26
|
Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, Fryer AD, Costello RW, Jacoby DB. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med 2018; 10:eaar8477. [PMID: 30185653 PMCID: PMC6592848 DOI: 10.1126/scitranslmed.aar8477] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.
Collapse
|
27
|
Di Paolo M, Gigante A, Liberatori M, Sardo L, Marinelli P, Rossetti M, Palange P, Tubani L, Rosato E. Effects of autonomic dysfunction on exercise tolerance in systemic sclerosis patients without clinical and instrumental evidence of cardiac and pulmonary involvement. Clin Exp Rheumatol 2018; 36 Suppl 113:61-67. [PMID: 29745872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Autonomic dysfunction (AD) in systemic sclerosis (SSc) was already confirmed through heart rate variability (HRV) analysis. Cardio-pulmonary exercise testing (CPET) is a useful tool in early detection of exercise tolerance in SSc patients. Aim of the study was to assess the relationships existing between AD and exercise tolerance. METHODS Thirty-two [4 M, 28 F; median age: 47.5 (20-65) years] consecutive SSc patients were enrolled. All patients underwent pulmonary function testing, incremental symptom-limited CPET and twenty-four hours ECG Holter recording with HRV analysis in time and frequency domain. Multiple regression analysis was performed in order to identify independent HRV predictors of exercise tolerance and cardiac efficiency during the effort. RESULTS HRV analysis showed significant differences in power in low and high frequency (LF and HF, respectively) and their ratio (LF/HF) compared to healthy controls. Nocturnal ratio be- tween power in low and high frequency at HRV (LF/HFnight) was shown to be the only independent positive predictor of maximal work load (R2=18.6%, p=0.014) and maximal oxygen consumption (V' O2 peak) expressed both as absolute value (R2=24.2%, p=0.004) and as corrected for body weight (R2=21.6%, p=0.007). A positive linear relationship was also found between nocturnal LF (LFnight) and the oxygen uptake/work rate (V'O2/W) slope (R2=15.8%, p=0.024). CONCLUSIONS In SSc patients without cardiopulmonary involvement AD is associated with better exercise tolerance and cardiac function during physical effort. Further studies are needed to confirm these results.
Collapse
|
28
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
|
29
|
Jung WJ, Lee SY, Choi SI, Kim BK, Lee EJ, In KH, Lee MG. Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model. PLoS One 2018. [PMID: 29518161 PMCID: PMC5843166 DOI: 10.1371/journal.pone.0193117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few studies of TLR expression in lung-derived sensory neurons or their relevance to respiratory symptoms such as cough. We used the bleomycin-induced pulmonary fibrosis model to investigate the change in TLR expression in pulmonary neurons and the association of TLRs with transient receptor potential (TRP) channels in pulmonary neurons. After 2 weeks of bleomycin or saline administration, pulmonary fibrosis changes were confirmed using tissue staining and the SIRCOL collagen assay. TLRs (TLR 1-9) and TRP channel expression was analyzed using single cell reverse transcription polymerase chain reaction (RT-PCR) in isolated sensory neurons from the nodose/jugular ganglion and the dorsal root ganglion (DRG). Pulmonary sensory neurons expressed TLR2 and TLR5. In the bleomycin-induced pulmonary fibrosis model, TLR2 expression was detected in 29.5% (18/61) and 26.9% (21/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively. TLR5 was also detected in 55.7% (34/61) and 42.3% (33/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively, in the bleomycin-induced pulmonary fibrosis model. TLR5 was expressed in 63.4% of TRPV1 positive cells and 43.4% of TRPM8 positive cells. In conclusion, TLR2 and TLR5 expression is enhanced, especially in vagal neurons, in the bleomycin-induced fibrosis model group when compared to the saline treated control group. Co-expression of TLR5 and TRP channels in pulmonary sensory neurons was also observed. This work sheds new light on the role of TLRs in the control and manifestation of clinical symptoms, such as cough. To understand the role of TLRs in pulmonary sensory nerves, further study will be required.
Collapse
|
30
|
Stryker C, Camperchioli DW, Mayer CA, Alilain WJ, Martin RJ, MacFarlane PM. Respiratory dysfunction following neonatal sustained hypoxia exposure during a critical window of brain stem extracellular matrix formation. Am J Physiol Regul Integr Comp Physiol 2018; 314:R216-R227. [PMID: 29046314 PMCID: PMC5867672 DOI: 10.1152/ajpregu.00199.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 01/02/2023]
Abstract
The extracellular matrix (ECM) modulates brain maturation and plays a major role in regulating neuronal plasticity during critical periods of development. We examined 1) whether there is a critical postnatal period of ECM expression in brain stem cardiorespiratory control regions and 2) whether the attenuated hypoxic ventilatory response (HVR) following neonatal sustained (5 days) hypoxia [SH (11% O2, 24 h/day)] exposure is associated with altered ECM formation. The nucleus tractus solitarius (nTS), dorsal motor nucleus of the vagus, hypoglossal motor nucleus, cuneate nucleus, and area postrema were immunofluorescently processed for aggrecan and Wisteria floribunda agglutinin (WFA), a key proteoglycan of the ECM and the perineuronal net. From postnatal day ( P) 5 ( P5), aggrecan and WFA expression increased postnatally in all regions. We observed an abrupt increase in aggrecan expression in the nTS, a region that integrates and receives afferent inputs from the carotid body, between P10 and P15 followed by a distinct and transient plateau between P15 and P20. WFA expression in the nTS exhibited an analogous transient plateau, but it occurred earlier (between P10 and P15). SH between P11 and P15 attenuated the HVR (assessed at P16) and increased aggrecan (but not WFA) expression in the nTS, dorsal motor nucleus of the vagus, and area postrema. An intracisternal microinjection of chondroitinase ABC, an enzyme that digests chondroitin sulfate proteoglycans, rescued the HVR and the increased aggrecan expression. These data indicate that important stages of ECM formation take place in key brain stem respiratory neural control regions and appear to be associated with a heightened vulnerability to hypoxia.
Collapse
|
31
|
Machado BH, Zoccal DB, Moraes DJA. Neurogenic hypertension and the secrets of respiration. Am J Physiol Regul Integr Comp Physiol 2017; 312:R864-R872. [PMID: 28438764 PMCID: PMC6148211 DOI: 10.1152/ajpregu.00505.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022]
Abstract
Despite recent advances in the knowledge of the neural control of cardiovascular function, the cause of sympathetic overactivity in neurogenic hypertension remains unknown. Studies from our laboratory point out that rats submitted to chronic intermittent hypoxia (CIH), an experimental model of neurogenic hypertension, present changes in the central respiratory network that impact the pattern of sympathetic discharge and the levels of arterial pressure. In addition to the fine coordination of respiratory muscle contraction and relaxation, which is essential for O2 and CO2 pulmonary exchanges, neurons of the respiratory network are connected precisely to the neurons controlling the sympathetic activity in the brain stem. This respiratory-sympathetic neuronal interaction provides adjustments in the sympathetic outflow to the heart and vasculature during each respiratory phase according to the metabolic demands. Herein, we report that CIH-induced sympathetic over activity and mild hypertension are associated with increased frequency discharge of ventral medullary presympathetic neurons. We also describe that their increased frequency discharge is dependent on synaptic inputs, mostly from neurons of the brain stem respiratory network, rather than changes in their intrinsic electrophysiological properties. In perspective, we are taking into consideration the possibility that changes in the central respiratory rhythm/pattern generator contribute to increased sympathetic outflow and the development of neurogenic hypertension. Our experimental evidence provides support for the hypothesis that changes in the coupling of respiratory and sympathetic networks might be one of the unrevealed secrets of neurogenic hypertension in rats.
Collapse
|
32
|
Wu W, Guan L, Li X, Lin L, Guo B, Yang Y, Liang Z, Wang F, Zhou L, Chen R. Correlation and compatibility between surface respiratory electromyography and transesophageal diaphragmatic electromyography measurements during treadmill exercise in stable patients with COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:3273-3280. [PMID: 29158671 PMCID: PMC5683626 DOI: 10.2147/copd.s148980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the compatibility and correlation between noninvasive surface respiratory electromyography and invasive transesophageal diaphragmatic electromyography measurements as facilitating indicators of neural respiratory drive (NRD) evaluation during treadmill exercise. PATIENTS AND METHODS Transesophageal diaphragmatic electromyogram activity (EMGdi,es) and surface inspiratory electromyogram (EMG) activity, including surface diaphragmatic EMG activity (EMGdi,sur), surface parasternal intercostal muscle EMG activity (EMGpara), and surface sternocleidomastoid EMG activity (EMGsc), were detected simultaneously during increasing exercise capacity in 20 stable patients with COPD. EMGdi,es, EMGdi,sur, EMGpara, and EMGsc were quantified using the root mean square (RMS) and were represented as RMSdi,es, RMSdi,sur, RMSpara, and RMSsc, respectively. RESULTS There was a significant association between EMGdi,es and EMGdi,sur (r=0.966, p<0.01), EMGpara (r=0.967, p<0.01), and EMGsc (r=0.956, p<0.01) in the COPD patients during exercise. Bland-Altman plots showed that the lowest mean bias value was between EMGdi,es and EMGpara compared with the bias values between EMGdi,es and the other two EMG parameters. In comparing the estimation of EMGdi,es, we observed the lowest bias values (-1%) and the lowest limits of agreement values (-10% to -12%). Intraclass correlation coefficient (ICC) between EMGdi,es and EMGdi,sur was 0.978 (p<0.01), between EMGdi,es and EMGpara was 0.980 (p<0.01), and between EMGdi,es and EMGsc was 0.868 (p<0.01). CONCLUSION RMSdi,sur, RMSpara, and RMSsc could provide useful physiological markers of NRD in COPD. RMSpara shows the best compatibility and correlation with transesophageal diaphragmatic electromyography during treadmill exercise in stable patients with COPD.
Collapse
|
33
|
Chandler JD, Wongtrakool C, Banton SA, Li S, Orr ML, Barr DB, Neujahr DC, Sutliff RL, Go YM, Jones DP. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice. Physiol Rep 2016; 4:e12821. [PMID: 27401458 PMCID: PMC4945833 DOI: 10.14814/phy2.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023] Open
Abstract
Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma.
Collapse
|
34
|
Mineshita M, Inoue T, Miyazawa T. [Bronchoscopic treatments for COPD]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 2016; 74:807-812. [PMID: 27254951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Several non-surgical and minimally invasive bronchoscopic interventions, such as bronchoscopic lung volume reduction (BLVR) techniques, have been developed to treat patients with severe chronic obstructive pulmonary disease (COPD). BLVR has been studied for treatment in severe COPD patients with emphysema. BLVR with one-way endobronchial valves is reported to be effective for patients with a heterogeneous emphysema distribution and without inter-lobar collateral ventilation. For the patients with collateral ventilation, and for the patients with homogeneous emphysema, BLVR with lung volume reduction coil has shown promising results. Targeted lung denervation(TLD) is a novel bronchoscopic intervention based on ablation of parasympathetic nerves surrounding the main bronchi. TLD seems to be effective for COPD with chronic bronchitis phenotype. This review gives a general overview of BLVR with one-way valve and lung volume reduction coil, and TLD.
Collapse
|
35
|
Ďurdík P, Vojtková J, Michnová Z, Turčan T, Šujanská A, Kuchta M, Čiljaková M. Pulmonary function tests in type 1 diabetes adolescents with diabetic cardiovascular autonomic neuropathy. J Diabetes Complications 2016; 30:79-84. [PMID: 26597599 DOI: 10.1016/j.jdiacomp.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 01/25/2023]
Abstract
Chronic diabetic complications may afflict all organ tissues including cardiovascular and respiratory system. The aim of the study was to establish if the presence of cardiovascular autonomic neuropathy (CAN) was associated with impaired pulmonary function tests in adolescents with type 1 diabetes (T1D). 46 adolescents with T1D and 25 healthy subjects at the age 15-19years were enrolled to the study. Basic anthropometric data, diabetes onset and duration, plasma glucose and A1c were established. Pulmonary function tests were measured by spirometry and the presence of CAN was examined by heart rate variability. Adolescents with T1D had significantly lower pulmonary function test parameters - FVC (p<0.01), FEV1 (p<0.01), MMEF (p<0.05) and PEFR (p<0.05) compared to the control subjects. In diabetic group, patients with CAN (CAN+, n=19) had significantly lower FVC (p<0.05), FEV1 (p<0.05) and PEFR (p<0.05) compared to patients without CAN (CAN-, n=27). All spirometric parameters were significantly lower in CAN+ subjects compared to healthy controls; however, no significant difference was found in these parameters between CAN- subjects and healthy controls. Spirometric parameters (FVC, FEV1) significantly positively correlated with diabetes onset and body mass index; and negatively correlated with diabetes duration and resting heart rate. Our results indicate that CAN may be associated with reduced pulmonary functions in adolescents with T1D.
Collapse
|
36
|
Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 2015; 309:R429-43. [PMID: 26041109 DOI: 10.1152/ajpregu.00051.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023]
Abstract
Actual or potentially threatening stimuli in the external environment (i.e., psychological stressors) trigger highly coordinated defensive behavioral responses that are accompanied by appropriate autonomic and respiratory changes. As discussed in this review, several brain regions and pathways have major roles in subserving the cardiovascular and respiratory responses to threatening stimuli, which may vary from relatively mild acute arousing stimuli to more prolonged life-threatening stimuli. One key region is the dorsomedial hypothalamus, which receives inputs from the cortex, amygdala, and other forebrain regions and which is critical for generating autonomic, respiratory, and neuroendocrine responses to psychological stressors. Recent studies suggest that the dorsomedial hypothalamus also receives an input from the dorsolateral column in the midbrain periaqueductal gray, which is another key region involved in the integration of stress-evoked cardiorespiratory responses. In addition, it has recently been shown that neurons in the midbrain colliculi can generate highly synchronized autonomic, respiratory, and somatomotor responses to visual, auditory, and somatosensory inputs. These collicular neurons may be part of a subcortical defense system that also includes the basal ganglia and which is well adapted to responding to threats that require an immediate stereotyped response that does not involve the cortex. The basal ganglia/colliculi system is phylogenetically ancient. In contrast, the defense system that includes the dorsomedial hypothalamus and cortex evolved at a later time, and appears to be better adapted to generating appropriate responses to more sustained threatening stimuli that involve cognitive appraisal.
Collapse
|
37
|
Moss CR, Gilbert CA, Gabriel SA, Gu Q. Protease-activated receptor-2 inhibits BK channel activity in bronchopulmonary sensory neurons. Neurosci Lett 2015; 589:13-8. [PMID: 25578948 DOI: 10.1016/j.neulet.2015.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/27/2014] [Accepted: 01/07/2015] [Indexed: 11/17/2022]
Abstract
Activation of protease-activated receptor-2 (PAR2) contributes to airway inflammation and airway hypersensitivity, the hallmark features of allergic asthma; and a neurogenic mechanism involving hypersensitivity of bronchopulmonary sensory nerves has been indicated. Large-conductance Ca(2+)-activated potassium (BK) channels are known to play an important role in shaping neuronal excitability. The aim of this study was to investigate the potential regulation of BK channel activities by PAR2 activation in vagal bronchopulmonary sensory neurons. Our results showed that pretreatment with PAR2-activating peptide (PAR2-AP; 100μM, 120s), but not its control peptide PAR2-RP, significantly reduced BK current density in these neurons. Inhibition of phospholipase C, PKC, PKA or MEK/ERK signaling pathway did not prevent the suppression of BK current by PAR2 activation; whereas intracellular application of Ca(2+) chelator BAPTA-AM completely abolished the PAR2 regulation of BK current. In addition, our results demonstrated that activation of PAR2 increased excitability of bronchopulmonary sensory neurons, in a similar manner as displayed by a direct BK channel blockade. In summary, our data suggest that suppression of BK channel activity contributes to PAR2 activation-induced hyperexcitability of vagal bronchopulmonary sensory neurons.
Collapse
|
38
|
Pokorski M. Preface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 852:v-vi. [PMID: 26280041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
39
|
Zamunér AR, Barbic F, Dipaola F, Bulgheroni M, Diana A, Atzeni F, Marchi A, Sarzi-Puttini P, Porta A, Furlan R. Relationship between sympathetic activity and pain intensity in fibromyalgia. Clin Exp Rheumatol 2015; 33:S53-S57. [PMID: 25786044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Fibromyalgia (FM) is a syndrome characterised by chronic musculoskeletal pain, hyperalgesia on specific areas of tenderness (tender points) and by an autonomic nervous system dysfunction consistent with sympathetic overactivity. It is not known whether there is any relationship between the amount of cardiovascular sympathetic activity and the magnitude of pain. Our objective was to assess this potential relationship in patients with FM. METHODS Electrocardiogram, finger blood pressure, respiration and post-ganglionic sympathetic discharge activity (muscle sympathetic nerve activity, MSNA) were continuously recorded at rest in 25 patients with primary FMS. The autonomic profile was assessed by MSNA and spectral indices of cardiac sympathetic (LFRR) and vagal (HFRR) modulation and of sympathetic vasomotor control (LF-SAP) computed by spectrum analysis of RR and systolic arterial pressure (SAP) variability. Cardiac baroreflex function was evaluated by the index α (αLF). Baroreceptor modulation of the sympathetic vasomotor control (sBRS) was assessed by the MSNA/diastolic pressure relationship. RESULTS Pain intensity was linearly correlated with LFRR/HFRR (r² = 0.21; p=0.03), LFSAP (r² = 0.26; p=0.02) and MSNA (burst rate) (r² = 0.45; p=0.003). Pain intensity was inversely correlated with the αLF index (r² = 0.24; p=0.02) and the sBRS (r² = 0.28; p=0.03). Thus, the higher the sympathetic drive to the heart and vessels, the higher the magnitude of chronic pain. Also, the gains of both the cardiac and MSNA baroreceptor control were inversely related to the pain intensity. CONCLUSIONS These findings raise the theoretical possibility that in FM patients the use of anti-adrenergic agents might lessen chronic pain intensity by reducing the underlying excessive sympathetic activity.
Collapse
|
40
|
Vysotskaya ZV, Moss CR, Gu Q. Differential regulation of ASICs and TRPV1 by zinc in rat bronchopulmonary sensory neurons. Lung 2014; 192:927-34. [PMID: 25108402 DOI: 10.1007/s00408-014-9634-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons. METHODS Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment. RESULTS ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels. CONCLUSIONS Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.
Collapse
|
41
|
Peng J, Jiang T, Li Y, Wang RR. [Influence of capsaicin sensitive C fibers denervation on lung ischemia-reperfusion injury]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2014; 45:245-253. [PMID: 24749349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To investigate the role of Capsaicin sensitive C fibers (CapsCF) denervation in lung ischemia-reperfusion (IR) injury and the possible mechanism related to oxidative stress. METHODS Thirty two male New Zealand rabbits were randomized into four groups: IR group (IR), sham group (S), capsaicin pretreated IR group (CIR), and capsaicin pretreated sham group (CS). The rabbits in CIR and CS groups were pretreated with capsaicin (100 mg/kg) to induce functional ablation of CapsCF, and then subjected to lung ischemia and reperfusion. The rabbits in IR group were not treated with capsaicin before lung ischemia and reperfusion. Thereafter, blood samples and lung tissue samples were obtained for blood gas and biochemical analyses, including the measurements of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). The lung wet/dry weight ratio and histopathological changes were also assessed. RESULTS Compared to S and CS group, partial pressure of oxygen (PO2) values in IR and CIR groups significantly decreased (P < 0.05). In contrast, the alveolar-arterial oxygen gradient (A-aDO2), lung wet/dry weight ratio increased in IR and CIR groups (P < 0.05). Capsaicin pretreatment in CIR group increased lung wet/dry weight ratio and lung pathologic lesions, along with higher level of MDA and lower activity of SOD and CAT (P < 0.05, vs. IR). CONCLUSION Denervation of CapsCF aggravated lung ischemia-reperfusion injury of rabbits, which seems to be closely related to the excerbation of oxidative stress.
Collapse
|
42
|
Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, Ben-Shahar Y. Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 2014; 50:637-46. [PMID: 24134460 PMCID: PMC4068934 DOI: 10.1165/rcmb.2013-0199oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022] Open
Abstract
The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions.
Collapse
|
43
|
Syrtsova MA, Sukhorukova YG, Korzhenevskiy DE. [Pulmonary neuroepithelial bodies in the rat]. MORFOLOGIIA (SAINT PETERSBURG, RUSSIA) 2014; 145:60-62. [PMID: 25051803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper describes the study of the neuroepithelial bodies (NEB) in the lungs of adult healthy Wistar rats (n = 12). Using the immunocytochemical reaction demonstrating synaptophysin, NEB and immunopositive nerve terminals approaching them, were visualized. It was found that NEB were the structures constantly presented in the rat lung. In contrast to the diffuse neuroendocrine elements, NEB are characterized by grouped distribution of cells. It was found that some part of NEB had no efferent innervation.
Collapse
|
44
|
Arreola-Ramírez JL, Morales-Hernández PE, Falcón-Rodríguez CI, Segura-Medina P. [General aspects of pulmonary innervation]. GAC MED MEX 2013; 149:502-508. [PMID: 24108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Practically all organs of the respiratory system are under the control of the autonomic nervous system. Double vegetative innervation, sympathetic and parasympathetic, contributes to the regulation of airway smooth muscle tone, and modulates secretion from the submucosal glands. Nevertheless, more than 20 years ago, the classical view of excitatory cholinergic and inhibitory adrenergic innervation changed considerably when the existence was proved of the non-adrenergic non-cholinergic system (NANC), which is able to produce both effects. Several purines and peptides have been postulated as neurotransmitters of this system, and some of them coexist with the acetylcholine or norepinephrine; for example, vasoactive intestinal peptide (VIP) on cholinergic nerves and neuropeptide Y in the adrenergic nerves. The aim of this paper is to describe the anatomo-physiological aspects of the airways' autonomic innervation and the possible implication of a neural mechanism that contributes in the development of the symptomatology in respiratory diseases.
Collapse
|
45
|
Rosseels MLA, Delaunois AG, Hanon E, Guillaume PJP, Martin FDC, van den Dobbelsteen DJ. Hydroxypropyl-β-cyclodextrin impacts renal and systemic hemodynamics in the anesthetized dog. Regul Toxicol Pharmacol 2013; 67:351-9. [PMID: 23978386 DOI: 10.1016/j.yrtph.2013.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022]
Abstract
Hydroxypropyl-β-cyclodextrin (HPβCD) is a complexation agent used to enhance drug solubilization and formulation stability. Although its toxicity is well characterized, its cardiovascular effects are less known. To investigate them, HPβCD was infused intravenously over 10 min in anesthetized dogs (10-40% (w/v, i.e. 200-800 mg/kg) in non-denervated animals and at 40% in denervated animals). HPβCD increased renal arteriolar resistance and decreased renal blood flow at all doses, almost immediately after infusion start, more drastically in females. A less pronounced increase in total peripheral resistance occurred in females only due to sex difference in sympathetic tone. Pulmonary hemodynamic parameters remained unaffected, suggesting that the renal effect was rather selective. As a consequence of the increased systemic blood pressure, heart rate decreased in normal animals without direct effect on cardiac conductance. This effect was abolished in denervated animals. This suggests that autonomous nervous feedback loops are functional in normal animals and that HPβCD has no direct chronotropic effect. In conclusion, systemic and renal hemodynamic changes should be considered as potential background effects at 200-400 mg/kg. At higher doses (800 mg/kg), changes are more pronounced and could mask/exacerbate hemodynamic response of drug candidate; such doses should be avoided in nonclinical safety studies.
Collapse
|
46
|
Vadivel A, Alphonse RS, Collins JJP, van Haaften T, O’Reilly M, Eaton F, Thébaud B. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair. PLoS One 2013; 8:e67225. [PMID: 23840631 PMCID: PMC3688622 DOI: 10.1371/journal.pone.0067225] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/17/2013] [Indexed: 01/30/2023] Open
Abstract
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.
Collapse
|
47
|
Piedimonte G, Walton C, Samsell L. Vertical transmission of respiratory syncytial virus modulates pre- and postnatal innervation and reactivity of rat airways. PLoS One 2013; 8:e61309. [PMID: 23637810 PMCID: PMC3630224 DOI: 10.1371/journal.pone.0061309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 12/15/2022] Open
Abstract
Background Environmental exposure to respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants, but it remains unknown whether this infection is transmitted transplacentally from the lungs of infected mothers to the offspring. We sought to test the hypothesis that RSV travels from the respiratory tract during pregnancy, crosses the placenta to the fetus, persists in the lung tissues of the offspring, and modulates pre- and postnatal expression of growth factors, thereby predisposing to airway hyperreactivity. Methodology Pregnant rats were inoculated intratracheally at midterm using recombinant RSV expressing red fluorescent protein (RFP). Viral RNA was amplified by RT-PCR and confirmed by sequencing. RFP expression was analyzed by flow cytometry and viral culture. Developmental and pathophysiologic implications of prenatal infection were determined by analyzing the expression of genes encoding critical growth factors, particularly neurotrophic factors and receptors. We also measured the expression of key neurotransmitters and postnatal bronchial reactivity in vertically infected lungs, and assessed their dependence on neurotrophic signaling using selective biological or chemical inhibition. Principal Findings RSV genome was found in 30% of fetuses, as well as in the lungs of 40% of newborns and 25% of adults. RFP expression was also shown by flow cytometry and replicating virus was cultured from exposed fetuses. Nerve growth factor and its TrkA receptor were upregulated in RSV- infected fetal lungs and co-localized with increased cholinergic innervation. Acetylcholine expression and smooth muscle response to cholinergic stimulation increased in lungs exposed to RSV in utero and reinfected after birth, and blocking TrkA signaling inhibited both effects. Conclusions/Significance Our data show transplacental transmission of RSV from mother to offspring and persistence of vertically transmitted virus in lungs after birth. Exposure to RSV in utero is followed by dysregulation of neurotrophic pathways predisposing to postnatal airway hyperreactivity upon reinfection with the virus.
Collapse
|
48
|
Elliott KL, Houston DW, Fritzsch B. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target. PLoS One 2013; 8:e55541. [PMID: 23383335 PMCID: PMC3562177 DOI: 10.1371/journal.pone.0055541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/28/2012] [Indexed: 11/18/2022] Open
Abstract
The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.
Collapse
|
49
|
Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT. Recent advances and contraversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 2012; 24:40-50. [PMID: 23022441 DOI: 10.1016/j.semcdb.2012.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/14/2012] [Indexed: 11/15/2022]
Abstract
Pulmonary neuroepithelial bodies are polymodal sensors widely distributed within the airway mucosa of mammals and other species. Neuroepithelial body cells store and most likely release serotonin and peptides as transmitters. Neuroepithelial bodies have a complex innervation that includes vagal sensory afferent fibers and dorsal root ganglion fibers. Neuroepithelial body cells respond to a number of intraluminal airway stimuli, including hypoxia, hypercarbia, and mechanical stretch. This article reviews recent findings in the cellular and molecular biology of neuroepithelial body cells and their potential role as airway sensors involved in the control of respiration, particularly during the perinatal period. Alternate hypotheses and areas of controversy regarding potential function as mechanosensory receptors involved in pulmonary reflexes are discussed.
Collapse
|
50
|
Allen SC, Khattab A. The airflow resistance sensing threshold during tidal breathing rises in old age in patients with asthma. Age Ageing 2012; 41:557-60. [PMID: 22427506 DOI: 10.1093/ageing/afs041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND in a previous study, we showed that the ability to detect a rise in airflow resistance at rest was reduced in some non-asthmatic subjects in old age. OBJECTIVE to determine whether airflow resistance detection is attenuated in elderly subjects with asthma. METHODS we studied 60 adult subjects with stable asthma (age range 20-88). Progressive external airflow resistance loading was used to measure the inspiratory load detection threshold (LDT) during tidal breathing at rest. RESULTS the mean inspiratory LDT was 5.57 (4.33 SD) kPa.s/l in the 20-64 age group (n=32) and 15.6 (10.1 SD) kPa.s/l in those aged 65 and above (n=28) (P<0.0001). The inspiratory LDT was significantly correlated with age (r=0.5246, P<0.00008), mainly due to the effect of higher LDTs in about half of the subjects above the age of 65 years. Expiratory LDT values and correlations were very similar to inspiratory values. CONCLUSIONS the threshold for detecting external resistive loads during tidal breathing rises in old age in some, but not all, asthmatic patients as was observed in non-asthmatic subjects. The finding has implications for treatment guidelines because some elderly subjects are likely to have reduced awareness of worsening airflow obstruction, and consequently delay their use of rescue treatments.
Collapse
|