26
|
Song C, Spaak JW. Trophic tug-of-war: Coexistence mechanisms within and across trophic levels. Ecol Lett 2024; 27:e14409. [PMID: 38590122 DOI: 10.1111/ele.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.
Collapse
|
27
|
Muñoz-Lechuga R, Lino PG, González-Ortegón E. Interspecific, ontogenetic and temporal variations in stable isotopes of small tuna species in the northeast Atlantic Ocean. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:13-31. [PMID: 38127307 DOI: 10.1080/10256016.2023.2289956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023]
Abstract
In order to study the trophic level of small tuna species and their contribution to the carbon flow in pelagic food webs, an analysis of carbon and nitrogen stable isotopes was carried out. The investigation was focused on four small tuna species (Auxis rochei, Auxis thazard, Euthynnus alletteratus and Sarda sarda) commonly harvested in the northeast Atlantic Ocean. The isotope analysis showed how the results for S. sarda are different from the rest of the species analysed, with a higher trophic level, similar to other major tuna species. The greatest niche overlap in δ13C and δ15N occurs among A. rochei, A. thazard and E. alletteratus. Auxis rochei and E. alletteratus showed a size-dependent variability in δ15N, and in δ13C for S. sarda. The small tuna S. sarda exhibits the highest migration rates among various geographical areas in comparison to other small pelagic tunas, and the seasonal variability of isotope values in the area studied can be attributed to the incorporation of larger individuals with a higher lipid content. The results of this work provide new information on the ecological role played by small tuna in food webs, which is more complex and varied than currently thought. This knowledge is essential for a more effective management of fisheries.
Collapse
|
28
|
Allen DC, Larson J, Murphy CA, Garcia EA, Anderson KE, Busch MH, Argerich A, Belskis AM, Higgins KT, Penaluna BE, Saenz V, Jones J, Whiles MR. Global patterns of allochthony in stream-riparian meta-ecosystems. Ecol Lett 2024; 27:e14401. [PMID: 38468439 DOI: 10.1111/ele.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Ecosystems that are coupled by reciprocal flows of energy and nutrient subsidies can be viewed as a single "meta-ecosystem." Despite these connections, the reciprocal flow of subsidies is greatly asymmetrical and seasonally pulsed. Here, we synthesize existing literature on stream-riparian meta-ecosystems to quantify global patterns of the amount of subsidy consumption by organisms, known as "allochthony." These resource flows are important since they can comprise a large portion of consumer diets, but can be disrupted by human modification of streams and riparian zones. Despite asymmetrical subsidy flows, we found stream and riparian consumer allochthony to be equivalent. Although both fish and stream invertebrates rely on seasonally pulsed allochthonous resources, we find allochthony varies seasonally only for fish, being nearly three times greater during the summer and fall than during the winter and spring. We also find that consumer allochthony varies with feeding traits for aquatic invertebrates, fish, and terrestrial arthropods, but not for terrestrial vertebrates. Finally, we find that allochthony varies by climate for aquatic invertebrates, being nearly twice as great in arid climates than in tropical climates, but not for fish. These findings are critical to understanding the consequences of global change, as ecosystem connections are being increasingly disrupted.
Collapse
|
29
|
Steinkopf M, Krumme U, Schulz‐Bull D, Wodarg D, Loick‐Wilde N. Trophic lengthening triggered by filamentous, N 2-fixing cyanobacteria disrupts pelagic but not benthic food webs in a large estuarine ecosystem. Ecol Evol 2024; 14:e11048. [PMID: 38380063 PMCID: PMC10877452 DOI: 10.1002/ece3.11048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Eutrophication, increased temperatures and stratification can lead to massive, filamentous, N2-fixing cyanobacterial (FNC) blooms in coastal ecosystems with largely unresolved consequences for the mass and energy supply in food webs. Mesozooplankton adapt to not top-down controlled FNC blooms by switching diets from phytoplankton to microzooplankton, resulting in a directly quantifiable increase in its trophic position (TP) from 2.0 to as high as 3.0. If this process in mesozooplankton, we call trophic lengthening, was transferred to higher trophic levels of a food web, a loss of energy could result in massive declines of fish biomass. We used compound-specific nitrogen stable isotope data of amino acids (CSIA) to estimate and compare the nitrogen (N) sources and TPs of cod and flounder from FNC bloom influence areas (central Baltic Sea) and areas without it (western Baltic Sea). We tested if FNC-triggered trophic lengthening in mesozooplankton is carried over to fish. The TP of cod from the western Baltic (4.1 ± 0.5), feeding mainly on decapods, was equal to reference values. Only cod from the central Baltic, mainly feeding on zooplanktivorous pelagics, had a significantly higher TP (4.6 ± 0.4), indicating a strong carry-over effect trophic lengthening from mesozooplankton. In contrast, the TP of molluscivorous flounder, associated with the benthic food web, was unaffected by trophic lengthening and quite similar reference values of 3.2 ± 0.2 in both areas. This suggests that FNC blooms lead to a large loss of energy in zooplanktivorous but not in molluscivorous mesopredators. If FNC blooms continue to trigger the detour of energy at the base of the pelagic food web due to a massive heterotrophic microbial system, the TP of cod will not return to lower TP values and the fish stock not recover. Monitoring the TP of key species can identify fundamental changes in ecosystems and provide information for resource management.
Collapse
|
30
|
Xing W, Hu N, Li Z, Feng L, Zhang W, Du Preez G, Zhang H, Li D, Lu S, Chang SX, Zhang Q, Lou Y. Soil enzyme profile analysis for indicating decomposer micro- food web. IMETA 2024; 3:e161. [PMID: 38868509 PMCID: PMC10989158 DOI: 10.1002/imt2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 06/14/2024]
Abstract
Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C-degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro-food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro-food web features by using soil enzyme profile analysis.
Collapse
|
31
|
Berezina NA, Terentjev PM, Zubova EM, Tsurikov SM, Maximov AA, Sharov AN. Seasonal Diet Changes and Trophic Links of Cold-Water Fish ( Coregonus albula) within a Northern Lake Ecosystem. Animals (Basel) 2024; 14:394. [PMID: 38338037 PMCID: PMC10854978 DOI: 10.3390/ani14030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The seasonal feeding patterns of the cold-adapted fish, Coregonus albula, are poorly studied in high-latitude lakes but could provide insight for predicting the effects of global warming. We examined vendace's diet composition, traced the carbon and nitrogen isotope ratios from producers to consumers in the food web, and estimated vendace's trophic position in a subarctic lake (the White Sea basin). Results showed the vendace to be a typical euryphagous fish, but clear seasonal differences were found in the relative importance of plankton and benthos in the diet. The vendace consumed primarily benthic amphipods in the summer, planktonic cladocerans in the autumn, and copepods in the winter-spring (under ice); larvae of aquatic insects were the second-most important food items throughout the year. Because of the substantial proportion of fish embryos in its diet, the vendace had a trophic position similar to that of a predatory fish (perch). The Bayesian food source-mixing model revealed that the majority of vendace energy derives from planktonic copepods. The dominant Cyclops had the lowest carbon isotope values, suggesting a carbon-depleted diet typical for methanotrophic bacteria, as its probable food source was in a lake under ice. Understanding the feeding patterns of vendace provides information to better predict the potential biotic effects of environmental change on lake ecosystems.
Collapse
|
32
|
Jiang JJ, Zhao YJ, Guo Y, Gao L, Richards CL, Siemann E, Wu J, Li B, Ju RT. Restoration of native saltmarshes can reverse arthropod assemblages and trophic interactions changed by a plant invasion. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2740. [PMID: 36102220 DOI: 10.1002/eap.2740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Plant invasions profoundly impact both natural and managed ecosystems, and removal of the invasive plants addresses only part of the problem of restoring impacted areas. The rehabilitation of diverse communities and their ecosystem functions following removal of invasive plants is an important goal of ecological restoration. Arthropod assemblages and trophic interactions are important indicators of the success of restoration, but they have largely been overlooked in saltmarshes. We determined how arthropod assemblages and trophic interactions changed with the invasion of the exotic plant Spartina alterniflora and with the restoration of the native plant Phragmites australis following Spartina removal in a Chinese saltmarsh. We investigated multiple biotic and abiotic variables to gain insight into the factors underlying the changes in arthropod assemblages and trophic structure. We found that although Spartina invasion had changed arthropod diversity, community structure, feeding-guild composition, and the diets of arthropod natural enemies in the saltmarsh, these changes could be reversed by the restoration of native Phragmites vegetation following removal of the invader. The variation in arthropod assemblages and trophic structure were critically associated with four biotic and abiotic variables (aboveground biomass, plant density, leaf N, and soil salinity). Our findings demonstrate the positive effects of controlling invasive plants on biodiversity and nutrient cycling and provide a foundation for assessing the efficacy of ecological restoration projects in saltmarshes.
Collapse
|
33
|
Khanongnuch R, Mangayil R, Rissanen AJ. Conversion of methane to organic acids is a widely found trait among gammaproteobacterial methanotrophs of freshwater lake and pond ecosystems. Microbiol Spectr 2023; 11:e0174223. [PMID: 37861333 PMCID: PMC10715148 DOI: 10.1128/spectrum.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas, from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter, we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.
Collapse
|
34
|
Hall LA, Woo I, Marvin-DiPasquale M, Takekawa JY, Krabbenhoft DP, Yee D, Grenier L, De La Cruz SEW. Linking Mesoscale Spatial Variation in Methylmercury Production to Bioaccumulation in Tidal Marsh Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19263-19273. [PMID: 37956992 DOI: 10.1021/acs.est.3c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Differences in sediment biogeochemistry among tidal marsh features with different hydrological and geomorphological characteristics, including marsh interiors, marsh edges, first-order channels, and third-order channels, can result in spatial variation in MeHg production and availability. To better understand the link between MeHg production in sediments and bioaccumulation in primary and secondary consumer invertebrates and fish, we characterized mesoscale spatial variation in sediment biogeochemistry and MeHg concentrations of sediments, water, and consumer tissues among marsh features. Our results indicated that marsh interiors had biogeochemical conditions, including greater concentrations of organic matter and sulfate reduction rates, that resulted in greater MeHg concentrations in sediments and surface water particulates from marsh interiors compared to other features. Tissue MeHg concentrations of consumers also differed among features, with greater concentrations from marsh edges and interiors compared to channels. This spatial mismatch of MeHg concentrations in sediments and water compared to those in consumers may have resulted from differences in behavior and physiology among consumers that influenced the spatial scale over which MeHg was integrated into tissues. Our results highlight the importance of sampling across a suite of marsh features and considering the behavioral and physiological traits of sentinel taxa for contaminant monitoring studies.
Collapse
|
35
|
Gaüzère P, Botella C, Poggiato G, O'Connor L, Di Marco M, Dragonetti C, Maiorano L, Renaud J, Thuiller W. Dissimilarity of vertebrate trophic interactions reveals spatial uniqueness but functional redundancy across Europe. Curr Biol 2023; 33:5263-5271.e3. [PMID: 37992717 DOI: 10.1016/j.cub.2023.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Identifying areas that contain species assemblages not found elsewhere in a region is central to conservation planning.1,2 Species assemblages contain networks of species interactions that underpin species dynamics,3,4 ecosystem processes, and contributions to people.5,6,7 Yet the uniqueness of interaction networks in a regional context has rarely been assessed. Here, we estimated the spatial uniqueness of 10,000 terrestrial vertebrate trophic networks across Europe (1,164 species, 50,408 potential interactions8) based on the amount of similarity between all local networks mapped at a 10 km resolution. Our results revealed more unique networks in the Arctic bioregion, but also in southern Europe and isolated islands. We then contrasted the uniqueness of trophic networks with their vulnerability to human footprint and future climate change and measured their coverage within protected areas. This analysis revealed that unique networks situated in southern Europe were particularly exposed to human footprint and that unique networks in the Arctic might be at risk from future climate change. However, considering interaction networks at the level of trophic groups, rather than species, revealed that the general structure of trophic networks was redundant across the continent, in contrast to species' interactions. We argue that proactive European conservation strategies might gain relevance by turning their eyes toward interaction networks that are both unique and vulnerable.
Collapse
|
36
|
Tremblay-Gagnon F, Brown-Vuillemin S, Skanes K, Polaczek H, Walkusz W, Robert D, Deslauriers D. Spatiotemporal variability in diet composition of Greenland halibut (Reinhardtius hippoglossoides) from the eastern Canadian Arctic. JOURNAL OF FISH BIOLOGY 2023; 103:1430-1444. [PMID: 37563757 DOI: 10.1111/jfb.15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Greenland halibut (Reinhardtius hippoglossoides) sustain one of the most lucrative fisheries in the eastern Canadian Arctic and Labrador Sea. This species also plays an important role in food web connectivity and benthic-pelagic coupling. Despite the relatively rich knowledge of this species, R. hippoglossoides ecology in these specific areas remains poorly understood. The main aim of this study was to characterize the diet of this deepwater fish in the Labrador Sea and Davis and Hudson Straits and characterize the predator-prey relationship with northern shrimp (Pandalus borealis), another commercially important species in the region. Stomach contents analyses were conducted on 1199 fish captured from 2018 to 2020. Small specimens (<20 cm) fed on invertebrates, whereas larger individuals (>60 cm) fed primarily on fish, indicative of size-related changes in diet composition. The relative abundance of Pandalus shrimp species in the environment was reflected in the diet. Location appeared to be the most influential variable on feeding patterns. Distinct oceanographic conditions among areas, resulting in differences in prey availability, could explain these results. Arctic cod (Boreogadus saida) and redfish (Sebastes sp.) were selected in locations where fish prey were the most abundant. These results shed light on the opportunistic nature of R. hippoglossoides and its preference for fish at large size. With the rapidly changing oceanographic conditions of Arctic waters, a distributional change in the biomass of shrimp is expected. Results suggest that an increase in abundance of predatory groundfish species in the system (e.g., Sebastes sp.) could lead to acute predation on shrimp and competition with R. hippoglossoides. By revealing key trophic links within the demersal ecosystem, this work provides valuable information on the development of ecosystem approaches to fisheries management for the region.
Collapse
|
37
|
Wright DL, Kimmel DG, Roberson N, Strausz D. Joint species distribution modeling reveals a changing prey landscape for North Pacific right whales on the Bering shelf. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2925. [PMID: 37792562 DOI: 10.1002/eap.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
The eastern North Pacific right whale (NPRW) is the most endangered population of whale and has been observed north of its core feeding ground in recent years with low sea ice extent. Sea ice and water temperature are important drivers for zooplankton dynamics within the whale's core feeding ground in the southeastern Bering Sea, seasonally forming stable fronts along the shelf that give rise to distinct zooplankton communities. A northward shift in NPRW distribution driven by changing distribution of prey resources could put this species at increased risk of entanglement and vessel strikes. We modeled the abundance of NPRW prey, Calanus glacialis, Neocalanus, and Thysanoessa species, using a dynamic biophysical food web model of nine zooplankton guilds in the Bering shelf zooplankton community during a period of warming (2006-2016). This model is unique among prior zooplankton studies from the region in that it includes density dependence, thereby allowing us to ask whether species interactions influence zooplankton dynamics. Modeling confirmed the importance of sea ice and ocean temperature to zooplankton dynamics in the region. Density-independent growth drove community dynamics, while dependent factors were comparatively minimal. Overall, Calanus responded to environment terms, with the strength and direction of response driven by copepodite stage. Neocalanus and Thysanoessa responses were weaker, likely due to their primary occurrence on the outer shelf. We also modeled the steady-state (equilibrium) abundance of Calanus in conditions with and without wind gusts to test whether advection of outer shelf species might disrupt the steady-state dynamics of Calanus abundance; the results did not support disruption. Given the annual fall sampling design, we interpret our results as follows: low-ice-extent winters induced stronger spring winds and weakened fronts on the shelf, thereby advecting some outer shelf species into the study region; increased development rates in these warm conditions influenced the proportion of C. glacialis copepodite stages over the season. Residual correlation suggests missing drivers, possibly predators, and phytoplankton bloom composition. Given the continued loss of sea ice in the region and projected continued warming, our findings suggest that C. glacialis will move northward, and thus, whales may move northward to continue targeting them.
Collapse
|
38
|
Tumolo BB, Collins SM, Guan Y, Krist AC. Resource quantity and quality differentially control stream invertebrate biodiversity across spatial scales. Ecol Lett 2023; 26:2077-2086. [PMID: 37787116 DOI: 10.1111/ele.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Resource quantity controls biodiversity across spatial scales; however, the importance of resource quality to cross-scale patterns in species richness has seldom been explored. We evaluated the relationship between stream basal resource quantity (periphyton chlorophyll a) and invertebrate richness and compared this to the relationship of resource quality (periphyton stoichiometry) and richness at local and regional scales across 27 North American streams. At the local scale, invertebrate richness peaked at intermediate levels of chlorophyll a, but had a shallow negative relationship with periphyton C:P and N:P. However, at the regional scale, richness had a strong negative relationship with chlorophyll a and periphyton C:P and N:P. The divergent relationships of periphyton chlorophyll a and stoichiometry with invertebrate richness suggest that autochthonous resource quantity limits diversity more than quality, consistent with patterns of eutrophication. Collectively, we provide evidence that patterns in resource quantity and quality play important, yet differing roles in shaping freshwater biodiversity across spatial scale.
Collapse
|
39
|
Tang B, Roberts SM, Clark JS, Gelfand AE. Mechanistic modeling of climate effects on redistribution and population growth in a community of fish species. GLOBAL CHANGE BIOLOGY 2023; 29:6399-6414. [PMID: 37789712 DOI: 10.1111/gcb.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.
Collapse
|
40
|
de Castro Moraes L, Bernardi JVE, de Souza JPR, Portela JF, Pereira HR, de Oliveira Barbosa H, Pires NL, Monteiro LC, Rodrigues YOS, Vieira LCG, Sousa Passos CJ, de Souza JR, Bastos WR, Dórea JG. Mercury Contamination as an Indicator of Fish Species' Trophic Position in the Middle Araguaia River, Brazil. TOXICS 2023; 11:886. [PMID: 37999538 PMCID: PMC10675111 DOI: 10.3390/toxics11110886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
This study evaluates the use of mercury (Hg) concentrations in fish muscle tissue to determine a species' trophic position (TP) in its environment. A campaign conducted in 2019 along 375 km in the middle Araguaia River basin, Brazil, resulted in 239 organisms from 20 species collected. The highest total mercury (THg) concentrations were found in Pellonacastelnaeana (6.93 µg·g-1, wet weight) and in Triportheus elongatus (3.18 µg·g-1, wet weight), whose TPs were different according to the FishBase database. However, they occupied the same trophic level in this study. The intra-specific comparison showed a difference in Hg concentrations between individuals captured in distinct sites. The study of the biota-sediment accumulation factor (BSAF) showed that spatiality interferes with a species' TP. Statistical analyses revealed that when we used a predicted species' TP based on each individual's size, it explained 72% of the variability in THg concentration across all fish species. Multiple regression analysis confirmed that standard length and FishBase values are positively associated with THg (R2 = 0.943). These results point to Hg as a viable indicator of a fish species' TP since it reflects regional, biological, and environmental factors, as demonstrated here for the middle Araguaia River.
Collapse
|
41
|
Kashinskaya EN, Vlasenko PG, Kolmogorova TV, Izotova GV, Shokurova AV, Romanenko GA, Markevich GN, Andree KB, Solovyev MM. Metapopulation Structure of Two Species of Pikeworm ( Triaenophorus, Cestoda) Parasitizing the Postglacial Fish Community in an Oligotrophic Lake. Animals (Basel) 2023; 13:3122. [PMID: 37835728 PMCID: PMC10571662 DOI: 10.3390/ani13193122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 10/15/2023] Open
Abstract
In the present study, we estimated the levels of infestation of the main fish species that are hosts for two Triaenophorus species: T. crassus and T. nodulosus. The prevalence of T. crassus and T. nodulosus infestations in the intestine of their definitive host-pike Esox lucius was similar (71.0% and 77.4%, respectively). At the same time, the prevalence of T. crassus infestation in muscle tissue was significantly different between the second intermediate hosts, Coregonus lavaretus pidschian (31.4%) and Cor. l. pravdinellus (91.2%), due to considerable differences in their diets. For T. nodulosus, we found significant variations in the levels of prevalence among the second intermediate hosts-100% for Lota lota, 81.8% for Cottus sibiricus 31.9% for Thymallus arcticus, and 24.5% for Perca fluviatilis-that we also explained using different diets. Moreover, analysis of the symmetry of parasite infestations did not reveal any asymmetry between the number of cysts in the left and right body surfaces of the "planktivorous" form/species of whitefish, whereas in the ''benthivorous", an asymmetry of parasite infestations was found.
Collapse
|
42
|
Cagnolo L, Bernaschini L, Salvo A, Valladares G. Habitat area and edges affect the length of trophic chains in a fragmented forest. J Anim Ecol 2023; 92:2067-2077. [PMID: 37649437 DOI: 10.1111/1365-2656.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The food chain length represents how much energy reaches different trophic levels in food webs. Environmental changes derived from human activities have the potential to affect chain length. We explore how habitat area and edges affect chain length through: (1) a bottom-up effect of abundance ('pyramid hypothesis'); (2) the truncation of the highest trophic level ('trophic-rank hypothesis'); and (3) changes in species connectivity patterns ('connectivity hypothesis'). We built plant-leaf miner-parasitoid food webs in 19 remnants of a fragmented Chaco forest from central Argentina. On each remnant, we constructed food webs from different locations at the forest interior and edges. For each food web, we registered the abundance of species, the species richness of each trophic level, estimated the connectivity of their networks, and the average food chain length. We used structural equation models to evaluate the direct and indirect effects of habitat area and edge/interior location on food chain length mediated by species richness, abundance and connectivity. We found no direct effects of habitat area on chain length but chains were longer at forest edges than at their interior. The three mechanisms were supported by our results, although they showed different strengths. First, we found that the interior favours a bottom-up abundance effect from herbivores to parasitoids that positively affected chain length; second, we found that the forest area positively affects plant richness, which has a strong effect on the number of resources used by consumers, with a positive effect on chain length. Third, the remnant area and interior position favoured plant richness with a negative effect on the abundance of parasitoids, which had a positive effect on chain length. In general, the strongest effects on chain length were detected through changes in abundance rather than species richness although abundance was less affected by habitat fragmentation. We evaluated for the first time the effects of human-driven habitat fragmentation on the length of trophic chains in highly diverse plant-herbivore-parasitoid networks. Despite the loss of species, small habitat fragments and edges embedded in the agricultural matrix can support interaction networks, making them conservation targets in managed landscapes.
Collapse
|
43
|
Parmentier T, Boeckx P, Bonte D, De Laender F. You are what your host eats: The trophic structure and food chain length of a symbiont community are coupled with the plastic diet of the host ant. J Anim Ecol 2023; 92:2028-2038. [PMID: 37602518 DOI: 10.1111/1365-2656.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Food chain length provides key information on the flow of nutrients and energy in ecosystems. Variation in food chain length has primarily been explained by environmental drivers such as ecosystem size and productivity. Most insights are obtained from theory or aquatic systems, but the importance of these drivers remains largely untested in terrestrial systems. We exploited red wood ant nests markedly differing in size as natural experiments to quantify the drivers of trophic structure and food chain length of their symbiont arthropod communities. Using stable isotopes, we explored the variation in the trophic positions of four symbiont species with the trophic position of the top predator as a proxy for food chain length of the symbiont community. Nest size did not affect food chain length, nor trophic distance between the symbionts. Instead, food chain length and the trophic positions of the symbionts were strongly affected by the host's foraging decisions. When the host diet shifted from predominantly herbivorous to more predacious, the trophic position of the symbionts and food chain length strongly increased. We show for the first time that a food web can be structured by biotic interactions with an engineering species rather than by abiotic environmental variables.
Collapse
|
44
|
Hallam J, Harris NC. What's going to be on the menu with global environmental changes? GLOBAL CHANGE BIOLOGY 2023; 29:5744-5759. [PMID: 37458101 DOI: 10.1111/gcb.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023]
Abstract
Ongoing anthropogenic change is altering the planet at an unprecedented rate, threatening biodiversity, and ecosystem functioning. Species are responding to abiotic pressures at both individual and population levels, with changes affecting trophic interactions through consumptive pathways. Collectively, these impacts alter the goods and services that natural ecosystems will provide to society, as well as the persistence of all species. Here, we describe the physiological and behavioral responses of species to global changes on individual and population levels that result in detectable changes in diet across terrestrial and marine ecosystems. We illustrate shifts in the dynamics of food webs with implications for animal communities. Additionally, we highlight the myriad of tools available for researchers to investigate the dynamics of consumption patterns and trophic interactions, arguing that diet data are a crucial component of ecological studies on global change. We suggest that a holistic approach integrating the complexities of diet choice and trophic interactions with environmental drivers may be more robust at resolving trends in biodiversity, predicting food web responses, and potentially identifying early warning signs of diversity loss. Ultimately, despite the growing body of long-term ecological datasets, there remains a dearth of diet ecology studies across temporal scales, a shortcoming that must be resolved to elucidate vulnerabilities to changing biophysical conditions.
Collapse
|
45
|
Scholl EA, Cross WF, Guy CS, Dutton AJ, Junker JR. Landscape diversity promotes stable food-web architectures in large rivers. Ecol Lett 2023; 26:1740-1751. [PMID: 37497804 DOI: 10.1111/ele.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Uncovering relationships between landscape diversity and species interactions is crucial for predicting how ongoing land-use change and homogenization will impact the stability and persistence of communities. However, such connections have rarely been quantified in nature. We coupled high-resolution river sonar imaging with annualized energetic food webs to quantify relationships among habitat diversity, energy flux, and trophic interaction strengths in large-river food-web modules that support the endangered Pallid Sturgeon. Our results demonstrate a clear relationship between habitat diversity and species interaction strengths, with more diverse foraging landscapes containing higher production of prey and a greater proportion of weak and potentially stabilizing interactions. Additionally, rare patches of large and relatively stable river sediments intensified these effects and further reduced interaction strengths by increasing prey diversity. Our findings highlight the importance of landscape characteristics in promoting stabilizing food-web architectures and provide direct relevance for future management of imperilled species in a simplified and rapidly changing world.
Collapse
|
46
|
Shakya AW, Allgeier JE. Water column contributions to coral reef productivity: overcoming challenges of context dependence. Biol Rev Camb Philos Soc 2023; 98:1812-1828. [PMID: 37315947 DOI: 10.1111/brv.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Coral reefs are declining at an unprecedented rate. Effective management and conservation initiatives necessitate improved understanding of the drivers of production because the high rates found in these ecosystems are the foundation of the many services they provide. The water column is the nexus of coral reef ecosystem dynamics, and functions as the interface through which essentially all energy and nutrients are transferred to fuel both new and recycled production. Substantial research has described many aspects of water column dynamics, often focusing on specific components because water column dynamics are highly spatially and temporally context dependent. Although necessary, a cost of this approach is that these dynamics are often not well linked to the broader ecosystem or across systems. To help overcome the challenge of context dependence, we provide a comprehensive review of this literature, and synthesise it through the perspective of ecosystem ecology. Specifically, we provide a framework to organise the drivers of temporal and spatial variation in production dynamics, structured around five primary state factors. These state factors are used to deconstruct the environmental contexts in which three water column sub-food webs mediate 'new' and 'recycled' production. We then highlight critical pathways by which global change drivers are altering coral reefs via the water column. We end by discussing four key knowledge gaps hindering understanding of the role of the water column for mediating coral reef production, and how overcoming these could improve conservation and management strategies. Throughout, we identify areas of extensive research and those where studies remain lacking and provide a database of 84 published studies. Improved integration of water column dynamics into models of coral reef ecosystem function is imperative to achieve the understanding of ecosystem production necessary to develop effective conservation and management strategies needed to stem global coral loss.
Collapse
|
47
|
Maier SR, Brooke S, De Clippele LH, de Froe E, van der Kaaden AS, Kutti T, Mienis F, van Oevelen D. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biol Rev Camb Philos Soc 2023; 98:1768-1795. [PMID: 37236916 DOI: 10.1111/brv.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the non-productive season. Secondly, CWCs, particularly the most common reef-builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium-carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Collapse
|
48
|
Zhang Y, Shen R, Li K, Li Q, Chen H, He H, Gu X, Mao Z, Johnson RK. Top-down effects of filter-feeding fish and bivalves moderate bottom-up effects of nutrients on phytoplankton in subtropical shallow lakes: An outdoor mesocosm study. Ecol Evol 2023; 13:e10567. [PMID: 37753309 PMCID: PMC10518750 DOI: 10.1002/ece3.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Biomanipulation has been widely used in the ecological restoration of eutrophic lakes for decades. However, biomanipulation is prone to failure if external nutrient loads are not reduced. In order to explore the importance of filter-feeding fish and bivalves on algal control, an outdoor mesocosm experiment was conducted using different nutrient concentrations. Four treatments simulating daily loads of nutrients in Lake Taihu were studied: current, two times, and three times average daily loads of nutrients with both fish (Aristichthys nobilis) and Asian clam (Corbicula fluminea) and as a control current daily loads without fish or bivalves. Results showed that stocking of filter-feeding fish and bivalves (80 g m-3 bighead carp; 200 g cm-2 clams) at two times daily nutrient loads could effectively control water column Chl a concentrations and phytoplankton biomass. At higher nutrient concentrations (TN ≥ 260 μg L-1 d-1; TP ≥ 10 μg L-1 d-1), top-down control of filter-feeding fish and bivalves was less effective and bottom-up effects resulted in significant increases of Chl a concentration. Thus, as phytoplankton biomass in freshwater ecosystems is determined by both the top-down effects of predators and the bottom-up effects of nutrients, external loadings should be controlled when filter-feeding fish and bivalves are used for algal control to ensure the efficacy of biomanipulation.
Collapse
|
49
|
Yang C, Liao C, Xu J, Liu P, Staines CL, Dai X. Field survey of Cassidinae beetles (Coleoptera, Chrysomelidae) and their host plants in southern Guangxi, China. Biodivers Data J 2023; 11:e107523. [PMID: 37559909 PMCID: PMC10407652 DOI: 10.3897/bdj.11.e107523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Few systematic studies have been conducted on the faunal composition and food web structure of Cassidinae of China. During 2013-2019, we systematically investigated Cassidinae beetles and their host plants in the southern Guangxi. A total of 2,255 Cassidinae individuals from 66 species, 23 genera and ten tribes were collected in southern Guangxi. Most species belonged to the tribe Hispini (23 species, 34.8%), followed by the tribe Gonophorini (13 species, 19.7%), Cassidini (eight species, 12.1%) and Aspidimorphini (six species, 9.1%). The others (16 species) belonged to the tribes Anisoderini, Botryonopini, Callispini, Oncocephalini, Notosacanthini and Leptispini. The tribe Notosacanthini was recorded from Guangxi for the first time. The genera Neownesia (Botryonopini), Gonophora (Gonophorini), Micrispa (Gonophorini), Notosacantha (Notosacanthini) and Prionispa (Oncocephalini) were firstly recorded in Guangxi. In total, we obtained 47 newly-recorded species in southern Guangxi and 33 newly-recorded species in the whole Guangxi, of which, Callispafrontalis Medvedev, 1992 was newly recorded in China. Dactylispafeae Gestro (625 individuals) and D.chinensis Weise (565 individuals) were the most common species. A total of 69 species, 53 genera and 19 families of host plants were identified for Cassidinae in southern Guangxi. Many host plant associations are new records for Cassidinae. Quantitative food web analysis indicated that Cassidinae species in southern Guangxi primarily fed on Poaceae, Convolvulaceae, Cyperaceae and Rosaceae. Generally, the plant-Cassidinae food webs were moderately complex and stable in southern Guangxi. This is the first large contribution to the knowledge of the species composition and host plant diversity of Cassidinae in southern Guangxi.
Collapse
|
50
|
Burger J. Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand. TOXICS 2023; 11:614. [PMID: 37505579 PMCID: PMC10386046 DOI: 10.3390/toxics11070614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Understanding variations in metal levels in biota geographically and under different environmental conditions is essential to determining risk to organisms themselves and to their predators. It is often difficult to determine food chain relationships because predators may eat several different prey types. Horseshoe crab (Limulus polyphemus) eggs form the basis for a complex food web in Delaware Bay, New Jersey, USA. Female horseshoe crabs lay thumb-sized clutches of eggs, several cm below the surface, and often dislodge previously laid eggs that are brought to the surface by wave action, where they are accessible and critical food for migrant shorebirds. This paper compares metal and metalloid (chromium [Cr], cadmium [Cd], lead [Pb], mercury [Hg], arsenic [As] and selenium [Se]) concentrations in horseshoe crab eggs collected on the surface with concentrations in eggs from clutches excavated from below the sand surface, as well as examining metals in eggs from different parts of the Bay. The eggs were all collected in May 2019, corresponding to the presence of the four main species of shorebirds migrating through Delaware Bay. These migrating birds eat almost entirely horseshoe crab eggs during their stopover in Delaware Bay, and there are differences in the levels of metals in blood of different shorebirds. These differences could be due to whether they have access to egg clutches below sand (ruddy turnstones, Arenaria interpres) or only to eggs on the surface (the threatened red knot [Calidris canutus rufa] and other species of shorebirds). Correlations between metals in clutches were also examined. Except for As and Cd, there were no significant differences between the metals in crab egg clutches and eggs on the surface that shorebirds, gulls, and other predators eat. There were significant locational differences in metal levels in horseshoe crab eggs (except for Pb), with most metals being highest in the sites on the lower portion of Delaware Bay. Most metals in crab eggs have declined since studies were conducted in the mid-1990s but were similar to levels in horseshoe crab eggs in 2012. The data continue to provide important monitoring and assessment information for a keystone species in an ecosystem that supports many species, including threatened and declining shorebird species during spring migration.
Collapse
|