26
|
Ben Ameur W, El Megdiche Y, Ennaceur S, Mhadhbi T, Ben Hassine S, Annabi A, de Lapuente J, Driss MR, Borràs M, Eljarrat E. Biomarkers responses and polybrominated diphenyl ethers and their methoxylated analogs measured in Sparus aurata from the Lagoon of Bizerte, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38618-38632. [PMID: 35083694 DOI: 10.1007/s11356-022-18769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to the examination of the levels and effects of organobromine compounds (polybrominated diphenyl ethers: PBDEs and methoxylated brominated diphenyl ethers: MeO-PBDEs), in Sparus aurata native to the Lagoon of Bizerte. For that, different biomarkers of exposure (somatic indices, superoxide dismutase, and catalase activities) and effect (malondialdehyde level, histopathologic alterations, and DNA damage) as well as pollutant levels were measured in specimens collected from this impacted ecosystem and the Mediterranean Sea as a reference site. Bizerte Lagoon PBDE fish levels were higher than the Mediterranean Sea, whereas MeO-PBDEs were higher in the reference site. Fish from Bizerte Lagoon presented a higher hepatosomatic index, lower catalase and superoxide dismutase activity, higher level of malondialdehyde, and higher percentage of DNA tail in comparison to fish from the reference area. The histological study of the liver indicated substantial lesions in fish from the polluted site. The results showed strong positive correlations between the concentrations of the PBDE or MeO-PBDE and the MDA and DNA tail % levels and negative correlations for the activities of enzymes of SOD and CAT. Consequently, these findings could suggest a potential link between exposure to these pollutants and the observed biomarker responses in the Bizerte Lagoon seabream. Taken together, these results highlight the importance of biomarker selection and the selected sentinel fish species as useful tools for biomonitoring of aquatic pollution.
Collapse
|
27
|
Salamanca N, Moreno O, Giráldez I, Morales E, de la Rosa I, Herrera M. Effects of Dietary Phenylalanine and Tyrosine Supplements on the Chronic Stress Response in the Seabream ( Sparus aurata). Front Physiol 2022; 12:775771. [PMID: 35222060 PMCID: PMC8864120 DOI: 10.3389/fphys.2021.775771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
The increase of aquaculture production is associated with a growing interest in improving physiological status and welfare in fish. For this reason, the search for strategies for mitigating stress has been intensified, with one of these strategies being food supplementation with different amino acids (AA). The objective of this study was to evaluate the effects of dietary phenylalanine (Phe) and tyrosine (Tyr) supplements on the endocrine and physiological state of seabreams (Sparus aurata) subjected to chronic stress. The fish were stocked at 30 fish/tank in a recirculation aquatic system, fed one control diet and two diets supplemented with 5% Phe or Tyr for 90 days. Blood was drawn from 10 fish per tank every 30 days, and the weight and length were measured every 15 days. At the end of the experiment, length/weight of the fish were measured, and they were sacrificed for the extraction of blood, head kidney, liver, and brain. Classic plasma stress markers (glucose, lactate, proteins, and cortisol), as well as hormones derived from Phe and Tyr (adrenaline, norepinephrine, and dopamine) and the accumulation of AA were analyzed. Fish fed with diets supplemented with Phe or Tyr showed a reduction in various stress markers and physiological parameters. In addition, the stress condition favored a mobilization of AA toward the tissues, especially in supplemented diets, so this excess of AA could be used as an energy substrate to cope with stress.
Collapse
|
28
|
Santos P, Peixoto D, Ferreira I, Passos R, Pires P, Simões M, Pousão-Ferreira P, Baptista T, Costas B. Short-Term Immune Responses of Gilthead Seabream ( Sparus aurata) Juveniles against Photobacterium damselae subsp. piscicida. Int J Mol Sci 2022; 23:ijms23031561. [PMID: 35163486 PMCID: PMC8836189 DOI: 10.3390/ijms23031561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Photobacteriosis is a septicaemic bacterial disease affecting several marine species around the globe, resulting in significant economic losses. Although many studies have been performed related to the pathogen virulence and resistance factors, information regarding the host defence mechanisms activated once an infection takes place is still scarce. The present study was designed to understand innate immune responses of farmed juvenile gilthead seabream (Sparus aurata) after Photobacterium damselae subsp. piscicida (Phdp) infection. Therefore, two groups of seabream juveniles were intraperitoneally injected with 100 µL of PBS (placebo) or 100 µL of exponentially growing Phdp (1 × 106 CFU/mL; infected). The blood, plasma, liver, and head kidney of six fish from each treatment were sampled immediately before infection and 3, 6, 9, 24 and 48 h after infection for the broad screening of fish immune and oxidative stress responses. Infected animals presented marked anaemia, neutrophilia and monocytosis, conditions that are correlated with an increased expression of genes related to inflammation and phagocytic activity. Similar studies with different fish species and bacteria can be useful for the definition of health biomarkers that might help fish farmers to prevent the occurrence of such diseases.
Collapse
|
29
|
Severe Natural Outbreak of Cryptocaryon irritans in Gilthead Seabream Produces Leukocyte Mobilization and Innate Immunity at the Gill Tissue. Int J Mol Sci 2022; 23:ijms23020937. [PMID: 35055122 PMCID: PMC8780452 DOI: 10.3390/ijms23020937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.
Collapse
|
30
|
Kraberger S, Austin C, Farkas K, Desvignes T, Postlethwait JH, Fontenele RS, Schmidlin K, Bradley RW, Warzybok P, Van Doorslaer K, Davison W, Buck CB, Varsani A. Discovery of novel fish papillomaviruses: From the Antarctic to the commercial fish market. Virology 2022; 565:65-72. [PMID: 34739918 PMCID: PMC8713439 DOI: 10.1016/j.virol.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Fish papillomaviruses form a newly discovered group broadly recognized as the Secondpapillomavirinae subfamily. This study expands the documented genomes of the fish papillomaviruses from six to 16, including one from the Antarctic emerald notothen, seven from commercial market fishes, one from data mining of sea bream sequence data, and one from a western gull cloacal swab that is likely diet derived. The genomes of secondpapillomaviruses are ∼6 kilobasepairs (kb), which is substantially smaller than the ∼8 kb of terrestrial vertebrate papillomaviruses. Each genome encodes a clear homolog of the four canonical papillomavirus genes, E1, E2, L1, and L2. In addition, we identified open reading frames (ORFs) with short linear peptide motifs reminiscent of E6/E7 oncoproteins. Fish papillomaviruses are extremely diverse and phylogenetically distant from other papillomaviruses suggesting a model in which terrestrial vertebrate-infecting papillomaviruses arose after an evolutionary bottleneck event, possibly during the water-to-land transition.
Collapse
|
31
|
Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, Solomando A, Alomar C, Sureda A, Moranta D, Deudero S. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106048. [PMID: 34875488 DOI: 10.1016/j.aquatox.2021.106048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, microplastics (MPs) and adsorbed pollutants are considered a global thread to marine ecosystems. This study describes the effects of pollutants and MPs ingestion on fish brains through the assessment of oxidative stress biomarkers and monoaminergic neurotransmitters using gilthead seabream (Sparus aurata) as fish model. Juveniles were experimentally exposed to three different dietary treatments for 90 days: Control treatment (C) consisted of standard feed; Virgin treatment (V) contained feed enriched with 10% of MPs; and Exposed treatment (E) consisted of feed with 10% of MPs that were exposed to seawater in an anthropogenically impacted area for 2 months in order to enrich the plastic with the pollutants within the water column. Sampling was made at the start of the experiment (T0), at the end of the dietary treatments (T90) and after a posterior detoxification period of 30 days (T120). Results evidenced that a MPs and pollutants enriched diet increases the activity of some of the oxidative stress biomarkers (e.g. CAT and GST), and it was shown for the first time alterations on dopaminergic and serotonergic system activity on seabream brains, indicating potential neurofunctional effects associated to MPs and pollutants ingestion. In addition, results showed a tendency to recover enzymatic and brain monoaminergic neurotransmitter levels after a 30-day detoxification period. In conclusion, MPs and pollutants exposure for 90 days induced oxidative stress and changes on monoaminergic activity in the brain of S. aurata.
Collapse
|
32
|
Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Sparus aurata Juveniles Fed Yeast and Microalga Derived β-glucans. Mar Drugs 2021; 19:md19120653. [PMID: 34940652 PMCID: PMC8704051 DOI: 10.3390/md19120653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
This work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.
Collapse
|
33
|
Aedo J, Aravena-Canales D, Ruiz-Jarabo I, Oyarzún R, Molina A, Martínez-Rodríguez G, Valdés JA, Mancera JM. Differential Metabolic and Transcriptional Responses of Gilthead Seabream ( Sparus aurata) Administered with Cortisol or Cortisol-BSA. Animals (Basel) 2021; 11:ani11113310. [PMID: 34828041 PMCID: PMC8614361 DOI: 10.3390/ani11113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cortisol is a key stress hormone in teleosts. Cortisol exerts its effects through genomic—and membrane-initiated mechanisms, however, the role of the latter in long-term stress responses is unknown. Here, we treated Sparus aurata with cortisol or cortisol-BSA (exclusive inductor to membrane-initiated effects) to emulate a long-term stress situation. We found that cortisol, but not cortisol-BSA, promotes energy substrate mobilization in the liver, together with the regulation of metabolism-related genes. We suggest that genomic cortisol actions exclusively participate in metabolic responses during prolonged treatment using cortisol in S. aurata. This study contributes to the current knowledge on cortisol’s involvement in stress responses in fish. Abstract Cortisol is the main glucocorticoid hormone promoting compensatory metabolic responses of stress in teleosts. This hormone acts through genomic and membrane-initiated actions to exert its functions inside the cell. Experimental approaches, using exogenous cortisol administration, confirm the role of this hormone during short (minutes to hours)- and long-term (days to weeks) responses to stress. The role of membrane-initiated cortisol signaling during long-term responses has been recently explored. In this study, Sparus aurata were intraperitoneally injected with coconut oil alone or coconut oil containing cortisol, cortisol-BSA, or BSA. After 3 days of treatment, plasma, liver, and skeletal muscle were extracted. Plasma cortisol, as well as metabolic indicators in the plasma and tissues collected, and metabolism-related gene expression, were measured. Our results showed that artificially increased plasma cortisol levels in S. aurata enhanced plasma glucose and triacylglycerols values as well as hepatic substrate energy mobilization. Additionally, cortisol stimulated hepatic carbohydrates metabolism, as seen by the increased expression of metabolism-related genes. All of these responses, observed in cortisol-administered fish, were not detected by replicating the same protocol and instead using cortisol-BSA, which exclusively induces membrane-initiated effects. Therefore, we suggest that after three days of cortisol administration, only genomic actions are involved in the metabolic responses in S. aurata.
Collapse
|
34
|
Effect on Intermediary Metabolism and Digestive Parameters of the High Substitution of Fishmeal with Insect Meal in Sparus aurata Feed. INSECTS 2021; 12:insects12110965. [PMID: 34821766 PMCID: PMC8618839 DOI: 10.3390/insects12110965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
Hermetia illucens and Tenebrio molitor were tested on account of their potential to replace fish protein in feed. Two levels of replacement for H. illucens, 30% and 50% (H30 and H50), and one for T. molitor, 50% (T50), as well as an additional diet with a modified fatty acid fraction (H50M), were investigated in relation to juvenile Sparus aurata growth indices, enzyme activities and gut microbiome. A T50 diet showed similar results to a control (C) diet, with no significant differences regarding morphological indices and minor differences for nutritional indices. Regarding the gut microbiome, H50M was the diet which showed the more similar prokaryotic community to C, which suggests that fatty acid fractions might influence the composition of the gut microbiome. Nevertheless, differences appeared to be related to a redistribution of dominant species, while changes in species affiliation were limited to minoritary species. The positive correlation between some of these minoritary species (Peptostreptococcus russellii, Streptococcus dysgalactiae and Weisella confusa) and several fish growth parameters might explain differences between control and insect diets. Deciphering such uncertainty and revealing the potential role these unusual species may play on fish performance should be addressed in future investigations.
Collapse
|
35
|
Occurrence of Neobenedenia girellae (Monogenea: Capsalidae) in Gilthead Seabream Sparus aurata (Actinopterygii: Sparidae) Cultured in Portugal. Pathogens 2021; 10:pathogens10101269. [PMID: 34684218 PMCID: PMC8538979 DOI: 10.3390/pathogens10101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Monogenean capsalids of the genus Neobenedenia are widespread parasites of wild and farmed marine fish, and represent a potential threat to mariculture due to their pathogenicity and ability to cause mortality in fish maintained in controlled conditions. The identification of Neobenedenia species and, consequently, the definition of their host specificity is often problematic due to their highly conserved morphology; therefore, in order to establish their specific identity, microscopic observation should be complemented with molecular analysis. The present work aims at characterizing Neobenedenia specimens infecting the skin of cage reared gilthead seabream Sparus aurata from Portugal. Parasite samples obtained from caged fish were processed for morphological analysis, through observation in light and scanning electron microscopy, and for molecular analysis, through amplification and sequencing of 28S rDNA and cytB, aimed at identifying them to the species level. Our results showed that the collected parasites belonged to the species Neobenedenia girellae; the susceptibility of S. aurata towards this pathogenic capsalid monogenean highlighted in the present work represents an important risk in the farming of this valuable fish species.
Collapse
|
36
|
Chérif N, El Jeni R, Amdouni F, Zreilli S, Djabou H, Khemiri S, Tliba I, Bouhaouala-Zahar B, Maatoug K, Zaafran S, Groman D. Phylogeography of betanodavirus genotypes circulating in Tunisian aquaculture sites, 2012-2019. DISEASES OF AQUATIC ORGANISMS 2021; 146:53-63. [PMID: 34553693 DOI: 10.3354/dao03614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to determine the phylogenetic relationships among the primary betanodavirus strains circulating in Tunisian coastal waters. A survey was conducted to investigate nodavirus infections at 15 European sea bass Dicentrarchus labrax and gilthead sea bream Sparus aurata farming sites located along the northern and eastern coasts of Tunisia. The primary objective of the study was to create epidemiological awareness of these infections by determining phylogenetic relationships between the main betanodavirus strains circulating during the period 2012-2019, using RNA1 and/or RNA2 genome segments. Approximately 40% (118 of 294) tissue pools tested were positive for betanodavirus. Positive pools were distributed across all of the sampling sites. While fish mortalities were always correlated with the presence of virus in sea bass, a severe outbreak was also identified in sea bream larvae in 2019. Phylogenetic analysis revealed that almost all Tunisian strains from both sea bass and sea bream irrespective of outbreaks clustered within the RGNNV genotype. It is noteworthy that samples collected during the 2019 outbreak from sea bream contained both RNA1 and RNA2 fragments belonging to the RGNNV and SJNNV genotype, respectively, an indication of viral genome reassortment. To our knowledge, this is the first report of reassortant betanodavirus in Tunisia.
Collapse
|
37
|
Chatzifotis S, Gutiérrez AG, Papadaki M, Caruso F, Sigelaki I, Mylonas CC. Lack of negative effects of fasting of gilthead seabream ( Sparus aurata) breeders during the spawning period on maternal and egg nutrient composition, fertilization success, and early embryo/larval development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1257-1270. [PMID: 34226987 DOI: 10.1007/s10695-021-00979-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The effect of fasting on spawning performance, maternal, and egg nutrient composition, and on embryo/larval development was monitored in gilthead seabream (Sparus aurata). Two broodstocks were fasted during two consecutive years, for a period of 43 and 54 days within the spawning season, in a preliminary (year 1, 5-year-old breeders) and the main study (year 2, 6-year-old breeders), respectively. Mean daily fecundity showed a declining trend during fasting in the main study only, while fertilization success was high in both years and it was not affected by fasting, as was hatching and 5-day larval survival. There was a loss of 23.5% of maternal body mass due to fasting, and a reduction in gonadosomatic and hepatosomatic indexes, as well as crude protein in maternal muscle and gonads, but not in the liver. After fasting, muscle Σω-6 PUFA and C18:3ω-3 were reduced while C20:4ω-6, 20:5ω-3/20:4ω-6, and C22:6ω-3/20:4ω-6 increased; in the liver, significant reductions were observed in C16:0, C18:3 ω-3, 20:5ω-3/C22:6ω-3 and increases in C18:0, C20:5ω-3, Σω-6 PUFA, and 20:5ω-3/20:4ω-6; in gonads, C15:0, ΣMUFA, 20:5ω-3/C22:6ω-3, 20:5ω-3/20:4ω-6 were increased, while C18:1ω-9 and C20:5ω-3 decreased. Contrary to maternal tissues, the energy density and proximate composition of the eggs did not change due to fasting. The study suggests that fasting of gilthead seabream breeders for 6-8 weeks during the spawning period does not affect spawning performance, egg proximate composition, or embryo and early larval development since maternal nutrient reserves are mobilized to maintain optimal egg nutrient composition.
Collapse
|
38
|
Griot R, Allal F, Phocas F, Brard-Fudulea S, Morvezen R, Haffray P, François Y, Morin T, Bestin A, Bruant JS, Cariou S, Peyrou B, Brunier J, Vandeputte M. Optimization of Genomic Selection to Improve Disease Resistance in Two Marine Fishes, the European Sea Bass ( Dicentrarchus labrax) and the Gilthead Sea Bream ( Sparus aurata). Front Genet 2021; 12:665920. [PMID: 34335683 PMCID: PMC8317601 DOI: 10.3389/fgene.2021.665920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Disease outbreaks are a major threat to the aquaculture industry, and can be controlled by selective breeding. With the development of high-throughput genotyping technologies, genomic selection may become accessible even in minor species. Training population size and marker density are among the main drivers of the prediction accuracy, which both have a high impact on the cost of genomic selection. In this study, we assessed the impact of training population size as well as marker density on the prediction accuracy of disease resistance traits in European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). We performed a challenge to nervous necrosis virus (NNV) in two sea bass cohorts, a challenge to Vibrio harveyi in one sea bass cohort and a challenge to Photobacterium damselae subsp. piscicida in one sea bream cohort. Challenged individuals were genotyped on 57K-60K SNP chips. Markers were sampled to design virtual SNP chips of 1K, 3K, 6K, and 10K markers. Similarly, challenged individuals were randomly sampled to vary training population size from 50 to 800 individuals. The accuracy of genomic-based (GBLUP model) and pedigree-based estimated breeding values (EBV) (PBLUP model) was computed for each training population size using Monte-Carlo cross-validation. Genomic-based breeding values were also computed using the virtual chips to study the effect of marker density. For resistance to Viral Nervous Necrosis (VNN), as one major QTL was detected, the opportunity of marker-assisted selection was investigated by adding a QTL effect in both genomic and pedigree prediction models. As training population size increased, accuracy increased to reach values in range of 0.51-0.65 for full density chips. The accuracy could still increase with more individuals in the training population as the accuracy plateau was not reached. When using only the 6K density chip, accuracy reached at least 90% of that obtained with the full density chip. Adding the QTL effect increased the accuracy of the PBLUP model to values higher than the GBLUP model without the QTL effect. This work sets a framework for the practical implementation of genomic selection to improve the resistance to major diseases in European sea bass and gilthead sea bream.
Collapse
|
39
|
Peruzza L, Pascoli F, Dalla Rovere G, Franch R, Ferraresso S, Babbucci M, Biasini L, Abbadi M, Panzarin V, Toffan A, Bargelloni L. Transcriptome analysis reveals a complex response to the RGNNV/SJNNV reassortant Nervous Necrosis Virus strain in sea bream larvae. FISH & SHELLFISH IMMUNOLOGY 2021; 114:282-292. [PMID: 33971258 DOI: 10.1016/j.fsi.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The gilthead sea bream (Sparus aurata) is a marine fish of great importance for Mediterranean aquaculture. This species has long been considered resistant to Nervous Necrosis Virus (NNV), an RNA virus that causes massive mortalities in several farmed fish animals. However, the recent appearance of RGNNV/SJNNV reassortant strains started to pose a serious threat to sea bream hatcheries, as it is able to infect larvae and juveniles of this species. While host response to NNV has been extensively studied in adult fish, little attention has been devoted to early life history stages, which are generally the most sensitive ones. Here we report for the first time a time-course RNA-seq analysis on 21-day old fish gilthead sea bream larvae experimentally infected with a RGNNV/SJNNV strain. NNV-infected and mock-infected samples were collected at four time points (6 h, 12 h, 24 h, and 48 h post infection). Four biological replicates, each consisting of five pooled larvae, were analysed for each time point and group. A large set of genes were found to be significantly regulated, especially at early time points (6 h and 12 h), with several heat shock protein encoding transcripts being up-regulated (e.g. hspa5, dnaj4, hspa9, hsc70), while many immune genes were down-regulated (e.g. myd88 and irf5 at T06, pik3r1, stat3, jak1, il12b and il6st at T12). A gene set enrichment analysis (GSEA) identified several altered pathways/processes. For instance, the formation of peroxisomes, which are important anti-viral components as well as essential for nervous system homeostasis, and the autophagy pathway were down-regulated at 6 h and 24 h post infection (hpi). Finally, two custom "reactomes" (i.e. significant gene sets observed in other studies) were defined and used. The first reactome integrated the transcriptomic response to NNV in different fish species, while the second one included all genes found to be stimulated either by interferon (IFN) or by IFN and Chikungunya virus in zebrafish. Genes in both reactomes showed predominant up-regulation at 6hpi and 12hpi and a general down-regulation at 24hpi. Such evidence suggest a certain degree of similarity between the response of sea bream and that of other fish species to NNV, while the observed down-regulation of IFN- and viral-stimulated pathways argues for a possible interference of NNV against the host response.
Collapse
|
40
|
Perelló-Amorós M, Fernández-Borràs J, Sánchez-Moya A, Vélez EJ, García-Pérez I, Gutiérrez J, Blasco J. Mitochondrial Adaptation to Diet and Swimming Activity in Gilthead Seabream: Improved Nutritional Efficiency. Front Physiol 2021; 12:678985. [PMID: 34220544 PMCID: PMC8249818 DOI: 10.3389/fphys.2021.678985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects.
Collapse
|
41
|
Lounas R, Kasmi H, Chernai S, Amarni N, Ghebriout L, Hamdi B. Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea-human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30732-30742. [PMID: 33594559 DOI: 10.1007/s11356-021-12864-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Arsenic, cadmium, copper, lead, and zinc concentrations in the edible part of wild and farmed Sparus aurata from Algerian coastal were determined. The highest concentrations of cadmium (0.0078 mg kg-1 wet weight), copper (0.98 mg kg-1 w.w), and zinc (5.1 mg kg-1 w.w) were recorded in farmed sea bream, whereas the highest arsenic (5.02 mg kg-1 w.w) and lead (0.006 mg kg-1 w.w) levels were registered in wild one. The statistical analysis (Friedman test, p < 0.05) indicated that the origin of fish (wild, farmed in a cage, and farmed in raceway) has relevance to the distribution of metal. Estimated weekly intake of inorganic arsenic, cadmium, and lead for a 72.5-kg person consuming Sparus aurata from Algeria does not exceed 1% of the WHO/JECFA recommended rate for all metals, certainly due to the limited consumption of seafood products by the local population. The total target hazard index is far less than "one" 1, and the carcinogenic risk for arsenic exceeds the acceptable value of 10-5. Based on the result of this study, the potential risk to human health from the consumption of contaminate farmed sea bream (in the cage) should be considered.
Collapse
|
42
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
|
43
|
Vergès-Castillo A, González-Vargas IA, Muñoz-Cueto JA, Martín-Robles ÁJ, Pendon C. Establishment and characterisation of single cell-derived embryonic stem cell lines from the gilthead seabream, Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110626. [PMID: 34044158 DOI: 10.1016/j.cbpb.2021.110626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals. Embryonic stem (ES) cell lines have attracted increasing attention because they have the capability to proliferate indefinitely and could be differentiated into any cell type of the organism. To minimise cell heterogeneity and increase uniformity of in vitro studies results, in this manuscript we report the development and characterisation of two single cell-derived ES cell lines (monoclonal) from the morula stage embryos of the gilthead seabream, Sparus aurata, named as SAEC-A3 and SAEC-H7. Both cell lines have been passaged for over 100 times, indicating the establishment of long-term, immortalised ES cell cultures. Sequence analyses confirmed the seabream origin of the cell lines, and growth analyses evidenced their high viability and proliferating activity, particularly in culture medium supplemented with 10-15% fetal bovine serum and 22 °C. Both cell lines showed the ability to generate embryoid bodies and show different sensitivity and response to all-trans retinoic acid. The analysis of epithelial (col1α1) and neuronal (sox3) markers in differentiated cultures revealed that SAEC-A3 tended to differentiate towards epithelial-like cells whereas SAEC-H7 tended to differentiate towards neuronal-like cells. Both cell lines were efficiently transfected with pDsRed2-ER and/or pEGFP-N1 plasmids, indicating that they could represent useful biotechnological tools. Daily expression of pcna showed significant expression rhythms, with maximum levels of cell proliferation during the day-night transition. Currently, these cell lines are being successfully used as experimental models for the study of cellular metabolism, physiology and rhythms as well as for toxicological, pharmacological and gene expression analyses.
Collapse
|
44
|
Jebara A, Lo Turco V, Faggio C, Licata P, Nava V, Potortì AG, Crupi R, Mansour HB, Di Bella G. Monitoring of Environmental Hg Occurrence in Tunisian Coastal Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5202. [PMID: 34068387 PMCID: PMC8153593 DOI: 10.3390/ijerph18105202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Total mercury (Hg) was determined in 450 environmental samples (seawater, sediment plant and fish) from five Mahdia coastal areas (Tunisia). Tolerable Weekly Intake% (TWI) values, according to the European Food Safety Authority (EFSA), were calculated based on the average metal concentration in fish and the average weekly fish consumption rate. Hg was accumulated mainly in fish and in Posidonia oceanica leaves. Hg in sediment ranged from 1.88 μg/kg dry weight (d.w.) to 7.48 μg/kg d.w., while it was between 0.32 μg/kg and 0.19 μg/kg in seawaters. Our study showed high concentration in Posidonia oceanica in S3 (plant = 16.76 ± 4.48 μg/kg d.w.) as compared to those in S4 sites (plant = 5.33 ± 0.05 μg/kg d.w.). Concentrations for S. aurata and S. salpa in the Rejiche area exceeded the EC 1881/2006 legislation with values of 1.9 mg/kg and 2.5 mg/kg, respectively, and consumers may be exposed to high concentrations of Hg that exceeds the EFSA. The results showed that the fish species should be constantly monitored due to their TWI% of 154.5% for S. aurata and 209.8% S. salpa respectively.
Collapse
|
45
|
Lounas R, Kasmi H, Chernai S, Amarni N, Hamdi B. Dynamics of the genus Ostreopsis (Gonyaulacales, Dinophyceae) in a Mediterranean fish farm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:333. [PMID: 33970342 DOI: 10.1007/s10661-021-09117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
This study revealed the dynamics of the genus Ostreopsis in the south-western Mediterranean Sea fish farm during the 2016 and 2017 summers. This phytoplankton is known to produce palytoxin-like compounds, listed among the most potent marine toxins known, and can pose a serious concern for humans in the Mediterranean area. Principal component analysis (PCA) explained the significance of temperature, salinity, and dissolved inorganic nitrogen in the proliferation of this toxic dinoflagellate. The peak of the Ostreopsis sp. (6.34 × 103 cells L-1) was recorded at 28.4 °C, at a salinity of 38.3 PSU, and the dissolved inorganic nitrogen had a value of 0.60 μmol L-1. Our results highlight the importance of monitoring the proliferation of this harmful dinoflagellate in southern Mediterranean waters.
Collapse
|
46
|
Capó X, Company JJ, Alomar C, Compa M, Sureda A, Grau A, Hansjosten B, López-Vázquez J, Quintana JB, Rodil R, Deudero S. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144976. [PMID: 33636779 DOI: 10.1016/j.scitotenv.2021.144976] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Plastics accumulation in marine ecosystems has notable ecological implications due to their long persistence, potential ecotoxicity, and ability to adsorb other pollutants or act as vectors of pathogens. The present work aimed to evaluate the physiological response of the gilthead seabream (Sparus aurata) fed for 90 days with a diet enriched with virgin and seawater exposed low-density polyethylene microplastics (LDPE-MPs) (size between 100 and 500 μM), followed by 30 days of depuration, applying oxidative stress and inflammatory markers in liver homogenates. No effects of LDPE-MPs treatments on fish growth were observed throughout this study. A progressive increase in antioxidant enzyme activities was observed throughout the study in both treatments, although this increase was higher in the group treated with seawater exposed MPs. This increase was significantly higher in catalase (CAT), glutathione reductase (GRd), and glutathione-s-transferase (GST) in the seawater exposed MPs group, with respect to the virgin group. In contrast, no significant differences were recorded in superoxide dismutase (SOD) and glutathione peroxidase (GPx) between both groups. Exposure to MPs also caused an increase in the oxidative damage markers (malondialdehyde and carbonyls groups). Myeloperoxidase activity significantly increased because of MPs treatments. After 30 days of depuration, antioxidant, inflammatory enzyme activities and oxidative damage markers returned to values similar to those observed in the control group. In conclusion, MPs exposure induced an increase of antioxidant defences in the liver of S. aurata. However, these elevated antioxidant capabilities were not enough to prevent oxidative damage in the liver since, an increased oxidative damage marker was associated with MPs ingestion. The treatment with seawater exposed MPs caused a more significant antioxidant response (CAT, GRs, and GST). Although after a depuration period of 30 days a tendency to recover the initial values of the biomarkers was observed this does not seem to be time enough for a complete normalization.
Collapse
|
47
|
Panteli N, Mastoraki M, Lazarina M, Chatzifotis S, Mente E, Kormas KA, Antonopoulou E. Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms 2021; 9:microorganisms9040699. [PMID: 33800578 PMCID: PMC8067204 DOI: 10.3390/microorganisms9040699] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.
Collapse
|
48
|
Comas J, Parra D, Balasch JC, Tort L. Effects of Fouling Management and Net Coating Strategies on Reared Gilthead Sea Bream Juveniles. Animals (Basel) 2021; 11:ani11030734. [PMID: 33800253 PMCID: PMC7999983 DOI: 10.3390/ani11030734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Fish farming strives to cover the increasing demand for aquatic food sources as a result of global population growth. As a primary sector industry, aquaculture profit margins are narrow. Fouling management is an issue and represents a significant part of the operational cost of this activity. Over the last 30 years, this problem has been approached from different perspectives and the use of copper dioxide to control fouling production has been the most successful strategy. However, far beyond being the definite solution, the use of copper involves several concerns, and so the aquaculture industry has been continuously trying to find a reliable alternative. Coating the nets and cleaning on-site was adopted by the industry as a realistic alternative around 2015. This work contrasts these two fouling management strategies, simulating real working conditions by analysing the results from different perspectives. The conclusions from this work suggest a combination of both as a promising future alternative. Abstract In aquaculture, biofouling management is a difficult and expensive issue. Cuprous oxide has been commonly used to prevent fouling formation. To cheapen net management and reduce the use of copper, the industry has proposed several alternatives. Currently, polyurethane coatings are being explored and commercially implemented. With this alternative, net cleaning is done in situ, reducing the number of nets necessary to raise a batch, thus ideally reducing operational costs. This pilot study compared this new strategy to the use of cuprous oxide. The results show that nets treated with antifouling perform better and bioaccumulation of copper in fish tissues do not pose health risks to fish. Alternatives involving on-site cleaning need to improve efficiency. Although the conditions of this work are not completely comparable to commercial aquaculture conditions, the results might indicate the strengths and constrains of the solutions tested in real life.
Collapse
|
49
|
Hachim M, Rouyer T, Dutto G, Kerzerho V, Bernard S, Bourjea J, McKenzie DJ. Oxygen uptake, heart rate and activities of locomotor muscles during a critical swimming speed protocol in the gilthead sea bream Sparus aurata. JOURNAL OF FISH BIOLOGY 2021; 98:886-890. [PMID: 33215710 DOI: 10.1111/jfb.14621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Oxygen uptake, heart rate and contraction frequencies of slow oxidative (SO) and fast glycolytic (FG) muscle were measured simultaneously in gilthead seabream Sparus aurata submitted to stepwise increases in current speed in a swimming respirometer. Variation in oxygen uptake was closely related to variation in heart rate, over initial steps these rose in concert with an increase in contraction frequency of SO muscle. There was an asymptote in oxygen uptake and heart rate at high speeds that reflected a transition from exclusive use of aerobic SO muscle to a combination of SO and anaerobic FG muscle, and which preceded fatigue.
Collapse
|
50
|
Ruiz-Jarabo I, Gregório SF, Alves A, Mancera JM, Fuentes J. Ocean acidification compromises energy management in Sparus aurata (Pisces: Teleostei). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110911. [PMID: 33647459 DOI: 10.1016/j.cbpa.2021.110911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
The effects of ocean acidification mediated by an increase in water pCO2 levels on marine organisms are currently under debate. Elevated CO2 concentrations in the seawater induce several physiological responses in teleost fish, including acid-base imbalances and osmoregulatory changes. However, the consequences of CO2 levels enhancement on energy metabolism are mostly unknown. Here we show that 5 weeks of exposure to hypercapnia (950 and 1800 μatm CO2) altered intermediary metabolism of gilthead seabream (Sparus aurata) compared to fish acclimated to current ocean values (440 μatm CO2). We found that seabream compromises its physiological acid-base balance with increasing water CO2 levels and the subsequent acidification. Intestinal regions (anterior, mid, and rectum) engaged in maintaining this balance are thus altered, as seen for Na+/K+-ATPase and the vacuolar-type H+-ATPase activities. Moreover, liver and muscle counteracted these effects by increasing catabolic routes e.g., glycogenolysis, glycolysis, amino acid turnover, and lipid catabolism, and plasma energy metabolites were altered. Our results demonstrate how a relatively short period of 5 weeks of water hypercapnia is likely to disrupt the acid-base balance, osmoregulatory capacity and intermediary metabolism in S. aurata. However, long-term studies are necessary to fully understand the consequences of ocean acidification on growth and other energy-demanding activities, such as reproduction.
Collapse
|