patterns of gene family size change and interrogated the data for biomineralization-associated enzymes and shell matrix proteins. MolluscDB provides an easy-to-use and openly accessible data resource for the research community. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
|
37
|
Zhang X, Rayner JG, Blaxter M, Bailey NW. Rapid parallel adaptation despite gene flow in silent crickets. Nat Commun 2021; 12:50. [PMID: 33397914 PMCID: PMC7782688 DOI: 10.1038/s41467-020-20263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which 'flatwing' males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.
Collapse
|
38
|
Mead D, Fingland K, Cripps R, Portela Miguez R, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Doulcan J, Quail MA, McCarthy SA, Howe K, Sims Y, Torrance J, Tracey A, Challis R, Durbin R, Blaxter M. The genome sequence of the eastern grey squirrel, Sciurus carolinensis Gmelin, 1788. Wellcome Open Res 2020; 5:27. [PMID: 33215047 PMCID: PMC7653645 DOI: 10.12688/wellcomeopenres.15721.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 12/02/2022] Open
Abstract
We present a genome assembly from an individual male
Sciurus carolinensis (the eastern grey squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.82 gigabases in span. The majority of the assembly (92.3%) is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.
Collapse
|
39
|
Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, Njoroge SM, Odinga CO, Ogendo A, Ogola J, Fèvre EM, Blaxter M. The Genome of Caenorhabditis bovis. Curr Biol 2020; 30:1023-1031.e4. [PMID: 32109387 DOI: 10.1016/j.cub.2020.01.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.
Collapse
|
40
|
Mead D, Hailer F, Chadwick E, Portela Miguez R, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Doulcan JD, Dudchenko O, Omer A, Weisz D, Lieberman Aiden E, McCarthy S, Howe K, Sims Y, Torrance J, Tracey A, Challis R, Durbin R, Blaxter M. The genome sequence of the Eurasian river otter, Lutra lutra Linnaeus 1758. Wellcome Open Res 2020; 5:33. [PMID: 32258427 PMCID: PMC7097881 DOI: 10.12688/wellcomeopenres.15722.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
We present a genome assembly from an individual male Lutra lutra (the Eurasian river otter; Vertebrata; Mammalia; Eutheria; Carnivora; Mustelidae). The genome sequence is 2.44 gigabases in span. The majority of the assembly is scaffolded into 20 chromosomal pseudomolecules, with both X and Y sex chromosomes assembled.
Collapse
|
41
|
Mead D, Fingland K, Cripps R, Portela Miguez R, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Lieberman Aiden E, Fedrigo O, Mountcastle J, Jarvis E, McCarthy SA, Sims Y, Torrance J, Tracey A, Howe K, Challis R, Durbin R, Blaxter M. The genome sequence of the Eurasian red squirrel, Sciurus vulgaris Linnaeus 1758. Wellcome Open Res 2020; 5:18. [PMID: 32587897 PMCID: PMC7309416 DOI: 10.12688/wellcomeopenres.15679.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
We present a genome assembly from an individual male Sciurus vulgaris (the Eurasian red squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.88 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.
Collapse
|
42
|
Pascoal S, Risse JE, Zhang X, Blaxter M, Cezard T, Challis RJ, Gharbi K, Hunt J, Kumar S, Langan E, Liu X, Rayner JG, Ritchie MG, Snoek BL, Trivedi U, Bailey NW. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol Lett 2019; 4:19-33. [PMID: 32055408 PMCID: PMC7006468 DOI: 10.1002/evl3.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound‐producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome‐wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.
Collapse
|
43
|
Schiffer PH, Danchin EGJ, Burnell AM, Creevey CJ, Wong S, Dix I, O'Mahony G, Culleton BA, Rancurel C, Stier G, Martínez-Salazar EA, Marconi A, Trivedi U, Kroiher M, Thorne MAS, Schierenberg E, Wiehe T, Blaxter M. Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. iScience 2019; 21:587-602. [PMID: 31759330 PMCID: PMC6889759 DOI: 10.1016/j.isci.2019.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.
Collapse
|
44
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
|
45
|
Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, García-Accinelli G, Van Belleghem SM, Patterson N, Neafsey DE, Challis R, Kumar S, Moreira GRP, Salazar C, Chouteau M, Counterman BA, Papa R, Blaxter M, Reed RD, Dasmahapatra KK, Kronforst M, Joron M, Jiggins CD, McMillan WO, Di Palma F, Blumberg AJ, Wakeley J, Jaffe D, Mallet J. Genomic architecture and introgression shape a butterfly radiation. Science 2019; 366:594-599. [PMID: 31672890 PMCID: PMC7197882 DOI: 10.1126/science.aaw2090] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
We used 20 de novo genome assemblies to probe the speciation history and architecture of gene flow in rapidly radiating Heliconius butterflies. Our tests to distinguish incomplete lineage sorting from introgression indicate that gene flow has obscured several ancient phylogenetic relationships in this group over large swathes of the genome. Introgressed loci are underrepresented in low-recombination and gene-rich regions, consistent with the purging of foreign alleles more tightly linked to incompatibility loci. Here, we identify a hitherto unknown inversion that traps a color pattern switch locus. We infer that this inversion was transferred between lineages by introgression and is convergent with a similar rearrangement in another part of the genus. These multiple de novo genome sequences enable improved understanding of the importance of introgression and selective processes in adaptive radiation.
Collapse
|
46
|
Chow FWN, Koutsovoulos G, Ovando-Vázquez C, Neophytou K, Bermúdez-Barrientos JR, Laetsch DR, Robertson E, Kumar S, Claycomb JM, Blaxter M, Abreu-Goodger C, Buck AH. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res 2019; 47:3594-3606. [PMID: 30820541 PMCID: PMC6468290 DOI: 10.1093/nar/gkz142] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.
Collapse
|
47
|
Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, Qian W, Rota-Stabelli O, Yang N, Wang S, Wang G, Zhang G, Guo J, Gu LA, Chen L, Xing L, Xi Y, Liu F, Lin K, Guo M, Liu W, He K, Tian R, Jacquin-Joly E, Franck P, Siegwart M, Ometto L, Anfora G, Blaxter M, Meslin C, Nguyen P, Dalíková M, Marec F, Olivares J, Maugin S, Shen J, Liu J, Guo J, Luo J, Liu B, Fan W, Feng L, Zhao X, Peng X, Wang K, Liu L, Zhan H, Liu W, Shi G, Jiang C, Jin J, Xian X, Lu S, Ye M, Li M, Yang M, Xiong R, Walters JR, Li F. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat Commun 2019; 10:4237. [PMID: 31530873 PMCID: PMC6748993 DOI: 10.1038/s41467-019-12175-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/20/2019] [Indexed: 01/27/2023] Open
Abstract
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion. The codling moth, Cydia pomonella, is one of the major pests of pome fruit (apples and pears) and walnuts. Here, the authors sequence and analyze its genome, providing insights on olfactory and detoxification processes that may underlie its worldwide expansion.
Collapse
|
48
|
Grosmaire M, Launay C, Siegwald M, Brugière T, Estrada-Virrueta L, Berger D, Burny C, Modolo L, Blaxter M, Meister P, Félix MA, Gouyon PH, Delattre M. Males as somatic investment in a parthenogenetic nematode. Science 2019; 363:1210-1213. [PMID: 30872523 DOI: 10.1126/science.aau0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
We report the reproductive strategy of the nematode Mesorhabditis belari This species produces only 9% males, whose sperm is necessary to fertilize and activate the eggs. However, most of the fertilized eggs develop without using the sperm DNA and produce female individuals. Only in 9% of eggs is the male DNA utilized, producing sons. We found that mixing of parental genomes only gives rise to males because the Y-bearing sperm of males are much more competent than the X-bearing sperm for penetrating the eggs. In this previously unrecognized strategy, asexual females produce few sexual males whose genes never reenter the female pool. Here, production of males is of interest only if sons are more likely to mate with their sisters. Using game theory, we show that in this context, the production of 9% males by M. belari females is an evolutionary stable strategy.
Collapse
|
49
|
Stevens L, Félix M, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K, Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M. Comparative genomics of 10 new Caenorhabditis species. Evol Lett 2019; 3:217-236. [PMID: 31007946 PMCID: PMC6457397 DOI: 10.1002/evl3.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023] Open
Abstract
The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.
Collapse
|
50
|
Hearn J, Pearson M, Blaxter M, Wilson PJ, Little TJ. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 2019; 20:197. [PMID: 30849937 PMCID: PMC6408862 DOI: 10.1186/s12864-019-5578-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The degradation of epigenetic control with age is associated with progressive diseases of ageing, including cancers, immunodeficiency and diabetes. Reduced caloric intake slows the effects of ageing and age-related disease in vertebrates and invertebrates, a process potentially mediated by the impact of caloric restriction on epigenetic factors such as DNA methylation. We used whole genome bisulphite sequencing to study how DNA methylation patterns change with diet in a small invertebrate, the crustacean Daphnia magna. Daphnia show the classic response of longer life under caloric restriction (CR), and they reproduce clonally, which permits the study of epigenetic changes in the absence of genetic variation. RESULTS Global cytosine followed by guanine (CpG) methylation was 0.7-0.9%, and there was no difference in overall methylation levels between normal and calorie restricted replicates. However, 333 differentially methylated regions (DMRs) were evident between the normally fed and CR replicates post-filtering. Of these 65% were hypomethylated in the CR group, and 35% were hypermethylated in the CR group. CONCLUSIONS Our results demonstrate an effect of CR on the genome-wide methylation profile. This adds to a growing body of research in Daphnia magna that demonstrate an epigenomic response to environmental stimuli. Specifically, gene Ontology (GO) term enrichment of genes associated with hyper and hypo-methylated DMRs showed significant enrichment for methylation and acyl-CoA dehydrogenase activity, which are linked to current understanding of their roles in CR in invertebrate model organisms.
Collapse
|