26
|
Mayrovitz HN, Berthin T. Assessing Potential Circadian, Diurnal, and Ultradian Variations in Skin Biophysical Properties. Cureus 2021; 13:e17665. [PMID: 34650847 PMCID: PMC8489538 DOI: 10.7759/cureus.17665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
A variety of skin measurements are routinely made in various clinical and research settings to evaluate the skin’s biophysical properties for diagnostic and research purposes. Such measurements include transepidermal water loss (TEWL), skin pH, sebum, skin blood flow (SBF), and tissue dielectric constant (TDC) as a measure of skin water. Given the various reported circadian, diurnal, and possible ultradian and other temporal variations in skin physiological processes, it is of value to have clarity as to possible temporal variations in skin’s biophysical properties associated with such processes. It was thus the purpose of this investigation to review and detail key elements of what is currently known regarding such variations and to provide a characterization that will permit informed judgments as to the sensitivity of the timing of measurements to optimize measurement reproducibility. Understanding these variations and their possible oscillatory effects on skin biophysical properties may aid physicians in providing optimal treatment timing for dermatological conditions and offer researchers insight into optimal measurement timing. The major findings of the present investigation that systematically searched multiple databases and critically examined pertinent findings, revealed that of the several skin parameters reviewed, which included TEWL, pH, sebum, SBF, TDC, and thickness, each had at least one study describing a statistically significant within-a-day temporal change. The magnitude of these changes varied and may be large enough to be seriously considered when assessing these parameters in clinical and research settings. However, inconsistencies in reported temporal variations suggest that further systematic research is well warranted especially with respect to temporal within-a-day and day-to-day variabilities of TEWL, TDC, and mechanical properties. At present, the impact of this type of confounding variability on reported values for skin biophysical parameters is unclear and worthy of further clarification.
Collapse
|
27
|
Hunt LA, Hospers L, Smallcombe JW, Mavros Y, Jay O. Caffeine alters thermoregulatory responses to exercise in the heat only in caffeine-habituated individuals: a double-blind placebo-controlled trial. J Appl Physiol (1985) 2021; 131:1300-1310. [PMID: 34435513 DOI: 10.1152/japplphysiol.00172.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To assess the impact of acute caffeine ingestion on thermoregulatory responses during steady-state exercise under moderate heat stress conditions in caffeine-habituated and nonhabituated individuals. Twenty-eight participants [14 habituated (HAB) (4 females) and 14 nonhabituated (NHAB) (6 females)] cycled at a fixed metabolic heat production (7 W·kg-1) for 60 min on two separate occasions 1 h after ingesting 1) 5 mg·kg-1 caffeine (CAF) or 2) 5 mg·kg-1 placebo (PLA), in a double-blinded, randomized, and counterbalanced order. Environmental conditions were 30.6 ± 0.9°C, 31 ± 1% relative humidity (RH). The end-exercise rise in esophageal temperature (ΔTes) from baseline was greater with CAF in the HAB group (CAF = 0.88 ± 0.29°C, PLA = 0.62 ± 0.34°C, P < 0.001), but not in the NHAB group (CAF = 1.00 ± 0.42°C, PLA = 1.00 ± 0.39°C, P = 0.94). For a given change in mean body temperature, rises in % of maximum skin blood flow were attenuated with CAF on the forearm (P = 0.015) and back (P = 0.021) in the HAB group, but not in the NHAB group (P ≥ 0.65). Dry heat loss was similar in the HAB (CAF = 31 ± 5 W·m-2, PLA = 33 ± 7 W·m-2) and NHAB groups (CAF = 31 ± 3 W·m-2, PLA 30 ± 4 W·m-2) (P ≥ 0.37). There were no differences in whole body sweat losses in both groups (HAB: CAF = 0.59 ± 0.15 kg, PLA = 0.56 ± 0.17 kg, NHAB:CAF = 0.53 ± 0.19 kg, PLA 0.52 ± 0.19 kg) (P ≥ 0.32). As the potential for both dry and evaporative heat loss was uninhibited by caffeine, we suggest that the observed ΔTes differences with CAF in the HAB group were due to alterations in internal heat distribution. Our findings support the common practice of participants abstaining from caffeine before participation in thermoregulatory research studies in compensable conditions.NEW & NOTEWORTHY We provide empirical evidence that acute caffeine ingestion exerts a thermoregulatory effect during exercise in the heat in caffeine-habituated individuals but not in nonhabituated individuals. Specifically, caffeine habituation was associated with a greater rise in esophageal temperature with caffeine compared with placebo, which appears to be driven by a blunted skin blood flow response. In contrast, no thermoregulatory differences were observed with caffeine in nonhabituated individuals. Caffeine did not affect sweating responses during exercise in the heat.
Collapse
|
28
|
Shoemaker LN, Haigh KM, Kuczmarski AV, McGinty SJ, Welti LM, Hobson JC, Edwards DG, Feinberg RF, Wenner MM. ET B receptor-mediated vasodilation is regulated by estradiol in young women. Am J Physiol Heart Circ Physiol 2021; 321:H592-H598. [PMID: 34415188 DOI: 10.1152/ajpheart.00087.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endothelin-B (ETB) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ETB receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E2) on ETB receptor function in women remains unclear. Therefore, the purpose of this study was to test the hypothesis that E2 exposure modulates ETB receptor-mediated dilation in young women. Fifteen young women (24 ± 4 yr, 24 ± 3 kg/m2) completed the study. Endogenous sex hormone production was suppressed with daily administration of a gonadotropin-releasing hormone antagonist (GnRHant; Ganirelix) for 10 days; E2 (0.1 mg/day, Vivelle-Dot patch) was added back on days 4-10. We measured vasodilation in the cutaneous microcirculation (microvascular endothelial function) via local heating (42°C) on day 4 (GnRHant) and day 10 (GnRHant + E2) using laser Doppler flowmetry coupled with intradermal microdialysis during perfusions of lactated Ringer's (control) and ETB receptor antagonist (BQ-788, 300 nM). During GnRHant, vasodilatory responses to local heating were enhanced with ETB receptor blockade (control: 83 ± 9 vs. BQ-788: 90 ± 5%CVCmax, P = 0.004). E2 administration improved vasodilation in the control site (GnRHant: 83 ± 9 vs. GnRHant + E2: 89 ± 8%CVCmax, P = 0.036). Furthermore, cutaneous vasodilatory responses during ETB receptor blockade were blunted after E2 administration (control: 89 ± 8 vs. BQ-788: 84 ± 8%CVCmax, P = 0.047). These data demonstrate that ovarian hormones, specifically E2, modulate ETB receptor function and contribute to the regulation of microvascular endothelial function in young women.NEW & NOTEWORTHY The endothelin-B (ETB) receptor mediates vasodilation in young women, an effect lost following menopause. It is unclear whether these alterations are due to aging or changes in estradiol (E2). During endogenous hormone suppression (GnRH antagonist), blockade of ETB receptors enhanced cutaneous microvascular vasodilation. However, during E2 administration, blockade of ETB receptors attenuated vasodilation, indicating that the ETB receptor mediates dilation in the presence of E2. In young women, ETB receptors mediate vasodilation in the presence of E2, an effect that is lost when E2 is suppressed.
Collapse
|
29
|
Peçanha T, Bannell DJ, Sieczkowska SM, Goodson N, Roschel H, Sprung VS, Low DA. Effects of physical activity on vascular function in autoimmune rheumatic diseases: a systematic review and meta-analysis. Rheumatology (Oxford) 2021; 60:3107-3120. [PMID: 33521818 DOI: 10.1093/rheumatology/keab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To summarize existing evidence and quantify the effects of physical activity on vascular function and structure in autoimmune rheumatic diseases (ARDs). METHODS Databases were searched (through March 2020) for clinical trials evaluating the effects of physical activity interventions on markers of micro- and macrovascular function and macrovascular structure in ARDs. Studies were combined using random effects meta-analysis, which was conducted using Hedges' g. Meta-analyses were performed on each of the following outcomes: microvascular function [i.e. skin blood flow or vascular conductance responses to acetylcholine (ACh) or sodium nitropusside (SNP) administration]; macrovascular function [i.e. brachial flow-mediated dilation (FMD%) or brachial responses to glyceryl trinitrate (GTN%); and macrovascular structure [i.e. aortic pulse wave velocity (PWV)]. RESULTS Ten studies (11 trials) with a total of 355 participants were included in this review. Physical activity promoted significant improvements in microvascular [skin blood flow responses to ACh, g = 0.92 (95% CI 0.42, 1.42)] and macrovascular function [FMD%, g = 0.94 (95% CI 0.56, 1.02); GTN%, g = 0.53 (95% CI 0.09, 0.98)]. Conversely, there was no evidence for beneficial effects of physical activity on macrovascular structure [PWV, g = -0.41 (95% CI -1.13, 0.32)]. CONCLUSIONS Overall, the available clinical trials demonstrated a beneficial effect of physical activity on markers of micro- and macrovascular function but not on macrovascular structure in patients with ARDs. The broad beneficial impact of physical activity across the vasculature identified in this review support its role as an effective non-pharmacological management strategy for patients with ARDs.
Collapse
|
30
|
Zhu X, Zhang K, He L, Liao F, Ren Y, Jan YK. Spectral analysis of blood flow oscillations to assess the plantar skin blood flow regulation in response to preconditioning local vibrations. Biorheology 2021; 58:39-49. [PMID: 33896803 DOI: 10.3233/bir-201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Local vibration has shown promise in improving skin blood flow and wound healing. However, the underlying mechanism of local vibration as a preconditioning intervention to alter plantar skin blood flow after walking is unclear. OBJECTIVE The objective was to use wavelet analysis of skin blood flow oscillations to investigate the effect of preconditioning local vibration on plantar tissues after walking. METHODS A double-blind, repeated measures design was tested in 10 healthy participants. The protocol included 10-min baseline, 10-min local vibrations (100 Hz or sham), 10-min walking, and 10-min recovery periods. Skin blood flow was measured over the first metatarsal head of the right foot during the baseline and recovery periods. Wavelet amplitudes after walking were expressed as the ratio of the wavelet amplitude before walking. RESULTS The results showed the significant difference in the metabolic (vibration 10.06 ± 1.97, sham 5.78 ± 1.53, p < 0.01) and neurogenic (vibration 7.45 ± 1.54, sham 4.78 ± 1.22, p < 0.01) controls. There were no significant differences in the myogenic, respiratory and cardiac controls between the preconditioning local vibration and sham conditions. CONCLUSIONS Our results showed that preconditioning local vibration altered the normalization rates of plantar skin blood flow after walking by stimulating the metabolic and neurogenic controls.
Collapse
|
31
|
Ioannou LG, Tsoutsoubi L, Mantzios K, Gkikas G, Piil JF, Dinas PC, Notley SR, Kenny GP, Nybo L, Flouris AD. The Impacts of Sun Exposure on Worker Physiology and Cognition: Multi-Country Evidence and Interventions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7698. [PMID: 34300148 PMCID: PMC8303297 DOI: 10.3390/ijerph18147698] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A set of four case-control (n = 109), randomized-controlled (n = 7), cross-sectional (n = 78), and intervention (n = 47) studies was conducted across three countries to investigate the effects of sun exposure on worker physiology and cognition. METHODS Physiological, subjective, and cognitive performance data were collected from people working in ambient conditions characterized by the same thermal stress but different solar radiation levels. RESULTS People working under the sun were more likely to experience dizziness, weakness, and other symptoms of heat strain. These clinical impacts of sun exposure were not accompanied by changes in core body temperature but, instead, were linked with changes in skin temperature. Other physiological responses (heart rate, skin blood flow, and sweat rate) were also increased during sun exposure, while attention and vigilance were reduced by 45% and 67%, respectively, compared to exposure to a similar thermal stress without sunlight. Light-colored clothes reduced workers' skin temperature by 12-13% compared to darker-colored clothes. CONCLUSIONS Working under the sun worsens the physiological heat strain experienced and compromises cognitive function, even when the level of heat stress is thought to be the same as being in the shade. Wearing light-colored clothes can limit the physiological heat strain experienced by the body.
Collapse
|
32
|
He X, Zhang X, Liao F, He L, Xu X, Jan YK. Using reactive hyperemia to investigate the effect of cupping sizes of cupping therapy on skin blood flow responses. J Back Musculoskelet Rehabil 2021; 34:327-333. [PMID: 33459698 DOI: 10.3233/bmr-200120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Various cupping sizes of cupping therapy have been used in managing musculoskeletal conditions; however, the effect of cupping sizes on skin blood flow (SBF) responses is largely unknown. OBJECTIVE The objective of this study was to compare the effect of three cupping sizes of cupping therapy on SBF responses. METHODS Laser Doppler flowmetry (LDF) was used to measure SBF on the triceps in 12 healthy participants in this repeated measures study. Three cup sizes (35, 40 and 45 mm in diameter) were blinded to the participants and were tested at -300 mmHg for 5 minutes. Reactive hyperemic response to cupping therapy was expressed as a ratio of baseline SBF. RESULTS All three sizes of cupping cups resulted in a significant increase in peak SBF (p< 0.001). Peak SBF of the 45 mm cup (9.41 ± 1.32 times) was significantly higher than the 35 mm cup (5.62 ± 1.42 times, p< 0.05). Total SBF of the 45 mm cup ((24.33 ± 8.72) × 103 times) was significantly higher than the 35 mm cup ((8.05 ± 1.63) × 103 times, p< 0.05). Recovery time of the 45 mm cup (287.46 ± 39.54 seconds) was significantly longer than the 35 mm cup (180.12 ± 1.42 seconds, p< 0.05). CONCLUSIONS Our results show that all three cup sizes can significantly increase SBF. The 45 mm cup is more effective in increasing SBF compared to the 35 mm cup.
Collapse
|
33
|
McGarr GW, King KE, Saci S, Leduc D, Akerman AP, Fujii N, Kenny GP. Regional variation in nitric oxide-dependent cutaneous vasodilatation during local heating in young adults. Exp Physiol 2021; 106:1671-1678. [PMID: 34143517 DOI: 10.1113/ep089671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.
Collapse
|
34
|
Kim J, Franke WD, Lang JA. Delayed window of improvements in skin microvascular function following a single bout of remote ischaemic preconditioning. Exp Physiol 2021; 106:1380-1388. [PMID: 33866628 DOI: 10.1113/ep089438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Animal infarct studies indicate a delayed window of cardiac protection after remote ischaemic preconditioning (RIPC); however, the presence and duration of this delayed effect have not been examined in human microvasculature in vivo. What is the main finding and its importance? Cutaneous vasodilatation induced by local heating or ACh was increased significantly 24 and 48 h after a single bout of RIPC, respectively. Neither response persisted beyond ∼48 h. Sodium nitroprusside-induced cutaneous vasodilatation was not altered. These findings reveal a delayed increase in microvascular endothelial function after a single bout of RIPC. ABSTRACT Remote ischaemic preconditioning (RIPC) induces protective effects from ischaemia-reperfusion injury. In the myocardium and conduit vasculature, a single bout of RIPC confers delayed protection that begins 24 h afterwards and lasts for 2-3 days. However, the extent and the time line in which a single bout of RIPC affects the human microvasculature are unclear. We hypothesized that a single bout of RIPC results in a delayed increase in skin microvascular function. Sixteen healthy participants (age, 23 ± 4 years; seven males, nine females; MAP, 82 ± 7 mmHg) were recruited to measure cutaneous microvascular function immediately before a single bout of RIPC and 24, 48 and 72 h and 1 week after the bout. The RIPC consisted of four repetitions of 5 min of arm blood flow occlusion interspersed by 5 min reperfusion. Skin blood flow responses to local heating (local temperature of 42°C), ACh and sodium nitroprusside were measured by laser speckle contrast imaging and expressed as the cutaneous vascular conductance (CVC; in perfusion units per millimetre of mercury). Vasodilatation in response to local heating was increased 24 and 48 h after RIPC (ΔCVC, 1.05 ± 0.07 vs. 1.18 ± 0.07 and 1.24 ± 0.08 PU mmHg-1 , pre- vs. 24 and 48 h post-RIPC; P < 0.05). Acetylcholine-induced cutaneous vasodilatation increased significantly 48 h after RIPC (ΔCVC, 0.71 ± 0.07 vs. 0.93 ± 0.12 PU mmHg-1 , pre- vs. 48 h post-RIPC; P < 0.05) and returned to baseline thereafter. Sodium nitroprusside-mediated vasodilatation did not change. Thus, a single bout of RIPC elicited a delayed response in the microvasculature, resulting in an improvement in the endothelium-dependent cutaneous vasodilatory response that peaked ∼48 h post-RIPC.
Collapse
|
35
|
Murata J, Murata S, Kodama T, Nakano H, Soma M, Nakae H, Satoh Y, Kogo H, Umeki N. Age-Related Changes in the Response of Finger Skin Blood Flow during a Braille Character Discrimination Task. Healthcare (Basel) 2021; 9:healthcare9020143. [PMID: 33535715 PMCID: PMC7912848 DOI: 10.3390/healthcare9020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that age-related changes in sensory function might be reflected by a modulation of the blood flow response associated with tactile sensation. The aim of the present study was to clarify how the blood flow response of the fingers during concentrated finger perception is affected by aging. We measured the tactile-pressure threshold of the distal palmar pad of the index finger and skin blood flow in the finger (SBF) during Braille reading performed under blind conditions in young (n = 27) and older (n = 37) subjects. As a result, the tactile-pressure threshold was higher in older subjects (2.99 ± 0.37 log10 0.1 mg) than in young subjects (2.76 ± 0.24 log10 0.1 mg) (p < 0.01). On the other hand, the SBF response was markedly smaller in older subjects (−4.9 ± 7.0%) than in young subjects (−25.8 ± 15.4%) (p < 0.01). Moreover, the peak response arrival times to Braille reading in older and young subjects were 12.5 ± 3.1 s and 8.8 ± 3.6 s, respectively (p < 0.01). A decline in tactile sensitivity occurs with aging. Blood flow responses associated with tactile sensation are also affected by aging, as represented by a decrease in blood flow and a delay in the reaction time.
Collapse
|
36
|
Mayrovitz HN, Astudillo A, Shams E. Finger skin blood perfusion during exposure of ulnar and median nerves to the static magnetic field of a rare-earth magnet: A randomized pilot study. Electromagn Biol Med 2021; 40:1-10. [PMID: 33283550 DOI: 10.1080/15368378.2020.1856682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
This pilot study's goal was to investigate the impacts of static magnetic fields (SMF) on finger skin blood perfusion (SBP) when exposing the ulnar artery and ulnar and medial nerves to a rare earth concentric magnet for 30 minutes. Control SBP was measured in 4th fingers of adults (n = 12, age 26.0 ± 1.4 years) for 15 minutes using laser-Doppler. Then, active-magnets were placed over one arm's ulnar and median nerves at the wrist and sham-magnets placed at corresponding sites on the other arm. Devices were randomly assigned and placed by an investigator "blinded" to device type. The maximum SMF perpendicular to skin was 0.28 T measured 2 mm from magnet surface. The tangential field at this distance was 0.20 T. SBP was analyzed and tested for differential effects attributable to magnets compared to shams in each of the 5-minute intervals over the full 45-minute experiment. Results showed no statistically significant difference between SBP measured on the magnet-treated side compared to the sham side. Magnet and sham side SBP values (mean ± SEM, arbitrary units) prior to device placement were 0.568 ± 0.128 vs. 0.644 ± 0.115, p = .859 and during device placement were 0.627 ± 0.135 vs. 0.645 ± 0.117, p = .857. In conclusion, these findings have failed to uncover any significant effects of the static magnetic field on skin blood perfusion in the young healthy adult population evaluated. Its potential for altering SBP in more mature persons or those with underlying conditions affecting blood flow has not been evaluated but represents the next target of research inquiry. ClinicalTrials.gov registration number is NCT04539704.
Collapse
|
37
|
Wang X, Zhang X, Elliott J, Liao F, Tao J, Jan YK. Effect of Pressures and Durations of Cupping Therapy on Skin Blood Flow Responses. Front Bioeng Biotechnol 2020; 8:608509. [PMID: 33425873 PMCID: PMC7793847 DOI: 10.3389/fbioe.2020.608509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cupping therapy has been widely used in treating musculoskeletal impairments. However, there is no specific guideline on selecting the intensity of cupping therapy, including the pressure and duration. The objective of this study was to investigate the effect of different pressures and durations of cupping therapy on skin blood flow responses. A 2 × 2 factorial design, including two negative pressures at -225 and -300 mmHg and two durations at 5 and 10 min, was tested in 12 healthy participants. The four protocols of cupping therapy were tested in four different days. Skin blood flow was measured using laser Doppler flowmetry on the left triceps (the SJ12 acupoint). Skin blood flow after cupping therapy was expressed as a ratio of skin blood flow before cupping therapy. The results showed that -300 mmHg caused a significant increase in peak skin blood flow (16.7 ± 2.6 times) compared to -225 mmHg (11.1 ± 2.2 times, p < 0.05) under 5-min duration. The largest difference in skin blood flow is between -300 mmHg for 5 min (16.7 ± 2.6 times) and -225 mmHg for 10 min (8.1 ± 2.3 times, p < 0.01). Our findings demonstrated that a higher value (300 mmHg) of negative pressure is more effective on increasing skin blood flow compared to a lower value (225 mmHg). Also, a shorter duration (5 min) causes a larger peak and total skin blood flow compared to a longer duration (10 min). This study provides the first evidence showing the effect of pressures and durations of cupping therapy on skin blood flow responses.
Collapse
|
38
|
Lai YH, Wang AY, Yang CC, Guo LY. The Recovery Benefit on Skin Blood Flow Using Vibrating Foam Rollers for Postexercise Muscle Fatigue in Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239118. [PMID: 33291311 PMCID: PMC7730244 DOI: 10.3390/ijerph17239118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the effect of vibrating rollers on skin blood flow after running for recovery from muscle fatigue. METHOD 23 healthy runners, aged between 20 to 45 years, participated in a crossover trial. Muscle fatigue was induced by running, and recovery using a vibrating roller was determined before and after the intervention. Each subject was measured at three time points (prerun, postrun, and postroller) to compare skin blood flow perfusion and blood flow oscillation at the midpoint of the dominant gastrocnemius muscle. The results show that blood perfusion is greater when a vibrating roller is used than a foam roller, but there is no statistical difference. The analysis of blood flow oscillation shows that vibrating rollers induce 30% greater endothelial activation than a foam roller. Vibrating rollers significantly stimulate the characteristic frequency for myogenic activation (p < 0.05); however, the effect size is conservative.
Collapse
|
39
|
Liao F, Zhang K, Zhou L, Chen Y, Elliott J, Jan YK. Effect of Different Local Vibration Frequencies on the Multiscale Regularity of Plantar Skin Blood Flow. ENTROPY 2020; 22:e22111288. [PMID: 33287056 PMCID: PMC7712514 DOI: 10.3390/e22111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Local vibration has shown promise in improving skin blood flow (SBF). However, there is no consensus on the selection of the best vibration frequency. An important reason may be that previous studies utilized time- and frequency-domain parameters to characterize vibration-induced SBF responses. These parameters are unable to characterize the structural features of the SBF response to local vibrations, thus contributing to the inconsistent findings seen in vibration research. The objective of this study was to provide evidence that nonlinear dynamics of SBF responses would be an important aspect for assessing the effect of local vibration on SBF. Local vibrations at 100 Hz, 35 Hz, and 0 Hz (sham vibration) with an amplitude of 1 mm were randomly applied to the right first metatarsal head of 12 healthy participants for 10 min. SBF at the same site was measured for 10 min before and after local vibration. The degree of regularity of SBF was quantified using a multiscale sample entropy algorithm. The results showed that 100 Hz vibration significantly increased multiscale regularity of SBF but 35 Hz and 0 Hz (sham vibration) did not. The significant increase of regularity of SBF after 100 Hz vibration was mainly attributed to increased regularity of SBF oscillations within the frequency interval at 0.0095–0.15 Hz. These findings support the use of multiscale regularity to assess effectiveness of local vibration on improving skin blood flow.
Collapse
|
40
|
Greaney JL, Stanhewicz AE, Wolf ST, Kenney WL. Thermoregulatory reflex control of cutaneous vasodilation in healthy aging. Temperature (Austin) 2020; 8:176-187. [PMID: 33997116 DOI: 10.1080/23328940.2020.1832950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Reflex cutaneous vasodilation during heating is attenuated in healthy human aging secondary to blunted increases in efferent skin sympathetic nervous system activity (SSNA) and reductions in end-organ sensitivity. Whether age-related alterations in the mean body temperature ( T - b) threshold for increasing SSNA and/or the sensitivity of responses are evident with aging have not been examined. We tested the hypotheses that the Tb threshold for SSNA and cutaneous vascular conductance (CVC) would be increased, but the sensitivity would be reduced, with aging. Reflex vasodilation was induced in 13 young (23 ± 3 y) and 13 older (67 ± 7 y) adults using a water-perfused suit to systematically increase mean skin and esophageal temperatures. SSNA (peroneal microneurography) and red cell flux (laser Doppler flowmetry) in the innervated dermatome were continuously measured. SSNA was normalized to baseline; CVC was normalized as a percentage of maximal CVC. Baseline T - b was lower in older adults (36.0 ± 0.4°C vs 36.4 ± 0.3°C; p = 0.005). During passive heating, the ∆ T - b thresholds for increasing SSNA and CVC were greater (1.3 ± 0.4°C vs 0.9 ± 0.3°C; p = 0.007 and 1.3 ± 0.4°C vs 0.8 ± 0.3°C; p = 0.002, respectively) in older adults. The slope of the relation between both SSNA (0.31 ± 0.23 vs 0.13 ± 0.10 V⋅s⋅°C -1; p = 0.01) and CVC (87.5 ± 50.1 vs 32.4 ± 18.1%max⋅°C-1; p = 0.002) vs T - b was lower in older adults. The relative T - b threshold for activation of SSNA and the initiation of reflex cutaneous vasodilation is higher in older adults, and once activated, the sensitivity of both responses is diminished, supporting the concept that the efferent component of the thermoregulatory reflex arc is impaired in healthy aging. Abbreviations: CI: confidence interval; CVC: cutaneous vascular conductance; SSNA: skin sympathetic nervous system activity; T - b: mean body temperature; Tes: esophageal temperature; T - sk: mean skin temperature.
Collapse
|
41
|
Hou X, He X, Zhang X, Liao F, Hung YJ, Jan YK. Using laser Doppler flowmetry with wavelet analysis to study skin blood flow regulations after cupping therapy. Skin Res Technol 2020; 27:393-399. [PMID: 33089947 DOI: 10.1111/srt.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The purpose of this study was to use laser Doppler flowmetry (LDF) with wavelet analysis to investigate skin blood flow control mechanisms in response to various intensities of cupping therapy. To the best of our knowledge, this is the first study to assess skin blood flow control mechanism in response to cupping therapy using wavelet analysis of laser Doppler blood flow oscillations. MATERIALS AND METHODS Twelve healthy participants were recruited for this repeated-measures study. Three different intensities of cupping therapy were applied using 3 cup sizes at 35, 40, and 45 mm (in diameter) with 300 mm Hg negative pressure for 5 minutes. LDF was used to measure skin blood flow (SBF) on the triceps before and after cupping therapy. Wavelet analysis was used to analyze the blood flow oscillations (BFO) to assess blood flow control mechanisms. RESULTS The wavelet amplitudes of metabolic and cardiac controls after cupping therapy were higher than those before cupping therapy. For the metabolic control, the 45-mm cupping protocol (1.65 ± 0.09) was significantly higher than the 40-mm cupping protocol (1.40 ± 0.10, P < .05) and the 35-mm cupping protocol (1.35 ± 0.12, P < .05). No differences were showed in the cardiac control among the 35-mm (1.61 ± 0.20), 40-mm (1.64 ± 0.24), and 45-mm (1.27 ± 0.25) cupping protocols. CONCLUSION The metabolic and cardiac controls significantly contributed to the increase in SBF after cupping therapy. Different intensities of cupping therapy caused different responses within the metabolic control and not the cardiac control.
Collapse
|
42
|
Childs C, Elliott J, Khatab K, Hampshaw S, Fowler-Davis S, Willmott JR, Ali A. Thermal Sensation in Older People with and without Dementia Living in Residential Care: New Assessment Approaches to Thermal Comfort Using Infrared Thermography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6932. [PMID: 32971989 PMCID: PMC7557728 DOI: 10.3390/ijerph17186932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023]
Abstract
The temperature of the indoor environment is important for health and wellbeing, especially at the extremes of age. The study aim was to understand the relationship between self-reported thermal sensation and extremity skin temperature in care home residents with and without dementia. The Abbreviated Mental Test (AMT) was used to discriminate residents to two categories, those with, and those without, dementia. After residents settled and further explanation of the study given (approximately 15 min), measurements included: tympanic membrane temperature, thermal sensation rating and infrared thermal mapping of non-dominant hand and forearm. Sixty-nine afebrile adults (60-101 years of age) were studied in groups of two to five, in mean ambient temperatures of 21.4-26.6 °C (median 23.6 °C). Significant differences were observed between groups; thermal sensation rating (p = 0.02), tympanic temperature (p = 0.01), fingertip skin temperature (p = 0.01) and temperature gradients; fingertip-wrist p = 0.001 and fingertip-distal forearm, p = 0.001. Residents with dementia were in significantly lower air temperatures (p = 0.001). Although equal numbers of residents per group rated the environment as 'neutral' (comfortable), resident ratings for 'cool/cold' were more frequent amongst those with dementia compared with no dementia. In parallel, extremity (hand) thermograms revealed visual temperature demarcation, variously across fingertip, wrist, and forearm commensurate with peripheral vasoconstriction. Infrared thermography provided a quantitative and qualitative method to measure and observe hand skin temperature across multiple regions of interest alongside thermal sensation self-report. As an imaging modality, infrared thermography has potential as an additional assessment technology with clinical utility to identify vulnerable residents who may be unable to communicate verbally, or reliably, their satisfaction with indoor environmental conditions.
Collapse
|
43
|
Luetkemeier MJ, Allen DR, Huang M, Pizzey FK, Parupia IM, Wilson TE, Davis SL. Skin tattooing impairs sweating during passive whole body heating. J Appl Physiol (1985) 2020; 129:1033-1038. [PMID: 32881627 DOI: 10.1152/japplphysiol.00427.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tattooing of the skin involves repeated needle insertions to deposit ink into the dermal layer of the skin, potentially damaging eccrine sweat glands and the cutaneous vasculature. This study tested the hypothesis that reflex increases in sweat rate (SR) and cutaneous vasodilation are blunted in tattooed skin (TAT) compared with adjacent healthy skin (CON) during a passive whole body heat stress (WBH). Ten individuals (5 males and 5 females) with a sufficient area of tattooed skin participated in the study. Intestinal temperature (Tint), skin temperature (Tskin), skin blood flow (laser Doppler flux; LDF), and SR were continuously measured during normothermic baseline (34°C water perfusing a tube-lined suit) and WBH (increased Tint 1.0°C via 48°C water perfusing suit). SR throughout WBH was lower for TAT compared with CON (P = 0.033). Accumulated sweating responses during WBH (area under curve) were attenuated in TAT relative to CON (23.1 ± 12.9, 26.9 ± 14.5 mg/cm2, P = 0.043). Sweating threshold, expressed as the onset of sweating in time or Tint from the initiation of WBH, was not different between TAT and CON. Tattooing impeded the ability to obtain LDF measurements. These data suggest that tattooing functionally damages secretion mechanisms, affecting the reflex capacity of the gland to produce sweat, but does not appear to affect neural signaling to initiate sweating. Decreased sweating could impact heat dissipation especially when tattooing covers a higher percentage of body surface area and could be considered a potential long-term clinical side effect of tattooing.NEW & NOTEWORTHY This study is the first to assess the reflex control of sweating in tattooed skin. The novel findings are twofold. First, attenuated increases in sweat rate were observed in tattooed skin compared with adjacent healthy non-tattooed skin in response to a moderate increase (1.0°C) in internal temperature during a passive whole body heat stress. Second, reduced sweating in tattooed skin is likely related to functional damage to the secretory mechanisms of eccrine sweat glands, rendering it less responsive to cholinergic stimulation.
Collapse
|
44
|
Fujii N, McGarr GW, Amano T, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, with no effect on β-adrenergic sweating. Exp Physiol 2020; 105:1720-1729. [PMID: 32818310 DOI: 10.1113/ep088583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? β-Adrenergic receptor activation modulates cutaneous vasodilatation and sweating in young adults. In this study, we assessed whether age-related differences in β-adrenergic regulation of these responses exist and whether they differ between men and women. What is the main finding and its importance? We showed that ageing augmented β-adrenergic cutaneous vasodilatation, although the pattern of response differed between men and women. Ageing had no effect on β-adrenergic sweating in men or women. Our findings advance our understanding of age-related changes in the regulation of cutaneous vasodilatation and sweating and provide new directions for research on the significance of enhanced β-adrenergic cutaneous vasodilatation in older adults. ABSTRACT β-Adrenergic receptor agonists, such as isoprenaline, can induce cutaneous vasodilatation and sweating in young adults. Given that cutaneous vasodilatation and sweating responses to whole-body heating and to pharmacological agonists, such as acetylcholine, ATP and nicotine, can differ in older adults, we assessed whether ageing also modulates β-adrenergic cutaneous vasodilatation and sweating and whether responses differ between men and women. In the context of the latter, prior reports showed that the effects of ageing on cutaneous vasodilatation (evoked with ATP and nicotine) and sweating (stimulated by acetylcholine) were sex dependent. Thus, in the present study, we assessed the role of β-adrenergic receptor activation on forearm cutaneous vasodilatation and sweating in 11 young men (24 ± 4 years of age), 11 young women (23 ± 5 years of age), 11 older men (61 ± 8 years of age) and 11 older women (60 ± 8 years of age). Initially, a high dose (100 µm) of isoprenaline was administered via intradermal microdialysis for 5 min to induce maximal β-adrenergic sweating. Approximately 60 min after the washout period, three incremental doses of isoprenaline were administered (1, 10 and 100 µm, each for 25 min) to assess dose-dependent cutaneous vasodilatation. Isoprenaline-mediated cutaneous vasodilatation was greater in both older men and older women relative to their young counterparts. Augmented cutaneous vasodilatory responses were observed at 1 and 10 µm in women and at 100 µm in men. Isoprenaline-mediated sweating was unaffected by ageing, regardless of sex. We show that ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, without influencing β-adrenergic sweating.
Collapse
|
45
|
Cramer MN, Hieda M, Huang M, Moralez G, Crandall CG. Dietary nitrate supplementation does not influence thermoregulatory or cardiovascular strain in older individuals during severe ambient heat stress. Exp Physiol 2020; 105:1730-1741. [PMID: 32816341 DOI: 10.1113/ep088834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does dietary nitrate supplementation with beetroot juice attenuate thermoregulatory and cardiovascular strain in older adults during severe heat stress? What is the main finding and its importance? A 7-day nitrate supplementation regimen lowered resting mean arterial pressure in thermoneutral conditions. During heat stress, core and mean skin temperatures, vasodilatory responses, sweat loss, heart rate and left ventricular function were unchanged, and mean arterial pressure was only transiently reduced, post-supplementation. These data suggest nitrate supplementation with beetroot juice does not mitigate thermoregulatory or cardiovascular strain in heat-stressed older individuals. ABSTRACT This study tested the hypothesis that dietary nitrate supplementation with concentrated beetroot juice attenuates thermoregulatory and cardiovascular strain in older individuals during environmental heat stress. Nine healthy older individuals (six females, three males; aged 67 ± 5 years) were exposed to 42.5 ± 0.1°C and 34.0 ± 0.5% relative humidity conditions for 120 min before (CON) and after 7 days of dietary nitrate supplementation with concentrated beetroot juice (BRJ; 280 ml, ∼16.8 mmol of nitrate daily). Core and skin temperatures, body mass changes (indicative of whole-body sweat loss), skin blood flow and cutaneous vascular conductance, forearm blood flow and vascular conductance, heart rate, arterial blood pressures and indices of cardiac function were measured. The 7-day beetroot juice regimen increased plasma nitrate/nitrite levels from 27.4 ± 15.2 to 477.0 ± 102.5 μmol l-1 (P < 0.01) and lowered resting mean arterial pressure from 90 ± 7 to 83 ± 10 mmHg at baseline under thermoneutral conditions (P = 0.02). However, during subsequent heat stress, no differences in core and skin temperatures, skin blood flow and vascular conductance, forearm blood flow and vascular conductance, whole-body sweat loss, heart rate, and echocardiographic indices of systolic function and diastolic filling were evident following nitrate supplementation (all P > 0.05). Mean arterial pressure was lower in BRJ vs. CON during heat stress (treatment-by-time interaction: P = 0.02). Overall, these findings suggest that dietary nitrate supplementation with concentrated beetroot juice does not attenuate thermoregulatory or cardiovascular strain in older individuals exposed to severe ambient heat stress.
Collapse
|
46
|
McGarr GW, Fujii N, Schmidt MD, Muia CM, Kenny GP. Heat shock protein 90 modulates cutaneous vasodilation during an exercise-heat stress, but not during passive whole-body heating in young women. Physiol Rep 2020; 8:e14552. [PMID: 32845578 PMCID: PMC7448794 DOI: 10.14814/phy2.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 90 (HSP90) modulates exercise-induced cutaneous vasodilation in young men via nitric oxide synthase (NOS), but only when core temperature is elevated ~1.0°C. While less is known about modulation of this heat loss response in women during exercise, sex differences may exist. Further, the mechanisms regulating cutaneous vasodilation can differ between exercise- and passive-heat stress. Therefore, in 11 young women (23 ± 3 years), we evaluated whether HSP90 contributes to NOS-dependent cutaneous vasodilation during exercise (Protocol 1) and passive heating (Protocol 2) and directly compared responses between end-exercise and a matched core temperature elevation during passive heating. Cutaneous vascular conductance (CVC%max ) was measured at four forearm skin sites continuously treated with (a) lactated Ringers solution (control), (b) 178 μM Geldanamycin (HSP90 inhibitor), (c) 10 mM L-NAME (NOS inhibitor), or (d) combined 178 μM Geldanamycin and 10 mM L-NAME. Participants completed both protocols during the early follicular (low hormone) phase of the menstrual cycle (0-7 days). Protocol 1: participants rested in the heat (35°C) for 70 min and then performed 50 min of moderate-intensity cycling (~55% VO2peak ) followed by 30 min of recovery. Protocol 2: participants were passively heated to increase rectal temperature by 1.0°C, comparable to end-exercise. HSP90 inhibition attenuated CVC%max relative to control at end-exercise (p < .05), but not during passive heating. While NOS inhibition and combined HSP90 + NOS inhibition attenuated CVC%max relative to control for both protocols (all p < .05), they did not differ from each other. We show that HSP90 modulates cutaneous vasodilation NOS-dependently during exercise in young women, with no effect during passive heating, despite a similar NOS contribution.
Collapse
|
47
|
Serviente C, Berry CW, Kenney WL, Alexander LM. Healthy active older adults have enhanced K + channel-dependent endothelial vasodilatory mechanisms. Am J Physiol Regul Integr Comp Physiol 2020; 319:R19-R25. [PMID: 32401629 PMCID: PMC7468792 DOI: 10.1152/ajpregu.00049.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Microvascular endothelial dysfunction, a precursor to atherosclerotic cardiovascular disease, increases with aging. Endothelium-derived hyperpolarizing factors (EDHFs), which act through K+ channels, regulate blood flow and are important to vascular health. It is unclear how EDHFs change with healthy aging. To evaluate microvascular endothelial reliance on K+ channel-mediated dilation as a function of age in healthy humans. Microvascular function was assessed using intradermal microdialysis in healthy younger (Y; n = 7; 3 M/4 W; 26 ± 1 yr) and older adults (O; n = 12; 5 M/7 W; 64 ± 2 yr) matched for V̇o2peak (Y: 39.0 ± 3.8, O: 37.6 ± 3.1 mL·kg-1·min-1). Participants underwent graded local infusions of: the K+ channel activator Na2S (10-6 to 10-1 M), acetylcholine (ACh, 10-10 to 10-1 M), ACh + the K+ channel inhibitor tetraethylammonium (TEA; 25 or 50 mM), and ACh + the nitric oxide synthase-inhibitor l-NAME (15 mM). Red blood cell flux was measured with laser-Doppler flowmetry and used to calculate cutaneous vascular conductance (CVC; flux/mean arterial pressure) as a percentage of each site-specific maximum (%CVCmax, 43°C+28 mM sodium nitroprusside). The %CVCmax response to Na2S was higher in older adults (mean, O: 51.7 ± 3.9% vs. Y: 36.1 ± 5.3%; P = 0.03). %CVCmax was lower in the ACh+TEA vs. the ACh site starting at 10-5 M (ACh: 34.0 ± 5.7% vs. ACh+TEA: 19.4 ± 4.5%; P = 0.002) in older and at 10-4 M (ACh: 54.5 ± 9.4% vs. ACh+TEA: 31.2 ± 6.7%; P = 0.0002) in younger adults. %CVCmax was lower in the ACh+l-NAME vs. the ACh site in both groups starting at 10-4 M ACh (Y: P < 0.001; O: P = 0.02). Healthy active older adults have enhanced K+ channel-dependent endothelial vasodilatory mechanisms, suggesting increased responsiveness to EDHFs with age.
Collapse
|
48
|
Yanovich R, Ketko I, Charkoudian N. Sex Differences in Human Thermoregulation: Relevance for 2020 and Beyond. Physiology (Bethesda) 2020; 35:177-184. [PMID: 32293229 DOI: 10.1152/physiol.00035.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of women in physically strenuous athletic and occupational tasks has increased substantially in the past decade. Female sex steroids have influences on thermoregulatory processes that could impact physical performance in the heat. Here, we summarize and evaluate the current literature regarding sex differences in thermoregulation and provide recommendations for heat-illness risk-mitigation strategies.
Collapse
|
49
|
Greaney JL, Surachman A, Saunders EFH, Alexander LM, Almeida DM. Greater Daily Psychosocial Stress Exposure is Associated With Increased Norepinephrine-Induced Vasoconstriction in Young Adults. J Am Heart Assoc 2020; 9:e015697. [PMID: 32340506 PMCID: PMC7428556 DOI: 10.1161/jaha.119.015697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Epidemiological data suggest a link between psychological stress and increased cardiovascular disease risk; however, the underlying mechanisms remain incompletely understood. The purpose of this investigation was to directly examine the influence of daily psychosocial stress on microvascular adrenergic vasoconstrictor responsiveness in healthy adults. We hypothesized increased daily psychosocial stress would be positively related to increased norepinephrine-induced vasoconstriction. Methods and Results Eighteen healthy adults (19-36 years; 10 women) completed a daily psychosocial experiences telephone interview for 8 consecutive evenings in order to document their exposure and emotional responsiveness to common stressors (eg, arguments, work stress) over the preceding 24 hrs. On the last interview day, red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of norepinephrine (10-12 to 10-2 mol/L) and expressed as a percentage of baseline vascular conductance. Exogenous norepinephrine elicited progressive and robust vasoconstriction in all individuals (maximal vasoconstriction: 71±4%base; cumulative vasoconstriction [area under the curve]: 118±102 arbitrary units). Participants experienced a stressor on 51±5% of days and a total of 5.2±0.9 stressors over the 8-day time frame. Increased daily frequency of stressor exposure was positively related to both maximal (R2=0.26; P=0.03) and cumulative (R2=0.31; P=0.02) vasoconstrictor responsiveness. Likewise, the total number of stressors was associated with increased maximal (R2=0.40; P<0.01) and cumulative (R2=0.27; P=0.03) norepinephrine-induced vasoconstriction. Neither stressor severity nor stress-related emotions were related to vasoconstrictor responsiveness. Conclusions Collectively, these data suggest that daily psychosocial stressor exposure by itself is sufficient to adversely influence microvascular vasoconstrictor function, regardless of the perceived severity or emotional consequences of the stressor exposure.
Collapse
|
50
|
Wu FL, Wang WT, Liao F, Liu Y, Li J, Jan YK. Microvascular Control Mechanism of the Plantar Foot in Response to Different Walking Speeds and Durations: Implication for the Prevention of Foot Ulcers. INT J LOW EXTR WOUND 2020; 20:327-336. [PMID: 32326799 DOI: 10.1177/1534734620915360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physical activity has been recommended by the American Diabetes Association (ADA) as a preventive intervention of diabetes complications. However, there is no study investigating how microvascular control mechanism respond to different walking intensities in people with and without diabetes. The purpose of this study was to assess microvascular control mechanism of the plantar foot in response to various walking speeds and durations in 12 healthy people using spectral analysis of skin blood flow (SBF) oscillations. A 3×2 factorial design, including 3 speeds (3, 6, and 9 km/h) and 2 durations (10 and 20 minutes), was used in this study. Plantar SBF was measured using laser Doppler flowmetry over the first metatarsal head. Borg Rating of Perceived Exertion (RPE) scale and heart rate maximum were used to assess the walking intensity. Wavelet analysis was used to quantify regulations of metabolic (0.0095-0.02 Hz), neurogenic (0.02-0.05 Hz), myogenic (0.05-0.15 Hz), respiratory (0.15-0.4 Hz), and cardiac (0.4-2 Hz) controls. For 10-minute walking, walking at 9 km/h significantly increased the ratio of wavelet amplitudes of metabolic, neurogenic, myogenic, respiratory, and cardiac mechanisms compared with 3 km/h (P < .05). For 20-minute walking, walking at 6 km/h significantly increased the ratio of wavelet amplitudes of metabolic, myogenic, respiratory, and cardiac compared with 3 km/h (P < .05). RPE showed a significant interaction between the speed and duration factors (P < .01). This is the first study demonstrating that different walking speeds and durations caused different plantar microvascular regulations.
Collapse
|