26
|
Brill MJ, van Rongen A, van Dongen EP, van Ramshorst B, Hazebroek EJ, Darwich AS, Rostami-Hodjegan A, Knibbe CA. The Pharmacokinetics of the CYP3A Substrate Midazolam in Morbidly Obese Patients Before and One Year After Bariatric Surgery. Pharm Res 2015; 32:3927-36. [PMID: 26202517 PMCID: PMC4628089 DOI: 10.1007/s11095-015-1752-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE Bariatric surgery is nowadays commonly applied as treatment for morbid obesity (BMI > 40 kg/m(2)). As information about the effects of this procedure on a drug's pharmacokinetics is limited, we aimed to evaluate the pharmacokinetics of CYP3A probe substrate midazolam after oral and intravenous administration in a cohort of morbidly obese patients that was studied before and 1 year post bariatric surgery. METHODS Twenty morbidly obese patients (aged 26-58 years) undergoing bariatric surgery participated in the study of which 18 patients returned 1 year after surgery. At both occasions, patients received 7.5 mg oral and 5 mg intravenous midazolam separated by 160 ± 48 min. Per patient and occasion, a mean of 22 blood samples were collected. Midazolam concentrations were analyzed using population pharmacokinetic modeling. RESULTS One year after bariatric surgery, systemic clearance of midazolam was higher [0.65 (7%) versus 0.39 (11%) L/min, mean ± RSE (P < 0.01), respectively] and mean oral transit time (MTT) was faster [23 (20%) versus 51 (15%) minutes (P < 0.01)], while oral bioavailability was unchanged (0.54 (9%)). Central and peripheral volumes of distribution were overall lower (P < 0.05). CONCLUSIONS In this cohort study in morbidly obese patients, systemic clearance was 1.7 times higher 1 year after bariatric surgery, which may potentially result from an increase in hepatic CYP3A activity per unit of liver weight. Although MTT was found to be faster, oral bioavailability remained unchanged, which considering the increased systemic clearance implies an increase in the fraction escaping intestinal first pass metabolism.
Collapse
|
27
|
Zang YX, Sun BT, Zhao WZ, Rong N, Dai GL, Ju WZ, Tan HS. [Study of change in activity of hepatic drug metabolism enzymes in rat model of chronic unpredictable mild stress]. YAO XUE XUE BAO = ACTA PHARMACEUTICA SINICA 2015; 50:319-325. [PMID: 26118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study aimed to explore the impact of depression caused by chronic unpredictable mild stress (CUMS) on in vivo activity of six kinds of CYP450 isoforms in rats. According to 'Katz' method, the model of CUMS was established. Tolbutamide, chlorzoxazone, theophylline, midazolam, omeprazole and dextromethorphan were chosen as probe substrates of CYP2C6, CYP2E1, CYP1A2, CYP3A2, CYP2D1 and CYP2D2 of rats. Plasma concentration of six kinds of CYP450 in control group and model group were determined by LC-MS/MS and computed pharmacokinetic parameters. Consequently, metabolism of theophylline and chlorzoxazone accelerated significantly (P < 0.01), but tolbutamide, dextromethorphan, omeprazole and midazolam had no significant difference. The present study proved that depression caused by CUMS had strong induction to CYP1A2 and medium induction to CYP2E1.
Collapse
|
28
|
Henderson CJ, McLaughlin LA, Osuna-Cabello M, Taylor M, Gilbert I, McLaren AW, Wolf CR. Application of a novel regulatable Cre recombinase system to define the role of liver and gut metabolism in drug oral bioavailability. Biochem J 2015; 465:479-88. [PMID: 25377919 PMCID: PMC6949133 DOI: 10.1042/bj20140582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The relative contribution of hepatic compared with intestinal oxidative metabolism is a crucial factor in drug oral bioavailability and therapeutic efficacy. Oxidative metabolism is mediated by the cytochrome P450 mono-oxygenase system to which cytochrome P450 reductase (POR) is the essential electron donor. In order to study the relative importance of these pathways in drug disposition, we have generated a novel mouse line where Cre recombinase is driven off the endogenous Cyp1a1 gene promoter; this line was then crossed on to a floxed POR mouse. A 40 mg/kg dose of the Cyp1a1 inducer 3-methylcholanthrene (3MC) eliminated POR expression in both liver and small intestine, whereas treatment at 4 mg/kg led to a more targeted deletion in the liver. Using this approach, we have studied the pharmacokinetics of three probe drugs--paroxetine, midazolam, nelfinavir--and show that intestinal metabolism is a determinant of oral bioavailability for the two latter compounds. The Endogenous Reductase Locus (ERL) mouse represents a significant advance on previous POR deletion models as it allows direct comparison of hepatic and intestinal effects on drug and xenobiotic clearance using lower doses of a single Cre inducing agent, and in addition minimizes any cytotoxic effects, which may compromise interpretation of the experimental data.
Collapse
|
29
|
Mooiman KD, Maas-Bakker RF, Hendrikx JJMA, Bank PCD, Rosing H, Beijnen JH, Schellens JHM, Meijerman I. The effect of complementary and alternative medicines on CYP3A4-mediated metabolism of three different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin, midazolam and docetaxel. J Pharm Pharmacol 2014; 66:865-74. [PMID: 24392691 DOI: 10.1111/jphp.12208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/16/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Concomitant use of complementary and alternative medicine (CAM) and anticancer drugs can affect the pharmacokinetics of anticancer drugs by inhibiting the metabolizing enzyme cytochrome P450 3A4 (CYP3A4) (EC 1.14.13.157). Several in vitro studies determined whether CAM can inhibit CYP3A4, but these studies revealed contradictory results. A plausible explanation for these conflicting results is the use only of a single model CYP3A4 substrate in each study. Therefore, the objective was to determine the potential of selected CAM (β-carotene, Echinacea, garlic, Ginkgo biloba, ginseng, grape seed extract, green tea extract, milk thistle, saw palmetto, valerian, vitamin B6, B12 and C) to inhibit CYP3A4-mediated metabolism of different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin (BFC), midazolam and docetaxel. The effect of CAM on CYP3A4-mediated metabolism of an anticancer drug has never been determined before in vitro, which makes this study unique. The oncolytic CYP3A4 substrate docetaxel was used to establish the predictive value of the model substrates for pharmacokinetic interactions between CAM and anticancer drugs in vitro, and to more closely predict these interactions in vivo. METHODS The inhibition of CYP3A4-mediated metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin (BFC) by CAM was assessed in Supersomes, using the fluorometric CYP3A4 inhibition assay. In human liver microsomes (HLM) the inhibition of CYP3A4-mediated metabolism of midazolam and docetaxel was determined, using liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). KEY FINDINGS The results confirmed grape seed and green tea as potent inhibitors and milk thistle as moderate inhibitor of CYP3A4-mediated metabolism of BFC, midazolam and docetaxel. CONCLUSION Clinical studies are required to determine the clinical relevance of the determined CYP3A4 inhibition by grape seed, green tea and milk thistle.
Collapse
|
30
|
Mishra SK, Kang JH, Lee CW, Oh SH, Ryu JS, Bae YS, Kim HM. Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol Cells 2013; 36:219-26. [PMID: 24008365 PMCID: PMC3887981 DOI: 10.1007/s10059-013-0050-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022] Open
Abstract
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.
Collapse
|
31
|
Farkas D, Oleson LE, Zhao Y, Harmatz JS, Zinny MA, Court MH, Greenblatt DJ. Pomegranate Juice Does Not Impair Clearance of Oral or Intravenous Midazolam, a Probe for Cytochrome P450-3A Activity: Comparison With Grapefruit Juice. J Clin Pharmacol 2013; 47:286-94. [PMID: 17322140 DOI: 10.1177/0091270006298359] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of pomegranate juice (PJ) or grapefruit juice (GFJ) on CYP3A activity was studied in vitro and in healthy human volunteers. In human liver microsomes, the mean 50% inhibitory concentrations (IC(50)) for PJ and GFJ versus CYP3A (triazolam alpha-hydroxylation) were 0.61% and 0.55%, (v/v) respectively, without preincubation of inhibitor with microsomes. After preincubation, the IC(50) for PJ increased to 0.97% (P < .05), whereas the IC(50) for GFJ decreased to 0.41% (P < .05), suggesting mechanism-based inhibition by GFJ but not PJ. Pretreatment of volunteer subjects (n = 13) with PJ (8 oz) did not alter the elimination half-life, volume of distribution, or clearance of intravenous midazolam (2 mg). Administration of PJ also did not affect C(max), total area under the curve (AUC), or clearance of oral midazolam (6 mg). However, GFJ (8 oz) increased midazolam C(max) and AUC by a factor of 1.3 and 1.5, respectively, and reduced oral clearance to 72% of control values. Thus, PJ does not alter clearance of intravenous or oral midazolam, whereas GFJ impairs clearance and elevates plasma levels of oral midazolam.
Collapse
|
32
|
Bräunlich M, Christensen H, Johannesen S, Slimestad R, Wangensteen H, Malterud KE, Barsett H. In vitro inhibition of cytochrome P450 3A4 by Aronia melanocarpa constituents. PLANTA MEDICA 2013; 79:137-141. [PMID: 23250807 DOI: 10.1055/s-0032-1328055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extracts, subfractions, isolated anthocyanins and procyanidins, and two phenolic acids from aronia [Aronia melanocarpa] were investigated for their CYP3A4 inhibitory effects, using midazolam as the probe substrate and recombinant insect cell microsomes expressing CYP3A4 as the enzyme source. Procyanidin B5 was a considerably stronger CYP3A4 inhibitor in vitro than the isomeric procyanidin B2 and comparable to bergamottin, a known CYP3A4 inhibitor from grapefruit juice. The inhibitory activity of proanthocyanidin-containing fractions was correlated to the degree of polymerization. Among the anthocyanins, cyanidin 3-arabinoside showed stronger CYP3A4 inhibition than cyanidin 3-galactoside and cyanidin 3-glucoside. Thus, the ability to inhibit CYP3A4 in vitro seems to be influenced by the sugar unit linked to the anthocyanidin.
Collapse
|
33
|
Kim E, Sy-Cordero A, Graf TN, Brantley SJ, Paine MF, Oberlies NH. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes. PLANTA MEDICA 2011; 77:265-70. [PMID: 20717876 PMCID: PMC3023844 DOI: 10.1055/s-0030-1250259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study.
Collapse
|
34
|
Takedomi S, Matsuo H, Yamano K, Ohtani H, Sawada Y. In-vivo kinetics of the interaction between midazolam and erythromycin in rats, taking account of metabolic intermediate complex formation. J Pharm Pharmacol 2010; 53:643-51. [PMID: 11370704 DOI: 10.1211/0022357011775974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
To predict, quantitatively, the extent of drug interaction during repeated administration of a metabolic inhibitor, we analysed the effects of erythromycin treatment under several regimens on the area under the concentration curve (AUC) of midazolam in rats. Midazolam was administered into the portal vein 12 h after erythromycin treatment for 1, 2 or 3 days, or 12, 24, 36, 48, 72 and 96 h after erythromycin treatment for 4 days, and the plasma-concentration profiles of midazolam were analysed to assess the AUC. Moreover, the contents of total cytochrome P450 and inactive metabolic intermediate (MI) complex were simultaneously quantitated. While the AUC value of midazolam was not affected by the administration of erythromycin for 1 day, repeated administration of erythromycin evoked an increase in AUC ratio (AUC in erythromycin-treated rats/AUC in vehicle-treated rats), which reached a maximum value of 1.99 at 12 h after 4 days' treatment with erythromycin. The total content of cytochrome P450 in liver microsomes was unaffected by erythromycin treatment. Although the MI complex was undetectable after 1 day's treatment with erythromycin, its content increased with duration of erythromycin treatment, and the complex disappeared after the end of erythromycin treatment with a half-life of 12.3 h. In conclusion, the interaction between erythromycin and midazolam could be well predicted when the formation of MI complex in the liver was taken into account.
Collapse
|
35
|
Uno Y, Matsuno K, Nakamura C, Utoh M, Yamazaki H. Cloning, expression, and characterization of CYP3A43 cDNA in cynomolgus macaque (Macaca fascicularis). Drug Metab Lett 2009; 3:228-233. [PMID: 20041831 DOI: 10.2174/187231209790218127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cynomolgus macaques are frequently used in drug metabolism studies due to their evolutionary closeness to humans. Despite their importance, genes encoding drug-metabolizing enzymes have not been fully identified in this species. In this study, the cDNA orthologous to human cytochrome P450 3A43 (CYP3A43) was isolated. Deduced amino acids of this cDNA had a high sequence identity ( approximately 95%) to human CYP3A43 cDNA and contained characteristic motifs for CYP3A proteins, heme-binding region and substrate recognition sites. Among 10 tissues analyzed, cynomolgus CYP3A43 was expressed in liver, adrenal gland, and lung, with the highest expression seen in liver. Cynomolgus CYP3A43 protein heterologously expressed in Escherichia coli exhibited metabolic activity toward midazolam 1'-hydroxylation. These results indicated that cynomolgus CYP3A43 was expressed in liver and encoded a functional drug-metabolizing enzyme, and could contribute to overall drug metabolism in cynomolgus macaque liver if expressed as a protein.
Collapse
|
36
|
Sugioka N, Fujimoto K, Tanaka Y, Fukushima K, Ito Y, Kokuhu T, Okamoto M, Yoshimura N, Takada K. Comparison of pharmacokinetics of cyclosporine A in cadaveric and living-related renal transplant recipients and in an experimental rat model of renal failure. Drug Metab Lett 2009; 3:152-161. [PMID: 19702545 DOI: 10.2174/187231209789352102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
To elucidate the differences in the cyclosporine A (CyA) PK between cadaveric and living-related renal transplantation (CRT and LRT, respectively) recipients, a retrospective cohort study of clinical PK was conducted. Data from 80 patients who received LRT (n=75) and CRT (n=5) over 4 years were included. The incidence of acute rejection in CRT recipients was over 5 times higher than that in LRT recipients. On day 14 after transplantation, the area under the blood concentration versus time curve (AUC) per dose up to 4 h in CRT recipients was 65.3 % that of LRT recipients, however, there was no difference in the blood trough levels. Unlike LRT, renal failure derived from long ischemia time was observed in CRT recipients, and it is speculated that renal failure affects the PK of CyA. Moreover, we performed intravenous. (i.v.) and intraduodenal (i.d.) PK studies of CyA using renal failure model rats prepared by renal ischemia-reperfusion (RIR rats). There were no differences in PK profiles after i.v. administration of CyA between RIR and control rats; however, AUC up to infinity (1.81+/-0.18 microg.h/ml) in RIR rats after i.d. administration was significantly lower than in control rats (5.01+/-1.78 microg.h/ml). In addition, the absorption of CyA and midazolam, an ideal probe for CYP3A, from the intestinal loop in RIR rats was significantly less (69.8% and 42.8 %, respectively) than in control rats. These results suggest that the contribution of intestinal metabolism by CYP3A to decreasing CyA absorption in RIR rats is significant, namely, there is a possibility that the reason for poor absorption of CyA in CRT recipients is increasing intestinal CYP3A activity is maybe renal injury derived from long renal ischemia. The results of this study provide a useful information for therapeutic drug monitoring of CyA in CRT recipients.
Collapse
|
37
|
Abstract
1. During the characterization of recombinant CYP2C19, it was observed that this enzyme metabolized midazolam, which is generally regarded as CYP3A4/5 substrate, and we therefore decided to pursue this observation further. 2. CYP2C19 showed a Michaelis-Menten pattern for midazolam 1'-hydroxylation and was inhibited by (+)-N-3-benzylnirvanol and S-mephenytoin, which are a standard potent inhibitor and a substrate of CYP2C19, respectively. 3. The inhibitory potency by CYP3A4/5 inhibitor on the midazolam 1'-hydroxylation in human liver microsomes (HLM) was correlated with the CYP3A4/5 specific catalytic activity, but such correlation was not observed in CYP2C19 enzyme. The in vitro intrinsic clearance value for midazolam 1'-hydroxylation was not changed by the addition of (+)-N-3-benzylnirvanol in four individual HLM preparations. 4. These results indicated that although CYP2C19 is capable of catalyzing midazolam 1'-hydroxylation, CYP3A4/5 play a more important role.
Collapse
|
38
|
Kanazu T, Yamaguchi Y, Okamura N, Baba T, Koike M. Model for the drug–drug interaction responsible for CYP3A enzyme inhibition. II: establishment and evaluation of dexamethasone-pretreated female rats. Xenobiotica 2008; 34:403-13. [PMID: 15370957 DOI: 10.1080/00498250410001685746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Cytochrome P450 (CYP) 3A catalysis of testosterone 6beta-hydroxylation in female rat liver microsomes was significantly induced, then reached a plateau level after pretreatment with 80 mg kg(-1) day(-1) dexamethasone (DEX) for 3 days. 2. Midazolam was mainly metabolized by CYP3A in DEX-treated female rat liver microsomes from an immuno-inhibition study, and the apparent K(m) was 1.8 microM, similar to that in human microsomes. 3. Ketoconazole and erythromycin, typical CYP3A inhibitors, demonstrated extensive inhibition of midazolam metabolism in DEX-treated female rat liver microsomes, and the apparent K(i) values were 0.088 and 91.2 microM, respectively. The values were similar to those in humans, suggesting that DEX-treated female rat liver microsomes have properties similar to those of humans. 4. After oral administration of midazolam, the plasma midazolam concentration in DEX-treated female rats significantly decreased compared with control female rats. The area under the plasma concentration curve (AUC) and elimination half-life were one-11th and one-20th of those of control female rats, respectively. 5. Using DEX-treated female rats, the effect of CYP3A inhibitors on midazolam pharmacokinetics was evaluated. The AUC and maximum concentration in plasma (C(max)) increased when ketoconazole was co-administered with midazolam. 6. It was shown that the drug-drug interaction that occurs in vitro is also observed in vivo after oral administration of midazolam. In conclusion, the DEX-treated female rat could be a useful model for evaluating drug-drug interactions based on CYP3A enzyme inhibition.
Collapse
|
39
|
Pentikis HS, Connolly M, Trapnell CB, Forbes WP, Bettenhausen DK. The effect of multiple-dose, oral rifaximin on the pharmacokinetics of intravenous and oral midazolam in healthy volunteers. Pharmacotherapy 2007; 27:1361-9. [PMID: 17896891 DOI: 10.1592/phco.27.10.1361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
STUDY OBJECTIVE To evaluate the potential of rifaximin, an oral nonabsorbed (< 0.4%) structural analog of rifampin, to induce human hepatic and/or intestinal cytochrome P450 (CYP) 3A enzymes, with use of a known CYP3A probe, midazolam. DESIGN Prospective, randomized, open-label, two-period, crossover study. SETTING Clinical research center. SUBJECTS Twenty-seven healthy adult volunteers. INTERVENTION During the first treatment period, subjects received a single dose of either intravenous midazolam 2 mg over 30 minutes or oral midazolam 6 mg on day 0. From days 3-10, they received rifaximin 200 mg every 8 hours. On days 6 (after the 9th dose of rifaximin) and 10 (after the 21st dose of rifaximin), subjects received a concomitant single dose of intravenous or oral midazolam. After a 15-day washout period, subjects were crossed over to the other formulation of midazolam, and the treatment schedule was repeated, with the second treatment period starting on day 26 and single-dose administration of midazolam on days 26, 32, and 36. Serial plasma samples were collected for pharmacokinetic analyses. MEASUREMENTS AND MAIN RESULTS The pharmacokinetic parameters of single-dose intravenous or oral midazolam were determined alone and after coadministration of rifaximin for 3 and 7 days. Rifaximin coadministration did not alter the measured pharmacokinetic parameters for midazolam or its major metabolite, 1'-hydroxymidazolam. The 90% confidence intervals for the maximum concentration and area under the concentration-time curve from time zero extrapolated to infinity (bioavailability) were all within 80-125% for intravenous and oral midazolam. Therefore, no drug interaction was observed between rifaximin and midazolam. Coadministration of midazolam and rifaximin was well tolerated. CONCLUSION Overall, 3-7 days of rifaximin 200 mg 3 times/day did not alter single-dose midazolam pharmacokinetics. Rifaximin also does not appear to induce intestinal or hepatic CYP3A activity.
Collapse
|
40
|
Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 2007; 13:3731-7. [PMID: 17575239 DOI: 10.1158/1078-0432.ccr-07-0088] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To examine the enzyme kinetics of gefitinib and erlotinib metabolism by individual cytochrome P450 (CYP) enzymes, and to compare their effects on CYP3A activity, with the aim to better understand mechanisms underlying pharmacokinetic variability and clinical effects. EXPERIMENTAL DESIGN Enzyme kinetics were examined by incubating gefitinib or erlotinib (1.5-50 micromol/L) with recombinant human CYP3A4, CYP3A5, CYP2D6, CYP1A1, CYP1A2, and CYP1B1 (10-160 pmol/mL). Their effects on CYP3A activity were examined by comparing midazolam metabolism in the presence and absence of gefitinib or erlotinib in human liver and intestinal microsomes. Parent compounds and metabolites were monitored by high-performance liquid chromatography with a photodiode detector or tandem mass spectrometer. RESULTS Both drugs were metabolized primarily by CYP3A4, CYP3A5, and CYP1A1, with respective maximum clearance (Cl(max)) values for metabolism of 0.41, 0.39, and 0.57 mL/min/nmol for gefitinib and 0.24, 0.21, 0.31 mL/min/nmol for erlotinib. CYP2D6 was involved in gefitinib metabolism (Cl(max), 0.63 mL/min/nmol) to a large extent, whereas CYP1A2 was considerably involved in erlotinib metabolism (Cl(max), 0.15 mL/min/nmol). Both drugs stimulated CYP3A-mediated midazolam disappearance and 1-hydroxymidazolam formation in liver and intestinal microsomes. CONCLUSIONS Gefitinib is more susceptible to CYP3A-mediated metabolism than erlotinib, which may contribute to the higher apparent oral clearance observed for gefitinib. Metabolism by hepatic and extrahepatic CYP1A may represent a determinant of pharmacokinetic variability and response for both drugs. The differential metabolizing enzyme profiles suggest that there may be differences in drug-drug interaction potential and that stimulation of CYP3A4 may likely play a role in drug interactions for erlotinib and gefitinib.
Collapse
|
41
|
Uno S, Kawase A, Tsuji A, Tanino T, Iwaki M. Decreased intestinal CYP3A and P-glycoprotein activities in rats with adjuvant arthritis. Drug Metab Pharmacokinet 2007; 22:313-21. [PMID: 17827786 DOI: 10.2133/dmpk.22.313] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adjuvant-induced arthritis (AA) rats have been used as an animal model for rheumatoid arthritis. Several studies have shown that the pharmacokinetics of a number of drugs are altered in AA rats. We investigated the effects of AA on the barrier functions of the intestine using a rat model. Intestinal CYP3A activities (midazolam 1'-hydroxylation and 7-benzyloxy-4-(trifluoromethyl)-coumarin 7-hydroxylation) in AA rats were significantly decreased compared with those in normal rats, with marked decrease observed in the upper segment of intestine. Intestinal P-glycoprotein (P-gp) activity at upper segment was also significantly decreased in AA rats to 60% of that in normal rats, and the other segments (middle and lower) of intestine also exhibited tendencies toward decrease in P-gp activity. This decrease was supported by the finding that levels of mdr1a mRNA and P-gp protein were decreased in AA rats. No significant differences were observed in intestinal paracellular and transcellular permeability between AA and normal rats. These results suggest that intestinal CYP3A and P-gp activities are decreased in AA rats, and that the pharmacokinetics and bioavailabilities of drugs whose membrane permeation is limited by intestinal CYP3A and/or P-gp may be altered in rheumatic diseases.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antipyrine/metabolism
- Arthritis, Experimental/metabolism
- Blotting, Western
- Chromatography, High Pressure Liquid
- Cytochrome P-450 CYP3A/metabolism
- Diffusion Chambers, Culture
- Female
- Fluorescent Dyes
- In Vitro Techniques
- Intestinal Mucosa/metabolism
- Intestines/enzymology
- Microsomes/drug effects
- Microsomes/enzymology
- Microsomes/metabolism
- Midazolam/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Ranitidine/pharmacokinetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Rhodamine 123
Collapse
|
42
|
Shah SS, Sanda S, Regmi NL, Sasaki K, Shimoda M. Characterization of cytochrome P450-mediated drug metabolism in cats. J Vet Pharmacol Ther 2007; 30:422-8. [PMID: 17803734 DOI: 10.1111/j.1365-2885.2007.00902.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we examined activities of cytochrome P450 (CYP)1A, 2C, 2D and 3A using hepatic microsomes from five male and five female cats. CYP1A, 2C, 2D and 3A activities were referred by ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation (TBH), bufuralol 1'-hydroxylation (BLH) and midazolam 1'- and 4-hydroxylation respectively. The anti-rat CYP1A2 and CYP3A2 serum significantly inhibited EROD and midazolam 1'- and 4-hydroxylation, suggesting that EROD and midazolam 1'- and 4-hydroxylation were catalysed by CYP1A and 3A in cats respectively. Quinidine inhibited BLH in cats microsomes at quite low concentrations, suggesting that BLH was catalysed by CYP2D in cats. Tolbutamide hydroxylation activities were negligible in hepatic microsomes from both male and female cats, suggesting CYP2C activities of cats are extremely low. This suggests that CYP2C substrates should be carefully administered to cats. Although there is no sexual difference in CYP1A activities, there are differences in CYP2D and 3A activities of cats. CYP2D activities were higher (3-fold), but CYP3A activities were lower (one-fifth) in female cats. These results might suggest that CYP2D and 3A substrates should be prescribed for male and female cats using different dosage regimen.
Collapse
|
43
|
Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: A focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35:2196-204. [PMID: 17855837 DOI: 10.1097/01.ccm.0000281517.97507.6e] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Therapeutic hypothermia has been shown to decrease neurologic damage in patients experiencing out-of-hospital cardiac arrest. In addition to being treated with hypothermia, critically ill patients are treated with an extensive pharmacotherapeutic regimen. The effects of hypothermia on drug disposition increase the probability for unanticipated toxicity, which could limit its putative benefit. This review examines the effects of therapeutic hypothermia on the disposition, metabolism, and response of drugs commonly used in the intensive care unit, with a focus on the cytochrome P450 enzyme system. DATA SOURCES AND STUDY SELECTION A MEDLINE/PubMed search from 1965 to June 2006 was conducted using the search terms hypothermia, drug metabolism, P450, critical care, cardiac arrest, traumatic brain injury, and pharmacokinetics. DATA EXTRACTION AND SYNTHESIS Twenty-one studies were included in this review. The effects of therapeutic hypothermia on drug disposition include both the effects during cooling and the effects after rewarming on drug metabolism and response. The studies cited in this review demonstrate that the addition of mild to moderate hypothermia decreases the systemic clearance of cytochrome P450 metabolized drugs between approximately 7% and 22% per degree Celsius below 37degreesC during cooling. The addition of hypothermia decreases the potency and efficacy of certain drugs. CONCLUSIONS This review provides evidence that the therapeutic index of drugs is narrowed during hypothermia. The magnitude of these alterations indicates that intensivists must be aware of these alterations in order to maximize the therapeutic efficacy of this modality. In addition to increased clinical attention, future research efforts are essential to delineate precise dosing guidelines and mechanisms of the effect of hypothermia on drug disposition and response.
Collapse
|
44
|
Lee SJ, Lee SS, Jeong HE, Shon JH, Ryu JY, Sunwoo YE, Liu KH, Kang W, Park YJ, Shin CM, Shin JG. The CYP3A4*18 allele, the most frequent coding variant in asian populations, does not significantly affect the midazolam disposition in heterozygous individuals. Drug Metab Dispos 2007; 35:2095-101. [PMID: 17724065 DOI: 10.1124/dmd.107.016733] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to identify CYP3A4 variants in Koreans and to characterize their functional consequences in vitro and in vivo. Four single nucleotide polymorphisms were identified in 50 Koreans by direct DNA sequencing. In an additional genotyping using 248 subjects, CYP3A4(*)18 was confirmed as the most frequent coding variant in Koreans at 1.7%, and its frequency was similar to that of Asians, suggesting that CYP3A4(*)18 would be the highest coding variant in Asians. The recombinant CYP3A4.18 protein prepared in baculovirus expression system showed 67.4% lower Vmax and 1.8-fold higher K(m) for midazolam 1'-hydroxylation compared with the wild type. The mean values of Cmax and area under the concentration curve (AUC) in the CYP3A4(*)1/(*)18 and CYP3A5(*)1/(*)3 subjects (n = 8) were 63% and 32% higher than in CYP3A4(*)1/(*)1 and CYP3A5(*)1/(*)3 carriers (n = 8), respectively. Although the in vitro assay exhibited a significant reduction of the enzyme activity for midazolam, the in vivo differences associated with the CYP3A4(*)1/(*)18 tend to be low (P < 0.07 in Cmax and P < 0.09 in AUC). In summary, the heterozygous CYP3A4(*)1/(*)18 does not appear to cause a significant change of midazolam disposition in vivo; however, the clinical relevance of CYP3A4(*)18/(*)18 remains to be evaluated.
Collapse
|
45
|
Brown HS, Chadwick A, Houston JB. Use of Isolated Hepatocyte Preparations for Cytochrome P450 Inhibition Studies: Comparison with Microsomes forKiDetermination. Drug Metab Dispos 2007; 35:2119-26. [PMID: 17724064 DOI: 10.1124/dmd.107.017095] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Predicting drug-drug interactions requires an assessment of the drug concentration available to the enzyme active site, both in vivo, and within an in vitro incubation. These predictions are confounded when the inhibitor accumulates within the liver, either as a result of active transport processes or intracellular binding (including lysosomal trapping). In theory, hepatocytes should provide a more accurate estimation of inhibitory potency compared with microsomes for those compounds that undergo hepatic accumulation. However, they are not routinely used for Ki determination and there is limited comparative information available. Therefore, the aims of this study were to compare Ki values determined in rat microsomes and freshly isolated hepatocytes using six cytochrome P450 inhibitors (miconazole, fluconazole, ketoconazole, quinine, fluoxetine, and fluvoxamine) with a range of uptake properties (cell-to-medium concentration ratios 4.2-6000). Inhibition studies were performed using four probe substrates for CYP2C, CYP2D, and CYP3A enzymes (tolbutamide and phenytoin, dextromethorphan and midazolam, respectively). Comparison of unbound Ki values (range 0.05-30 microM) showed good agreement between microsomes and hepatocytes for inhibition of 18 pathways of metabolism. In addition to this, there was no relationship between the cell-to-medium concentration ratios (covering over 3 orders of magnitude) and the microsomal to hepatocyte Ki ratio of these inhibitors. These data suggest that the hepatic accumulation of these inhibitors results from intracellular binding rather than the involvement of uptake transporters and indicate that microsomes and hepatocytes appear to be equivalent for determining the inhibitory potency of the six inhibitors investigated in the present study.
Collapse
|
46
|
Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 2007; 3:81-92. [PMID: 17269896 DOI: 10.1517/17425255.3.1.81] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although they are less frequently compared with the reported cases of CYP-mediated drug interactions, clinically significant transporter-mediated drug interactions, which are mainly based on efflux transporter or P-glycoprotein data, have been reported. Unlike the CYP-mediated drug interactions that can be readily defined by inhibition or induction of CYP enzymes, the evidence for the so-called transporter-mediated drug interactions is often less conclusive. The difficulty in defining transporter-mediated drug interactions is due mainly to the interplay between transporters and drug-metabolizing enzymes in drug disposition, and the lack of specific and potent inhibitors for each transporter and enzyme. An important lesson learned from animal studies is that transporter inhibition has a much greater impact on the tissue distribution of drugs than on the systemic exposure of drugs measured in plasma. The potential risk of transporter-mediated drug interactions might be underestimated if only plasma concentrations are monitored.
Collapse
|
47
|
Nakamura K, Watanabe A, Okudaira N, Okazaki O, Sudo K. Effect of ion suppression on judgment of enzyme inhibition and avoidance of error by utilizing a stable isotope-labeled probe substrate: example of CYP3A4 inhibition with [13C4,15N] labeled midazolam as a substrate. Drug Metab Pharmacokinet 2007; 22:113-8. [PMID: 17495418 DOI: 10.2133/dmpk.22.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An advantage of using LC-MS(/MS) for in vitro CYP inhibition screening is that it does not require extensive sample preparation and chromatographic separation. Attention must be paid, however, to ion suppression effects on analytes caused by the test compound as well as endogenous compounds. In this study, we have shown the ion suppression of 1'-hydroxymidazolam (analyte) and dextrorphan (IS) by erythromycin, as an example, which may cause over- or underestimation of CYP3A4 inhibition. To avoid this kind of effect, we proposed to use a stable isotope-labeled substrate and determine labeled metabolites by using unlabeled authentic compounds of each metabolite. We showed that CYP3A4 activity was determined with high accuracy and precision by using stable isotope-labeled midazolam even in the presence of an ion suppressor at high concentrations in the samples. This method is useful not only for the CYP inhibition screening but also for testing drug candidates to predict changes in metabolite formation by the possible co-administered drugs.
Collapse
|
48
|
Kumar A, Mann HJ, Remmel RP. Simultaneous analysis of cytochrome P450 probes—dextromethorphan, flurbiprofen and midazolam and their major metabolites by HPLC-mass-spectrometry/fluorescence after single-step extraction from plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:287-93. [PMID: 17452028 DOI: 10.1016/j.jchromb.2007.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/07/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 enzymes catalyze oxidative metabolism of most pharmaceutical compounds. Consequently dextromethorphan, flurbiprofen, midazolam and other compounds are commonly used as probe substrates to evaluate cytochrome P450 function in humans. A "cocktail" approach employing simultaneous administration of two or more of the probe substrates has been used by various investigators in recent years. An analytical strategy to simultaneously extract and analyze dextromethorphan, flurbiprofen and midazolam and their major metabolites (dextrorphan, 4'-hydroxy-flurbiprofen and 1'-hydroxy-midazolam) by HPLC-MS/fluorescence was developed and is described here. The three probe substrates and their major metabolites were extracted simultaneously by means of a solid-phase (Bond Elut Certify cartridges) extraction procedure from 200 microl of pig plasma. The extraction efficiency was more than 79.5% for each of the six analytes. The extracted compounds were chromatographically separated on a Luna C8(II) column (50 mm Lx3 mm ID) in a single run of 20 min and analyzed by either fluorescence (flurbiprofen and 4'-hydroxy-flurbiprofen) or selective ion monitoring (dextromethorphan, dextrorphan, midazolam and 1'-hydroxy-midazolam) with positive electrospray ionization. The limit of quantification was 2.5 ng/ml for midazolam and 5 ng/ml for the other five analytes. The assay was precise and accurate (error: -9.1 to 12.1) with total CVs of 13.9% or better for each of the 6 analytes. This method was used to analyze concentrations of the three probes and their metabolites in plasma after intravenous administration to a healthy pig.
Collapse
|
49
|
Kaneshiro Y, Takaoka K. [Hepatic CYP3A activity in association with development of osteonecrosis of the femoral head]. CLINICAL CALCIUM 2007; 17:902-909. [PMID: 17548930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is one of the major side effects of corticosteroid therapy. Since corticosteroids are metabolized by hepatic cytochrome P450 3A (CYP3A), a low endogenous activity of this enzyme may exert excessive or toxic effect to bone and contribute to development of ONFH. To test this hypothesis, we measured hepatic CYP3A activity in 130 patients (26 with steroid-induced ONFH, 29 alcohol-related ONFH, and 75 normal controls without corticosteroid therapy and ONFH) by measuring the clearance of midazolam (MDZ) , a substrate specific to CYP3A, and found that MDZ clearance in steroid-induced ONFH patients was significantly retarded when compared with that in controls or alcohol-related ONFH patients. Multivariate analysis revealed that only MDZ clearance was significantly related with steroid-induced ONFH and the patients with low MDZ clearance due to low hepatic CYP3A activity provided 9-fold greater risk for steroid-induced ONFH. Therefore, low hepatic CYP3A activity would be significant risk factor to the onset of steroid-induced ONFH.
Collapse
|
50
|
Nishimura T, Amano N, Kubo Y, Ono M, Kato Y, Fujita H, Kimura Y, Tsuji A. Asymmetric Intestinal First-Pass Metabolism Causes Minimal Oral Bioavailability of Midazolam in Cynomolgus Monkey. Drug Metab Dispos 2007; 35:1275-84. [PMID: 17470527 DOI: 10.1124/dmd.106.013037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oral bioavailability of some drugs is substantially lower in cynomolgus monkeys than in various other species, including humans. In the present study, midazolam was used as a model drug to investigate the reason for the lower bioavailability in these monkeys. The bioavailability of midazolam after oral administration was minimal in monkeys and rats, being only 2.1 and 1.1%, respectively. In monkeys, this low bioavailability could not be explained simply in terms of a hepatic first-pass effect. To examine the roles of intestinal metabolism and transport, we evaluated apical-to-basal and basal-to-apical transport of midazolam, and the formation of metabolites in small intestinal tissues using an Ussing-type chamber. The values of mucosal extraction ratio were estimated to be 0.97, 0.93, and 0.89 during apical-to-basal transport in the upper, middle, and lower small intestine of monkeys, respectively, whereas the corresponding values for rats were close to zero, indicating that extensive metabolism of midazolam occurs, particularly in the upper region of the small intestine in monkeys, but not rats. Interestingly, formation of the metabolites was much greater during transport in the apical-to-basal direction than in the basal-to-apical direction, and this could be well explained by a mathematical model based on the assumption that extensive metabolism is associated with the uptake process of midazolam from the apical cell surface. Thus, we conclude that an asymmetric distribution of metabolic activity in the small intestine, leading to extensive metabolism during uptake from the apical cell surface, accounts for the minimal oral bioavailability of midazolam in cynomolgus monkeys.
Collapse
|