26
|
Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, Lin K, Saadi F, Trsan T, Nguyen AT, Constantopoulos E, Larsen RA, Zhu Y, Wagner ND, McLaughlin N, Kuang XC, Barrow AD, Li D, Zhou Y, Wang S, Gilfillan S, Gross ML, Brioschi S, Liu Y, Holtzman DM, Colonna M. Antibody-mediated targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid pathology in a mouse model. Sci Transl Med 2024; 16:eadj9052. [PMID: 38569016 DOI: 10.1126/scitranslmed.adj9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
Collapse
|
27
|
Gregersen CH, Mearraoui R, Søgaard PP, Clergeaud G, Petersson K, Urquhart AJ, Simonsen JB. Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE. Eur J Pharm Biopharm 2024; 197:114219. [PMID: 38368913 DOI: 10.1016/j.ejpb.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI ∼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.
Collapse
|
28
|
Shi YM, Ou D, Li JT, Bao L, Liu XD, Zhang W, Ding H. Genetically Predicted Apolipoprotein E Levels with the Risk of Panvascular Diseases: A Mendelian Randomization Study. Cardiovasc Toxicol 2024; 24:385-395. [PMID: 38536640 DOI: 10.1007/s12012-024-09846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
The aim of this study was to comprehensively assess the causal relationship between the overall genetic effect of circulating ApoE levels and panvascular lesions using newer genome-wide association data and two-sample bidirectional Mendelian randomization (MR) analysis. Two-way MR using single-nucleotide polymorphisms of circulating ApoE as instrumental variables was performed using the highest-priority Genome-wide association study (GWAS) data, with factor-adjusted and data-corrected statistics, to estimate causal associations between circulating ApoE levels and 10 pan-vascular diseases in > 500,000 UK Biobank participants, > 400,000 participants of Finnish ancestry, and numerous participants in a consortium of predominantly European ancestry. Meta-analysis was conducted to assess positive results. After correcting for statistical results, elevated circulating ApoE levels were shown to have a significant protective effect against Cerebral ischemia (CI) [IVW odds ratio (OR) 0.888, 95% Confidence Interval (CI): 0.823-0.958, p = 2.3 × 10-3], Coronary heart disease [IVW OR 0.950,95% CI: 0.924-0.976, p = 2.0 × 10-4] had a significant protective effect and potentially suggestive protective causality against Angina pectoris [IVW odds ratio (OR) 0.961, 95%CI: 0.931-0.991, p = 1.1 × 10-2]. There was a potential causal effect for increased risk of Heart failure (HF) [IVW ratio (OR) 1.040, 95%CI: 1.006-1.060, p = 1.8 × 10-2]. (Bonferroni threshold p < 0.0026, PFDR < 0.05) Reverse MR analysis did not reveal significant evidence of a causal effect of PVD on changes in circulating ApoE levels. Meta-analysis increases reliability of results. Elevated circulating ApoE levels were particularly associated with an increased risk of heart failure. Elevated ApoE levels reduce the risk of cerebral ischemia, coronary heart disease, and angina pectoris, reflecting a protective effect. The possible pathophysiological role of circulating ApoE levels in the development of panvascular disease is emphasized.
Collapse
|
29
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
|
30
|
Mallén A, Narváez-Narváez DA, Pujol MD, Navarro E, Maria Suñé-Negre J, García-Montoya E, Pérez-Lozano P, Torrejón-Escribano B, Suñé-Pou M, Hueso M. Development of cationic solid lipid nanoparticles incorporating cholesteryl-9-carboxynonanoate (9CCN) for delivery of antagomiRs to macrophages. Eur J Pharm Biopharm 2024; 197:114238. [PMID: 38417704 DOI: 10.1016/j.ejpb.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Lipid-based nanoparticles are a useful tool for nucleic acids delivery and have been regarded as a promising approach for diverse diseases. However, off-targets effects are a matter of concern and some strategies to improve selectivity of solid lipid nanoparticles (SLNs) were reported. The goal of this study was to test formulations of SLNs incorporating lipid cholesteryl-9-carboxynonanoate (9CCN) as "eat-me" signal to target antagomiR oligonucleotides to macrophages. We formulate four SLNs, and those with a mean diameter of 200 nm and a Z-potential values between 25 and 40 mV, which allowed the antagomiR binding, were selected for in vitro studies. Cell viability, transfection efficiency and cellular uptake assays were performed within in vitro macrophages using flow cytometry and confocal imaging and the SLNs incorporating 25 mg of 9CCN proved to be the best formulation. Subsequently, we used a labeled antagomiR to study tissue distribution in in-vivo ApoE-/- model of atherosclerosis. Using the ApoE-/- model we demonstrated that SLNs with phagocytic signal 9-CCN target macrophages and release the antagomiR cargo in a selective way.
Collapse
|
31
|
Gao Z, Yang C, Zeng G, Lin M, Li W, Sun M, Zhang Y, Fan B, Kumar Y, Yan K. Sinomenine protects against atherosclerosis in apolipoprotein E-knockout mice by inhibiting of inflammatory pathway. Inflammopharmacology 2024; 32:1387-1400. [PMID: 38430414 DOI: 10.1007/s10787-024-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Atherosclerosis, a multifaceted and persistent inflammatory condition, significantly contributes to the progression of cardiocerebrovascular disorders, such as myocardial infarctions and cerebrovascular accidents. It involves the accumulation of cholesterol, fatty deposits, calcium and cellular debris in the walls of arteries, leading to the formation of plaques. Our aim is to investigate the potential of sinomenine to counteract atherosclerosis in mice lacking Apolipoprotein E (ApoE-/-) Mice. We employed the high-fat diet-induced method to induce atherosclerosis in ApoE-/- mice, and the mice were treated with sinomenine (5, 10, and 15 mg/kg) and simvastatin (0.5 mg/kg) for 12 weeks. Body weight, water intake, and food intake were assessed. Lipid parameters, oxidative stress, inflammatory cytokines, and mRNA levels were estimated. Sinomenine treatment remarkably (P < 0.001) suppressed body weight, along with food and water intake. Sinomenine altered the levels of total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), which were modulated in the atherosclerosis group. Sinomenine treatment also altered the levels of oxidative stress parameters such as glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). In addition, it modulated cardiac parameters like C-reactive protein (CRP), endothelin-1 (ET-1), thromboxane B2 (TXB2), nitric oxide (NO), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatinine kinase isoenzymes (CK-MB). Inflammatory cytokines interleukin (IL)-1α, IL-1β, TNF-α, IL-6, and IL-10 were also affected. Sinomenine further suppressed the mRNA expression of IL-6, IL-17, IL-10, tumor necrosis factor-α (TNF-α), Il-1β, monocyte chemoattractant protein-1 (MCP-1), MCP-2, MCP-3, transforming Growth Factor-1β (TGF-1β), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). The results suggest that sinomenine remarkably suppressed the development of atherosclerosis in the early stage.
Collapse
|
32
|
Shridas P, Ji A, Trumbauer AC, Noffsinger VP, Meredith LW, de Beer FC, Mullick AE, Webb NR, Karounos DG, Tannock LR. Antisense oligonucleotide targeting hepatic Serum Amyloid A limits the progression of angiotensin II-induced abdominal aortic aneurysm formation. Atherosclerosis 2024; 391:117492. [PMID: 38461759 PMCID: PMC11006562 DOI: 10.1016/j.atherosclerosis.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AND AIMS Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.
Collapse
|
33
|
Shuey MM, Wang Y, Xiang RR, Zou A, Rahman P, Fabbri D, Beckman JA, Jaffe I, Wells QS. Aggregation and Contextualization of Murine Investigations Improves Discovery of Significant Human Atherosclerotic Cardiovascular Disease Associations. Circulation 2024; 149:1056-1058. [PMID: 38527133 PMCID: PMC10965229 DOI: 10.1161/circulationaha.123.067510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
34
|
Zhu K, Zhang H, Luan Y, Hu B, Shen T, Ma B, Zhang Z, Zheng X. KDM4C promotes mouse hippocampal neural stem cell proliferation through modulating ApoE expression. FASEB J 2024; 38:e23511. [PMID: 38421303 DOI: 10.1096/fj.202302439r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
KDM4C is implicated in the regulation of cell proliferation, differentiation, and maintenance in various stem cell types. However, its function in neural stem cells (NSCs) remains poorly understood. Therefore, this study aims to investigate the role and regulatory mechanism of KDM4C in NSCs. Primary hippocampal NSCs were isolated from neonatal mice, and both in vivo and in vitro lentivirus-mediated overexpression of KDM4C were induced in these hippocampal NSCs. Staining results revealed a significant increase in BrdU- and Ki-67-positive cells, along with an elevated number of cells in S phases due to KDM4C overexpression. Subsequently, RNA-seq was employed to analyze gene expression changes following KDM4C upregulation. GO enrichment analysis, KEGG analysis, and GSEA highlighted KDM4C-regulated genes associated with development, cell cycle, and neurogenesis. Protein-protein interaction analysis uncovered that ApoE protein interacts with several genes (top 10 upregulated and downregulated) regulated by KDM4C. Notably, knocking down ApoE mitigated the proliferative effect induced by KDM4C overexpression in NSCs. Our study demonstrates that KDM4C overexpression significantly upregulates ApoE expression, ultimately promoting proliferation in mouse hippocampal NSCs. These findings provide valuable insights into the molecular mechanisms governing neurodevelopment, with potential implications for therapeutic strategies in neurological disorders.
Collapse
|
35
|
Feizolahi F, Arabzadeh E, Sarshin A, Falahi F, Dehghannayeri Z, Ali Askari A, Wong A, Aghaei F, Zargani M. Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats. Neurotox Res 2024; 42:21. [PMID: 38441819 DOI: 10.1007/s12640-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
Collapse
|
36
|
Zhang W, Wang R, Shi F. Peripheral apolipoprotein is an independent factor for enlarged perivascular space in small vessel disease. Clin Neurol Neurosurg 2024; 238:108185. [PMID: 38422746 DOI: 10.1016/j.clineuro.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The purpose of this study is to the relationship between peripheral apolipoproteins and cerebral small vessel disease (CSVD) imaging markers. METHODS We reviewed the data of a population that above 40 years old with CSVD, while free of known dementia or acute stroke. We evaluated CSVD imaging markers, including white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVS), lacunas, microbleeds by MRI scans, and measured peripheral apolipoproteins. RESULTS After adjusting for age, sex and vascular risk factors,1) apoB and apoB/apoA-1 were related to grade of EPVS in basal ganglia(apoB:r=0.196,p<0.001;apoB/apoA-1:r=0.208,p<0.001), apoE was related to grade of EPVS in centrum semiovale (r=0.125,p=0.040); 2) apoB(OR=1.739, 95%CI=1.357-2.061, p<0.001), apoB/apoA-1(OR=1.116, 95%CI=1.037-1.761, p=0.005) and apoE(OR=1.287, 95%CI=1.036-1.599, p=0.023) were independent factors of presence of severer EPVS in basal ganglia, apoE was an independent factor of presence of severer EPVS in centrum semiovale (OR=1.235, 95%CI=1.021-1.494, p=0.029). CONCLUSION Our findings demonstrated peripheral apolipoproteins, including apoB, apoB/apoA-1, and apoE, were independent factor for EPVS in CSVD.
Collapse
|
37
|
Stella F, Pais MV, Loureiro JC, Cordeiro AMT, Talib LL, Forlenza OV. Neuropsychiatric symptoms and ApoE genotype in older adults without dementia: a cross-sectional study. Psychogeriatrics 2024; 24:382-390. [PMID: 38303161 DOI: 10.1111/psyg.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The ApoE genotype and neuropsychiatric symptoms (NPS) are known risk factors for cognitive decline in older adults. However, the interaction between these variables is still unclear. The aim of this study was to determine the association between the presence of the ApoE ε4 allele and the occurrence of NPS in older adults without dementia. METHODS In this cross-sectional investigation we determined the apolipoprotein E (ApoE) genotype of 74 older adults who were either cognitively normal (20.3% / Clinician Dementia Rating Scale (CDR): 0) or had mild cognitive impairment (MCI: 79.7% / CDR: 0.5). We used a comprehensive cognitive assessment protocol, and NPS were estimated by the Neuropsychiatric Inventory-Clinician Rating Scale (NPI-C), Mild Behavioural Impairment-Checklist (MBI-C), Hamilton Rating Scale for Depression (HAM-D), and Apathy Inventory. RESULTS ApoE ε4 carriers had higher MBI-C total scores than ApoE ε4 noncarriers. Correlations between NPS and ApoE genotype were observed for two NPI-C domains, although in opposite directions: the ApoE ε4 allele was associated with a 1.8 unit decrease in the estimated aberrant motor disturbance score and with a 1.3 unit increase in the estimated appetite/eating disorders score. All fitted models were significant, except for the one fitted for the domain delusions from the NPI-C. Among individuals with amnestic MCI, ε4 carriers presented higher depression score (HAM-D) than noncarriers; in turn, ε4 noncarriers exhibited higher aggression score (NPI-C) than ε4 carriers. CONCLUSIONS Our analyses showed associations between NPS and the presence of the ApoE ε4 allele in two NPI-C domains, despite the sample size. Furthermore, compared to noncarriers, the presence of the ApoE ε4 correlated positively with appetite/eating disorders and negatively with aberrant motor disturbance domain. Examination of the amnestic MCI group displayed significant, although weak, associations. Therefore, ε4 carriers exhibited higher depression scores according to the HAM-D scale compared to ε4 noncarriers. Conversely, ε4 noncarriers had higher scores in the aggression domain of the NPI-C than ε4 carriers.
Collapse
|
38
|
Keegan AP, Stough C, Paris D, Luis CA, Abdullah L, Ait-Ghezala G, Chaykin J, Crawford F, Mullan M. Baseline serum brain-derived neurotrophic factor association with future cognition in community-dwelling older adults undergoing annual memory screening. Neurol Res 2024; 46:253-260. [PMID: 38095353 DOI: 10.1080/01616412.2023.2294581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVES It has been shown that peripheral measures of brain-derived neurotrophic factor (BNDF), an important neurotrophin instrumental to the biology of learning, may contribute to predicting cognitive decline. However, the two primary forms of BDNF, mature (mBDNF) and pro (proBDNF), and how they contribute to cognition longitudinally has not been well studied. METHODS Eighty-two older adults (average age 72.2 ± 6.4 years) provided blood samples at two time points separated on average by 4.2 years while participating in an annual memory screening that included the MoCA (Montreal Cognitive Assessment) and GDS (Geriatric Depression Scale). Both mBDNF and proBDNF from serum were quantified at each time point. Whole blood samples were genotyped for APOE and BDNF Val66Met. RESULTS Using logistic regression analysis controlling for age, sex, baseline MoCA score, APOE, and BDNF, higher baseline mBDNF was associated with subjects whose screening score was near maximum or maximum (as defined by MoCA score of 29 or 30) at the second collection visit. APOE was a significant contributing factor; however, BDNF Val66Met was not. Using a similar logistic regression analysis, baseline proBDNF was not found to be associated with future cognition. DISCUSSION This study further supports that mBDNF measured in the serum of older adults may reflect a protective role while proBDNF requires further investigation.
Collapse
|
39
|
Vyas CM, Kang JH, Mischoulon D, Cook NR, Reynolds III CF, Chang G, Mora S, De Vivo I, Manson JE, Okereke OI. Apolipoprotein E and Its Association With Cognitive Change and Modification of Treatment Effects of Vitamin D3 and Omega-3s on Cognitive Change: Results From the In-Clinic Subset of a Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2024; 79:glad260. [PMID: 37952113 PMCID: PMC10876077 DOI: 10.1093/gerona/glad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Apolipoprotein E (APOE)-ε4 allele is associated with cognitive decline; however, its potential to modify effects of vitamin D3 and omega-3s supplementation on later-life cognition is unclear. Our objectives were to estimate among the in-clinic subset of a randomized trial: (1) associations between APOE-ε4 and global and domain-specific cognitive change, with exploration of potential sex and race differences; and (2) modification by APOE-ε4 of effects of vitamin D3 and omega-3s supplementation on cognitive change. METHODS From an ancillary study of depression prevention within a completed 2 × 2 factorial trial testing vitamin D3 (2 000 IU per day), omega-3s (1 g per day), and/or placebos, we included 743 older adults with baseline in-person neuropsychiatric assessments and APOE genotyping data. The primary outcome was change in global cognition (averaging z-scores of 9 tests) over 2 years. Secondarily, episodic memory and executive function/attention z-scores were examined. General linear models of response profiles with multiplicative interaction terms were constructed; stratified results were reported. RESULTS Mean age (standard deviation) was 67.1 (5.3) years; 50.6% were females; 24.9% were APOE-ε4 carriers. Compared to noncarriers, APOE-ε4 carriers had worse 2-year change in global cognition and episodic memory; differences were more apparent among females than males. There was no variation by race in APOE-ε4 associations with cognition. APOE-ε4 did not significantly modify effects of vitamin D3 or omega-3s, compared to placebo, on change in global cognition, episodic memory, or executive function/attention. CONCLUSIONS APOE-ε4 was associated with worse cognition but did not modify overall effects of vitamin D3 or omega-3 supplementation on cognition over 2 years.
Collapse
|
40
|
Coomans EM, van Westen D, Binette AP, Strandberg O, Spotorno N, Serrano GE, Beach TG, Palmqvist S, Stomrud E, Ossenkoppele R, Hansson O. Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation. Brain 2024; 147:949-960. [PMID: 37721482 PMCID: PMC10907085 DOI: 10.1093/brain/awad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cerebrovascular pathology often co-exists with Alzheimer's disease pathology and can contribute to Alzheimer's disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer's disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-β pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-β pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ɛ4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-β and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ɛ4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-β pathology on greater baseline tau load (β = 0.68, P < 0.001) and longitudinal tau accumulation (β = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-β on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-β on longitudinal tau (β = -0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-β pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (β = 0.38, P < 0.001) and between infarcts and plaque density (β = -0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology-in the presence of amyloid-β pathology-modifies tau accumulation in early stages of Alzheimer's disease. More specifically, the co-occurrence of microbleeds and amyloid-β pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer's disease.
Collapse
|
41
|
Liu D, Jin Z, Wei H, Zhu C, Liu K, You P, Ju J, Xu J, Zhu W, Xu Q. Anti-SFT2D2 autoantibodies alter dendrite spine and cause psychotic behavior in mice. J Psychiatr Res 2024; 171:99-107. [PMID: 38262166 DOI: 10.1016/j.jpsychires.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.
Collapse
|
42
|
Rubinski A, Dewenter A, Zheng L, Franzmeier N, Stephenson H, Deming Y, Duering M, Gesierich B, Denecke J, Pham AV, Bendlin B, Ewers M. Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner. Eur J Nucl Med Mol Imaging 2024; 51:1035-1049. [PMID: 38049659 PMCID: PMC10881623 DOI: 10.1007/s00259-023-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aβ) PET tracers bind to WM myelin. We assessed 43 Aβ-biomarker negative (Aβ-) cognitively normal participants and 108 Aβ+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aβ+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Collapse
|
43
|
Zhang H, Wang C, Sun H, Zhou T, Ma C, Han X, Zhang T, Xia J. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics 2024; 24:e2300179. [PMID: 37679095 DOI: 10.1002/pmic.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to clarify the role of glutamine in atherosclerosis and its participating mechanism. Forty C57BL/6J mice were divided into wild control (wild Con), ApoE- /- control (ApoE- /- Con), glutamine + ApoE- /- control (Glut + ApoE- /- Con), ApoE- /- high fat diet (ApoE- /- HFD), and glutamine + ApoE- /- HFD (Glut + ApoE- /- HFD) groups. The degree of atherosclerosis, western blotting, and multiomics were detected at 18 weeks. An in vitro study was also performed. Glutamine treatment significantly decreased the degree of aortic atherosclerosis (p = 0.03). O-GlcNAcylation (O-GlcNAc), IL-1β, IL-1α, and pyruvate kinase M2 (PKM2) in the ApoE- /- HFD group were significantly higher than those in the ApoE- /- Con group (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05), and aggravated by O-GlcNA transferase (OGT) overexpression in the in vitro study (p < 0.05). Multiomics showed that the ApoE- /- HFD group had higher levels of oxidative stress regulatory molecules (guanine deaminase [GUAD], xanthine dehydrogenase [XDH]), proinflammatory regulatory molecules (myristic acid and myristoleic acid), and stress granules regulatory molecules (caprin-1 and deoxyribose-phosphate aldolase [DERA]) (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05). We conclude that glutamine supplementation might alleviate atherosclerosis through downregulation of O-GlcNAc, glycolysis, oxidative stress, and proinflammatory pathway.
Collapse
|
44
|
Jiang S, Li X, Li Y, Chang Z, Yuan M, Zhang Y, Zhu H, Xiu Y, Cong H, Yin L, Yu ZW, Fan J, He W, Shi K, Tian DC, Zhang J, Verkhratsky A, Jin WN, Shi FD. APOE from patient-derived astrocytic extracellular vesicles alleviates neuromyelitis optica spectrum disorder in a mouse model. Sci Transl Med 2024; 16:eadg5116. [PMID: 38416841 DOI: 10.1126/scitranslmed.adg5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune astrocytopathy of the central nervous system, mediated by antibodies against aquaporin-4 water channel protein (AQP4-Abs), resulting in damage of astrocytes with subsequent demyelination and axonal damage. Extracellular communication through astrocyte-derived extracellular vesicles (ADEVs) has received growing interest in association with astrocytopathies. However, to what extent ADEVs contribute to NMOSD pathogenesis remains unclear. Here, through proteomic screening of patient-derived ADEVs, we observed an increase in apolipoprotein E (APOE)-rich ADEVs in patients with AQP4-Abs-positive NMOSD. Intracerebral injection of the APOE-mimetic peptide APOE130-149 attenuated microglial reactivity, neuroinflammation, and brain lesions in a mouse model of NMOSD. The protective effect of APOE in NMOSD pathogenesis was further established by the exacerbated lesion volume in APOE-deficient mice, which could be rescued by exogenous APOE administration. Genetic knockdown of the APOE receptor lipoprotein receptor-related protein 1 (LRP1) could block the restorative effects of APOE130-149 administration. The transfusion ADEVs derived from patients with NMOSD and healthy controls also alleviated astrocyte loss, reactive microgliosis, and demyelination in NMOSD mice. The slightly larger beneficial effect of patient-derived ADEVs as compared to ADEVs from healthy controls was further augmented in APOE-/- mice. These results indicate that APOE from astrocyte-derived extracellular vesicles could mediate disease-modifying astrocyte-microglia cross-talk in NMOSD.
Collapse
|
45
|
Zhang J, Cui B, He T, Hei R, Yang L, Liu C, Wu X, Wang X, Gao Z, Lin F, Zhang H, Dong K. Enhancing Neuroprotection in Mouse Model of Parkinson's Disease through Protein Nanosystem Conjugation with ApoE Peptide for miR-124 Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8199-8212. [PMID: 38345297 DOI: 10.1021/acsami.3c13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) affects millions of people's lives worldwide. The main pathogenesis of PD is dopaminergic neuron necrosis and neuroinflammation mediated by activated microglia cells. In recent years, the anti-inflammatory ability and neuroprotective effects of miR-124 in PD models were well proved, but the in vivo delivery of miR-124 remains challenging. Herein, we report a protein nanosystem modified with a brain-targeting peptide ApoE that could efficiently deliver miR-124 across the blood-brain barrier (BBB). This nanosystem showed good cell viability on brain endothelial cells and microglia cells, and administration of this nanosystem significantly decreased the neuroinflammation and dopaminergic neuron loss, as well as recovered parts of neurobehavioral deficits. This ApoE peptide-based protein nanosystem holds great promise for the delivery of RNA therapeutics to the brain and for realizing neuron protection in PD treatment.
Collapse
|
46
|
魏 婷, 丁 洋, 张 佳, 李 金, 张 恒, 康 品, 张 宁. [Correlation of serum ferredoxin 1 and lipoic acid levels with severity of coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:308-316. [PMID: 38501416 PMCID: PMC10954524 DOI: 10.12122/j.issn.1673-4254.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To analyze the correlation of copper death inducer ferredoxin 1 (FDX1) and lipoic acid (LA) with the occurrence and severity of coronary atherosclerosis and explore their roles in coronary heart disease (CHD). METHODS We analyzed the data of 226 patients undergoing coronary artery angiography (CAG) in our hospital between October, 2021 and October, 2022, including 47 patients with normal CAG findings (control group) and 179 patients with mild, moderate or severe coronary artery stenosis (CHD group). Serum FDX1 and LA levels were determined with ELISA for all the patients. We also examined pathological changes in the aorta of normal and ApoE-/- mice using HE staining and observed collagen fiber deposition with Sirius red staining. Immunohistochemistry was used to detect the expression and distribution of FDX1 and LA in the aorta, and RT-PCR was performed to detect the expressions of FDX1, LIAS and ACO2 mRNAs in the myocardial tissues. RESULTS Compared with the control patients, CHD patients had significantly lower serum FDX1 and LA levels, which decreased progressively as coronary artery stenosis worsened (P < 0.01) and as the number of involved coronary artery branches increased (P < 0.05). Serum FDX1 and LA levels were positively correlated (r=0.451, P < 0.01) and they both negatively correlated with the Gensini score (r=-0.241 and -0.273, respectively; P < 0.01). Compared with normal mice, ApoE-/- mice showed significantly increased lipid levels (P < 0.01) and atherosclerosis index, obvious thickening, lipid aggregation, and collagen fiber hyperplasia in the aorta, and significantly reduced expressions of FDX1, LA, LIAS, and ACO2 (P < 0.05). CONCLUSION Serum FDX1 and LA levels decrease with worsening of coronary artery lesions, and theirs expressions are correlated with coronary artery lesions induced by hyperlipidemia.
Collapse
|
47
|
Wang L, Li H, Zhang H, Song X, Jiang H, Wang D, Wang Y. Serum-based metabolomics reveals the mechanism of action of isorhynchophylline in the intervention of atherosclerosis in ApoE -/- mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1083-1092. [PMID: 38284158 DOI: 10.1039/d3ay01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with disorders of lipid metabolism. Metabolic disorders, inflammation and lipid deposition are prominent pathological features of atherosclerosis. Isorhynchophylline (IRN) has pharmacological effects such as protection of vascular endothelial cells, anti-inflammatory, anti-thrombotic, and anti-smooth muscle cell proliferation. However, it is unclear whether IRN is efficacious in atherosclerosis. In the present study, we verified the pharmacological efficacy and hepatoprotective effects of IRN in intervening in AS. LC-MS-based serum untargeted metabolomics was performed to search for potential biomarkers and related pathways in IRN-treated AS in ApoE-/- mice. Fifty-eight biomarkers were metabolically disturbed in the model mice compared to controls. Thirteen biomarkers showed optimal recovery methods after IRN-40 mg ml-1 intervention. We identified three metabolic pathways involved in IRN: glycerophospholipid metabolism, linoleic acid metabolism, and alpha-linolenic acid metabolism. These findings provide a research basis for the intervention of IRN in atherosclerosis.
Collapse
|
48
|
Jiang Y, Tong W, Li Y, Ma Q, Chen Y. Melatonin inhibits the formation of intraplaque neovessels in ApoE-/- mice via PPARγ- RhoA-ROCK pathway. Biochem Biophys Res Commun 2024; 696:149391. [PMID: 38184922 DOI: 10.1016/j.bbrc.2023.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND According to former research, the atherosclerotic plaque is thought to be aggravated by intraplaque neovessels (IPN) and intraplaque hemorrhage (IPH). Intriguingly, a lower incidence of IPH was found in plaque treated with melatonin. In this study, we attempted to investigate the impact and underlying mechanism regarding the influences of melatonin upon IPN. METHODS A mouse model was established by subjecting the high fat diet (HFD)-fed ApoE-/- mice to tandem stenosis (TS) surgery with melatonin and GW9662, a PPARγ antagonist, being given by gavage. In vitro experiment was conducted with HUVECs exposing to according treatments of VEGF, melatonin, GW9662, or Y27632. RESULTS Plaque and IPN were attenuated by treatment with melatonin, which was then reversed by blocking PPARγ. Western blotting results showed that melatonin increased PPARγ and decreased RhoA/ROCK signaling in carotid artery. Elevated RhoA/ROCK signaling was observed in melatonin-treated mice when PPARγ was blocked. In accordance with it, experiments using protein and mRNA from HUVECs revealed that melatonin inhibited the RhoA/ROCK signaling by enhancing PPARγ. According to in vitro study, melatonin was able to inhibit cell migration and angiogenesis, which was aborted by GW9662. Blockage of ROCK using Y27632 was able to cease the effect of GW9662 and restored the suppression on cell migration and angiogenesis by melatonin. CONCLUSIONS Our study demonstrates that melatonin is able to curb development of plaque and IPN formation by inhibiting the migration of endothelial cells via PPARγ- RhoA-ROCK pathway. That provides a therapeutic potential for both melatonin and PPARγ agonist targeting IPN, IPH, and atherosclerotic plaque.
Collapse
|
49
|
Nagao M, Sasaki J, Tanimura-Inagaki K, Sakuma I, Sugihara H, Oikawa S. Ipragliflozin and sitagliptin differentially affect lipid and apolipoprotein profiles in type 2 diabetes: the SUCRE study. Cardiovasc Diabetol 2024; 23:56. [PMID: 38331780 PMCID: PMC10854175 DOI: 10.1186/s12933-024-02149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND SGLT2 inhibitors and DPP4 inhibitors have been suggested to affect lipid metabolism. However, there are few randomized controlled trials comparing the effects on the lipid metabolism between the two types of antidiabetic drugs. The SUCRE study (UMIN ID: 000018084) was designed to compare the effects of ipragliflozin and sitagliptin on serum lipid and apolipoprotein profiles and other clinical parameters. METHODS This is a multicenter, open-label, randomized, controlled trial. Patients with type 2 diabetes (20-74 years old) with HbA1c levels of 7.0-10.5% and serum triglyceride levels of 120-399 mg/dL (1.35-4.50 mmol/L) on diet and/or oral hypoglycemic agents were enrolled. Subjects were randomized to treatment with ipragliflozin (50 mg/day, n = 77) or sitagliptin (50 mg/day, n = 83). Laboratory measurements were performed at 0, 1, 3, and 6 months of treatment. RESULTS Ipragliflozin and sitagliptin reduced fasting plasma glucose, glycoalbumin, and HbA1c almost equally. Ipragliflozin increased HDL-C and decreased apo E. Sitagliptin decreased TG, apo B48, CII, and CIII, but increased LDL-C. The between-treatment differences were significant for HDL-C (P = 0.02) and apo B48 (P = 0.006), and nearly significant for apo A1 (P = 0.06). In addition, ipragliflozin reduced body weight, blood pressure, serum liver enzymes, uric acid, and leptin, and increased serum ketones compared with sitagliptin. CONCLUSIONS While ipragliflozin and sitagliptin showed similar effects on glycemic parameters, the effects on serum lipid and apolipoprotein profiles were different. Ipragliflozin may have an anti-atherogenic effect through modulation of HDL-C and apo E compared to sitagliptin through TG and apo B48, CII, and CIII in patients with type 2 diabetes.
Collapse
|
50
|
Hu J, Xu J, Zhao J, Liu Y, Huang R, Yao D, Xie J, Lei Y. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice. Eur J Pharmacol 2024; 964:176297. [PMID: 38135264 DOI: 10.1016/j.ejphar.2023.176297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) are often associated with chronic inflammation and pose a significant risk to affected individuals. Colchicine, known for its anti-inflammatory properties, has shown promise in managing cardiovascular diseases. However, its specific role in the development of AAA remains poorly understood. METHODS AND RESULTS In this study, we employed a short-term AAA model induced by angiotensin II (Ang II, 1000 ng/kg/min) and calcium chloride (CaCl2, 0.5 mol/l) in male ApoE-/- and C57BL/6 mice (8-12 weeks old) to investigate the effects of colchicine on AAA progression. Colchicine (0.4 mg/kg) was administered orally once daily, starting on the same day as AAA induction. After a 4-week duration, we observed a significant reduction in AAA diameter, degradation of elastic fibers, and expression of components related to the Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome in the vessel wall of colchicine-treated mice compared to the saline group. Mechanistically, colchicine (5 μm/l, for 24h) inhibited the expression of NLRP3 inflammasome components through the P38-ERK/MicroRNA145-toll-like receptor 4 (TLR4) pathway in RAW264.7 cells. CONCLUSIONS Our study demonstrates the effectiveness of colchicine in suppressing NLRP3 inflammasome components, thereby delaying AAA progression in the Ang II and CaCl2-induced short-term model. These findings suggest the potential of colchicine as a pharmacological treatment option for AAA.
Collapse
|