26
|
van Waterschoot RAB, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CMM, Goldstein JA, Zeldin DC, Beijnen JH, Schinkel AH. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol 2008; 73:1029-36. [PMID: 18156313 PMCID: PMC2391091 DOI: 10.1124/mol.107.043869] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytochrome P450 3A (CYP3A) enzymes represent one of the most important drug-metabolizing systems in humans. Recently, our group has generated cytochrome P450 3A knockout mice to study this drug-handling system in vivo. In the present study, we have characterized the Cyp3a knockout mice by studying the metabolism of midazolam, one of the most widely used probes to assess CYP3A activity. We expected that the midazolam metabolism would be severely reduced in the absence of CYP3A enzymes. We used hepatic and intestinal microsomal preparations from Cyp3a knockout and wild-type mice to assess the midazolam metabolism in vitro. In addition, in vivo metabolite formation was determined after intravenous administration of midazolam. We were surprised to find that our results demonstrated that there is still marked midazolam metabolism in hepatic (but not intestinal) microsomes from Cyp3a knockout mice. Accordingly, we found comparable amounts of midazolam as well as its major metabolites in plasma after intravenous administration in Cyp3a knockout mice compared with wild-type mice. These data suggested that other hepatic cytochrome P450 enzymes could take over the midazolam metabolism in Cyp3a knockout mice. We provide evidence that CYP2C enzymes, which were found to be up-regulated in Cyp3a knockout mice, are primarily responsible for this metabolism and that several but not all murine CYP2C enzymes are capable of metabolizing midazolam to its 1'-OH and/or 4-OH derivatives. These data illustrate interesting compensatory changes that may occur in Cyp3a knockout mice. Such flexible compensatory interplay between functionally related detoxifying systems is probably essential to their biological role in xenobiotic protection.
Collapse
|
research-article |
17 |
92 |
27
|
Granvil CP, Yu AM, Elizondo G, Akiyama TE, Cheung C, Feigenbaum L, Krausz KW, Gonzalez FJ. Expression of the human CYP3A4 gene in the small intestine of transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab Dispos 2003; 31:548-58. [PMID: 12695342 DOI: 10.1124/dmd.31.5.548] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is the most abundant hepatic and intestinal phase I drug-metabolizing enzyme, and participates in the oxidative metabolism of approximately 50% of drugs on the market. In the present study, a transgenic-CYP3A4 (Tg-CYP3A4) mouse model that expresses CYP3A4 in the intestine and is phenotypically normal was generated, which was genotyped by both polymerase chain reaction and Southern blotting. Intestinal microsomes prepared from Tg-CYP3A4 mice metabolized midazolam (MDZ) to 1'-hydroxymidazolam about 2 times, and to 4-hydroxymidazolam around 3 times faster than that from wild-type (WT) mice. These increased MDZ hydroxylation activities were completely inhibited by an anti-CYP3A4 monoclonal antibody. The time course of plasma MDZ and its metabolite concentrations was measured after intravenous (0.25 mg/kg) and oral (2.5 mg/kg) administration of MDZ, and pharmacokinetic parameters were estimated by fitting to a noncompartmental model. Pretreatment with ketoconazole increased orally dosed MDZ maximum plasma concentration (C(max)), time of the maximum concentration, area under the plasma concentration-time curve from zero to infinity (AUC(0- infinity)), and elimination half-life (t(1/2)) to 3.2-, 1.7-, 7.7-, 2-fold, and decreased MDZ apparent oral clearance about 8-fold in Tg-CYP3A4 mice. The ratios of MDZ C(max), AUC(0- infinity), t(1/2) and bioavailability between Tg-CYP3A4 and WT mice after the oral dose of MDZ were 0.3, 0.6, 0.5, and 0.5, respectively. These results suggest that this Tg-CYP3A4 mouse would be an appropriate in vivo animal model for the evaluation of human intestine CYP3A4 metabolism of drug candidates and potential food-drug and drug-drug interactions in preclinical drug development.
Collapse
|
|
22 |
92 |
28
|
Saint-Maurice C, Meistelman C, Rey E, Esteve C, de Lauture D, Olive G. The pharmacokinetics of rectal midazolam for premedication in children. Anesthesiology 1986; 65:536-8. [PMID: 3777487 DOI: 10.1097/00000542-198611000-00019] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
|
39 |
90 |
29
|
Pentikäinen PJ, Välisalmi L, Himberg JJ, Crevoisier C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol 1989; 29:272-7. [PMID: 2723115 DOI: 10.1002/j.1552-4604.1989.tb03327.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To study the effects of cirrhosis of the liver on the pharmacokinetics of midazolam single IV (7.5 mg as base) and p.o. (15.0 mg as base) doses of midazolam were administered to seven patients with cirrhosis of the liver and to seven healthy control subjects. One cirrhotic patient did not receive the oral dose. The distribution of midazolam in both study groups was alike as indicated by similar values of t1/2 alpha, V1 and Vss. Also the plasma protein binding of midazolam was unchanged in the patients with cirrhosis. The elimination of midazolam was significantly retarded in the patients as indicated by its lower total clearance (3.34 vs. 5.63 ml/min/kg), lower total elimination rate constant (0.400 vs. 0.721 h-1), and longer elimination half-life (7.36 vs. 3.80 h). The bioavailability of oral midazolam was significantly (P less than 0.05) higher in patients than controls (76% vs. 38%). The antipyrine-half-life was 32.4 h in the patients and 11.8 h in the controls. There were statistically significant (P less than 0.01) correlations between the clearances of the two drugs (r = 0.680) and between their half-lives (r = 0.755). The hypnotic effects of midazolam were similar in both groups. However, on a pharmacokinetic basis a reduced dosage of midazolam to patients with advanced cirrhosis of the liver is recommended.
Collapse
|
|
36 |
89 |
30
|
Wandel C, Böcker R, Böhrer H, Browne A, Rügheimer E, Martin E. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaesth 1994; 73:658-61. [PMID: 7826796 DOI: 10.1093/bja/73.5.658] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Distribution volumes and metabolism determine the pharmacokinetics of midazolam. Cytochrome P450 3A4 has been considered a significant enzyme in its metabolism. Using heterologously expressed cytochrome P450 enzymes, we have confirmed the additional involvement of cytochromes P450 3A3 and 3A5 in the hydroxylation of the midazolam. Whereas cytochrome P450 3A3 metabolized midazolam to the same extent as cytochrome P450 3A4, cytochrome P450 3A5 increased its metabolism by a factor of 2.7. The relationship of alpha- to 4-hydroxylation of midazolam was approximately 1.3 for cytochromes P450 3A3 and 3A4, and approximately 8.8 for 3A5. The primary location of cytochromes P450 3A3 and 3A4 is the liver in contrast with cytochrome P450 3A5, which occurs predominantly in the kidney. Therefore, further in vivo study is required to prove conclusively that enzymes in the kidney are involved in the metabolism of midazolam. Nitrendipine itself is metabolized by cytochrome P450 3A enzymes and this was shown to inhibit human liver microsomal hydroxylation of midazolam and preferentially alpha-hydroxylation by about 77%. 4-Hydroxylation was inhibited to 32% of control by nitrendipine. In contrast with inhibition of 4-hydroxylation, alpha-hydroxylation would appear to be competitively inhibited. These findings may be relevant to drug interactions in combined therapy.
Collapse
|
|
31 |
89 |
31
|
Shadle CR, Lee Y, Majumdar AK, Petty KJ, Gargano C, Bradstreet TE, Evans JK, Blum RA. Evaluation of potential inductive effects of aprepitant on cytochrome P450 3A4 and 2C9 activity. J Clin Pharmacol 2004; 44:215-23. [PMID: 14973304 DOI: 10.1177/0091270003262950] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The NK(1) receptor antagonist aprepitant (EMEND(R)), developed for use in combination with a 5HT(3) receptor antagonist and a corticosteroid to prevent highly emetogenic chemotherapy-induced nausea and vomiting (CINV), has been shown to have a moderate inhibitory effect as well as a possible inductive effect on cytochrome P450 (CYP) 3A4. Aprepitant has been noted to produce modest decreases in plasma S(-)-warfarin concentrations, suggesting potential induction of CYP2C9. Because metabolism of some chemotherapeutic agents may involve CYP3A4, the potential inductive effect of the CINV dosing regimen of aprepitant on this metabolic pathway was evaluated using intravenous midazolam, a sensitive probe substrate of CYP3A4. The time course of induction of CYP2C9 by aprepitant was also evaluated using oral tolbutamide, a probe substrate of CYP2C9. In this double-blind, randomized, placebo-controlled, single-center study, 24 healthy subjects were randomized (12 subjects per group) to receive either an aprepitant 3-day regimen (aprepitant 125 mg p.o. on day 1 and aprepitant 80 mg p.o. on days 2 and 3) or matching placebo. All subjects also received probe drugs (midazolam 2 mg i.v. and tolbutamide 500 mg p.o.) once prior to aprepitant dosing (baseline) and again on days 4, 8, and 15. The ratio (aprepitant/placebo) of the geometric mean area under the plasma concentration curve (AUC) fold-change from baseline for midazolam was 1.25 on day 4 (p < 0.01), 0.81 on day 8 (p < 0.01), and 0.96 on day 15 (p = 0.646). The ratio (aprepitant/placebo) of the geometric mean AUC fold-change from baseline for tolbutamide was 0.77 on day 4 (p < 0.01), 0.72 on day 8 (p < 0.001), and 0.85 on day 15 (p = 0.05). Assessed using intravenous midazolam as a probe, aprepitant 125/80 mg p.o. administered over days 1 to 3 produced clinically insignificant weak inhibition (day 4) and induction (day 8) of CYP3A4 activity and no effect on CYP3A4 activity on day 15. Assessed using oral tolbutamide as a probe, the aprepitant regimen also produced modest induction of CYP2C9 activity on days 4 and 8, which resolved nearly to baseline by day 15. Thus, the aprepitant regimen for CINV results in modest, transient induction of CYPs 3A4 and 2C9 in the 2 weeks following administration.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
82 |
32
|
Martignoni M, Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos 2006; 34:1047-54. [PMID: 16565172 DOI: 10.1124/dmd.105.009035] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The liver is considered to be the major site of first-pass metabolism, but the small intestine is also able to contribute significantly. The improvement of existing in vitro techniques and the development of new ones, such as intestinal slices, allow a better understanding of the intestine as a metabolic organ. In this paper, the formation of metabolites of several human CYP3A substrates by liver and intestinal slices from rat and mouse was compared. The results show that liver slices exhibited a higher metabolic rate for the majority of the studied substrates, but some metabolites were produced at a higher rate by intestinal slices, compared with liver slices. Coincubation with ketoconazole inhibited the metabolic conversion in intestinal slices almost completely, but inhibition was variable in liver slices. To better understand the role of CYP3A in mice, we studied the relative mRNA expression of different CYP3A isoforms in intestine and liver from mice because, in this species, CYP3A expression has not been well described in these organs. It was found that in mice, CYP3A13 is more expressed in the intestine, whereas CYP3A11, CYP3A25, and CYP3A41 are more expressed in the liver, comparable to similar findings in the rat. Altogether, these data demonstrate that, in addition to liver, the intestine from mouse and rat may have an important role in the process of first-pass metabolism, depending on the substrate. Moreover, we show that intestinal slices are a useful in vitro technique to study gut metabolism.
Collapse
|
Comparative Study |
19 |
78 |
33
|
Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 2007; 3:81-92. [PMID: 17269896 DOI: 10.1517/17425255.3.1.81] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although they are less frequently compared with the reported cases of CYP-mediated drug interactions, clinically significant transporter-mediated drug interactions, which are mainly based on efflux transporter or P-glycoprotein data, have been reported. Unlike the CYP-mediated drug interactions that can be readily defined by inhibition or induction of CYP enzymes, the evidence for the so-called transporter-mediated drug interactions is often less conclusive. The difficulty in defining transporter-mediated drug interactions is due mainly to the interplay between transporters and drug-metabolizing enzymes in drug disposition, and the lack of specific and potent inhibitors for each transporter and enzyme. An important lesson learned from animal studies is that transporter inhibition has a much greater impact on the tissue distribution of drugs than on the systemic exposure of drugs measured in plasma. The potential risk of transporter-mediated drug interactions might be underestimated if only plasma concentrations are monitored.
Collapse
|
Review |
18 |
78 |
34
|
Fabre G, Rahmani R, Placidi M, Combalbert J, Covo J, Cano JP, Coulange C, Ducros M, Rampal M. Characterization of midazolam metabolism using human hepatic microsomal fractions and hepatocytes in suspension obtained by perfusing whole human livers. Biochem Pharmacol 1988; 37:4389-97. [PMID: 3196361 DOI: 10.1016/0006-2952(88)90622-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isolated human hepatocytes provide a useful model for studying xenobiotic metabolism. However, in vitro studies using human hepatocytes are scarce due to the limited availability of this material. A new methodology is described for obtaining hepatocytes from a whole adult human liver. This procedure is based on (i) the rapid and intense in situ washing step of the organ with Eurocollins then glucose supplemented HEPES buffer (10 mM, pH 7.4) at 4 degrees in order to both minimize the warm ischemic period and remove erythrocytes, and (ii) a perfusion of collagenase solution (0.05% in 10 mM HEPES buffer at 37 degrees) throughout the portal vein according to a recirculated model. All perfused buffers are oxygenized. Hepatocyte viability averaged 85% as determined by Trypan Blue dye exclusion. The ability of these hepatocytes to catalyze certain metabolic transformations such as Phase I and Phase II reactions has been particularly investigated using the benzodiazepine drug, midazolam, as a substance probe. Freshly isolated human hepatocytes in suspension retained the ability to metabolize midazolam to its different hydroxylated derivatives--mainly the 1-hydroxy-midazolam--which was further conjugated with glucuronic acid. For a better understanding of the cytochrome P-450 mediated reactions, we studied the metabolism of midazolam in microsomal fractions prepared from twelve human livers. It was concluded that human microsomes (i) exhibited a Type I binding spectrum upon midazolam addition (Ks = 3.3 microM) and (ii) intensively metabolized the drug to its different derivatives. Furthermore, and since we demonstrated that midazolam was predominantly transformed by a single cytochrome P-450 enzyme, we could attribute the large inter-individual variations in midazolam metabolism to differences in human liver cytochrome P-450 content.
Collapse
|
|
37 |
74 |
35
|
Xu L, Chen Y, Pan Y, Skiles GL, Shou M. Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab Dispos 2009; 37:2330-9. [PMID: 19773538 DOI: 10.1124/dmd.108.025494] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent inactivation (TDI) of human cytochromes P450 3A4 (CYP3A4) is a major cause of clinical drug-drug interactions (DDIs). Human liver microsomes (HLM) are commonly used as an enzyme source for evaluating the inhibition of CYP3A4 by new chemical entities. The inhibition data can then be extrapolated to assess the risk of human DDIs. Using this approach, under- and overpredictions of in vivo DDIs have been observed. In the present study, human hepatocytes were used as an alternative to HLM. Hepatocytes incorporate the effects of other mechanisms of drug metabolism and disposition (i.e., phase II enzymes and transporters) that may modulate the effects of TDI on clinical DDIs. The in vitro potency (K(I) and k(inact)) of five known CYP3A4 TDI drugs (clarithromycin, diltiazem, erythromycin, verapamil, and troleandomycin) was determined in HLM (pooled, n = 20) and hepatocytes from two donors (D1 and D2), and the results were extrapolated to predict in vivo DDIs using a Simcyp population trial-based simulator. Compared with observed DDIs, the predictions derived from HLM appeared to be overestimated. The predictions based on TDI measured in hepatocytes were better correlated with the DDIs (n = 37) observed in vivo (R(2) = 0.601 for D1 and 0.740 for D2) than those from HLM (R(2) = 0.451). In addition, with the use of hepatocytes a greater proportion of the predictions were within a 2-fold range of the clinical DDIs compared with using HLM. These results suggest that DDI predictions from CYP3A4 TDI kinetics in hepatocytes could provide an alternative approach to balance HLM-based predictions that can sometimes substantially overestimate DDIs and possibly lead to erroneous conclusions about clinical risks.
Collapse
|
|
16 |
73 |
36
|
Weaver R, Graham KS, Beattie IG, Riley RJ. Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metab Dispos 2003; 31:955-66. [PMID: 12814974 DOI: 10.1124/dmd.31.7.955] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detailed cytochrome P450 (P450) inhibition profiles are now required for the registration of novel molecular entities. This method uses combined substrates (phenacetin, diclofenac, S-mephenytoin, bufuralol, and midazolam) with combined recombinant P450 enzymes (CYP1A2, 2C9, 2C19, 2D6, and 3A4) in an attempt to limit interactions with other more minor P450s and associated reductases. Kinetic analysis of single substrate with single P450 (sP450) yielded apparent Km values of 25, 2, 20, 9, and 3 microM, for CYP1A2, 2C9, 2C19, 2D6, and 3A4, respectively. Combined substrates with combined P450s (cP450) yielded apparent Km values of 65, 4, 19, 7, and 2 microM. Selectivity of the substrates for each P450 isoform was checked. Phenacetin proved to be the least selective substrate. However, the ratio of the various P450s was modified in the final assay such that metabolism of phenacetin by other enzymes was approximately 20% of the metabolism by CYP1A2. IC50 determinations with alpha-naphthoflavone (0.04 microM), sulfaphenazole (0.26 microM), tranylcypromine (9 microM), quinidine (0.02 microM), and ketoconazole (0.01 microM) were similar for sP450 and cP450 enzymes. The assay was further evaluated with 11 literature compounds and 52 in-house new chemical entities, and the data compared with radiometric/fluorescent values. The overall protein level of the assay was reduced from the original starting point, as this led to some artificially high IC50 measurements when compared with existing lower protein assays (radiometric/fluorometric). This method offers high throughput P450 inhibition profiling with potential advantages over current radiometric or fluorometric methods.
Collapse
|
Comparative Study |
22 |
73 |
37
|
Gascon MP, Dayer P. In vitro forecasting of drugs which may interfere with the biotransformation of midazolam. Eur J Clin Pharmacol 1991; 41:573-8. [PMID: 1815969 DOI: 10.1007/bf00314987] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biotransformation of midazolam is mediated by a cytochrome P-450 isozyme (P-450 IIIA) whose activity is highly variable. The kinetics of the 1'- and 4-hydroxylation of midazolam, the major routes of midazolam oxidation, by human liver microsomes have been examined to characterize further the cytochrome isozyme(s) catalysing these reactions, and to screen for drugs that might interfere with them. In hepatic microsomal preparation from two kidney donors (extensive and poor metabolisers of debrisoquine) KM values for 1'-hydroxylation were 4.2 and 6.1 microM (extensive and poor metabolisers, respectively), and for the 4-hydroxylation they were 14.7 and 18.1 microM, respectively. The corresponding Vmax values were 25.8 and 29.8 and 17.0 and 18.1 nmol.mg P-1.h-1. Both reactions appeared to be catalysed by the same or by coregulated isozymes. Midazolam hydroxylations in vitro are inhibited by many drugs, including nifedipine and other dihydropyridine-type calcium channel blockers, ergot alkaloids, cyclosporine, erythromycin and phenothiazine-type neuroleptics. A clinical case report illustrates the consequence of such a drug-drug interference with hepatic biotransformation; midazolam-induced sleep in a patient lasted for 6 days (t1/2 = 25 h).
Collapse
|
Case Reports |
34 |
72 |
38
|
Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, Geoghegan KF, Helal CJ, Walker GS, Goosen TC, Zientek MA. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos 2012; 40:1686-97. [PMID: 22645092 DOI: 10.1124/dmd.112.045302] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
CYP3cide (PF-4981517; 1-methyl-3-[1-methyl-5-(4-methylphenyl)-1H-pyrazol-4-yl]-4-[(3S)-3-piperidin-1-ylpyrrolidin-1-yl]-1H-pyrazolo[3,4-d]pyrimidine) is a potent, efficient, and specific time-dependent inactivator of human CYP3A4. When investigating its inhibitory properties, an extreme metabolic inactivation efficiency (k(inact)/K(I)) of 3300 to 3800 ml · min⁻¹ · μmol⁻¹ was observed using human liver microsomes from donors of nonfunctioning CYP3A5 (CYP3A5 *3/*3). This observed efficiency equated to an apparent K(I) between 420 and 480 nM with a maximal inactivation rate (k(inact)) equal to 1.6 min⁻¹. Similar results were achieved with testosterone, another CYP3A substrate, and other sources of the CYP3A4 enzyme. To further illustrate the abilities of CYP3cide, its partition ratio of inactivation was determined with recombinant CYP3A4. These studies produced a partition ratio approaching unity, thus underscoring the inactivation capacity of CYP3cide. When CYP3cide was tested at a concentration and preincubation time to completely inhibit CYP3A4 in a library of genotyped polymorphic CYP3A5 microsomes, the correlation of the remaining midazolam 1'-hydroxylase activity to CYP3A5 abundance was significant (R² value equal to 0.51, p value of <0.0001). The work presented here supports these findings by fully characterizing the inhibitory properties and exploring CYP3cide's mechanism of action. To aid the researcher, multiple commercially available sources of CYP3cide were established, and a protocol was developed to quantitatively determine CYP3A4 contribution to the metabolism of an investigational compound. Through the establishment of this protocol and the evidence provided here, we believe that CYP3cide is a very useful tool for understanding the relative roles of CYP3A4 versus CYP3A5 and the impact of CYP3A5 genetic polymorphism on a compound's pharmacokinetics.
Collapse
|
|
13 |
70 |
39
|
Kim H, Yoon YJ, Shon JH, Cha IJ, Shin JG, Liu KH. Inhibitory effects of fruit juices on CYP3A activity. Drug Metab Dispos 2006; 34:521-3. [PMID: 16415112 DOI: 10.1124/dmd.105.007930] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There have been very limited reports on the effects of commercial fruit juices on human CYP3A activity. Therefore, the inhibitory effects of readily available commercial fruit juices on midazolam 1'-hydroxylase activity, a marker of CYP3A, were evaluated in pooled human liver microsomes. The fruit juices investigated were black raspberry, black mulberry, plum, and wild grape. White grapefruit, pomegranate, and orange juice were used as positive and negative controls. The black mulberry juice showed the most potent inhibition of CYP3A except for grapefruit juice. The inhibition depended on the amount of a fruit juice added to the incubation mixture. The inhibitory potential of human CYP3A was in the order: grapefruit > black mulberry > wild grape > pomegranate > black raspberry. The IC(50) values of all fruit juices tested were reduced after preincubation with microsomes in the presence of the NADPH-generating system, suggesting that a mechanism-based inhibitory component was present in these fruit juices, as in the case of grapefruit. The results suggest that, like grapefruit juice, commercial fruit juices also have the potential to inhibit CYP3A-catalzyed midazolam 1'-hydroxylation. Therefore, in vivo studies investigating the interactions between fruit juices such as black mulberry and wild grape and CYP3A substrates are necessary to determine whether inhibition of CYP3A activity by fruit juices is clinically relevant.
Collapse
|
Comparative Study |
19 |
67 |
40
|
Cummins CL, Mangravite LM, Benet LZ. Characterizing the expression of CYP3A4 and efflux transporters (P-gp, MRP1, and MRP2) in CYP3A4-transfected Caco-2 cells after induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Pharm Res 2001; 18:1102-9. [PMID: 11587480 DOI: 10.1023/a:1010914624111] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To examine the changes in expression levels of CYP3A4 and efflux transporters in CYP3A4-transfected Caco-2 (colon carcinoma) cells in the presence of the inducers sodium butyrate (NaB) and 12-O-tetradecanoylphorbol-13-acetate (TPA). To characterize the transport of [3H]-digoxin and the metabolism of midazolam in the cells under different inducing conditions. METHODS CYP3A4-Caco-2 cells were seeded onto cell culture inserts and were grown for 13-14 days. Transport and metabolism studies were performed on cells induced with NaB and/or TPA for 24 h. The expression and localization of P-gp, MRP1, MRP2, and CYP3A4 were examined by Western blot and confocal microscopy. RESULTS In the presence of both inducers, CYP3A4 protein levels were increased 40-fold over uninduced cells, MRP2 expression was decreased by 90%, and P-gp and MRP1 expression were unchanged. Midazolam 1-OH formation exhibited a rank order correlation with increased CYP3A4 protein, whereas [3H]-digoxin transport (a measure of P-gp activity) was unchanged with induction. P-gp and MRP2 were found on the apical membrane, whereas MRP1 was found perinuclear within the cell. CYP3A4 displayed a punctate pattern of expression consistent with endoplasmic reticulum localization and exhibited preferential polarization towards the apical side of the cell. CONCLUSIONS The present study characterized CYP3A4-Caco-2 cell monolayers when induced for 24 h in the presence of both NaB and TPA. These conditions provide intact cells with significant CYP3A4 and P-gp expression suitable for the concurrent study of transport and metabolism.
Collapse
|
|
24 |
67 |
41
|
Bravo González RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos 2004; 25:37-49. [PMID: 14716751 DOI: 10.1002/bdd.383] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impact of the surface-active formulation ingredients Cremophor EL, Tween 80 and Solutol HS 15 on the intrinsic clearance (Clint) of midazolam (MDZ) was investigated in rat hepatocytes and microsomes. In rat hepatocytes with 0.003%, 0.03% and 0.3% (w/v) Solutol HS 15 already present in the incubation medium, the Clint was significantly reduced in a dose-dependent manner by about 25%, 30% and 50%, respectively. In the presence of Cremophor EL and Tween 80 a significant reduction in Clint by about 30% and 25%, respectively, was observed at 0.03% surfactant concentration. At 0.3% of Cremophor EL and Tween 80, Clint was reduced by about 50% and 20%, respectively. A reduction in Clint was also observed in experiments with rat liver microsomes. At surfactant concentrations up to 0.03%, cytotoxicity assays (lactate dehydrogenase release, adenosine triphosphate content) as well as light microscope investigations did not reveal any cytotoxic impact of the surfactants on the hepatocyte monolayer. A potential interaction of the surfactants with biological membranes was determined using phosphatidylcholine-cholesterol liposomes loaded with self-quenching concentrations of carboxyfluorescein. No marked release of carboxyfluorescein from the liposomes (that would be an indication for a surfactant-dependent disruption of membrane integrity) was observed up to concentrations of 0.03% of the different surfactants. It is concluded that cytochrome P450 3A mediated metabolism of MDZ seems to be prevented by all surfactants at concentrations above 0.03%. In our experiments the surfactants did not show toxic effects at concentrations that resulted in a decreased Clint of MDZ. Thus, a direct inhibition of the metabolizing enzymes, a molecular interaction with the microsomes as well as an alteration of membrane properties that did not yet result in a release of LDH have to be taken into consideration as reasons for the observed changes in the metabolism of MDZ.
Collapse
|
Comparative Study |
21 |
67 |
42
|
Wang YH, Jones DR, Hall SD. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos 2005; 33:664-71. [PMID: 15689501 DOI: 10.1124/dmd.104.001834] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genetic basis for polymorphic expression of CYP3A5 has been recently identified, but the significance of CYP3A5 expression is unclear. The purpose of this study is to quantify the capability of verapamil, a mechanism-based inhibitor of CYP3A, and its metabolites to inhibit the activities of CYP3A4 and CYP3A5, and to determine whether CYP3A5 expression in human liver microsomes alters the inhibitory potency of verapamil. Testosterone 6beta-hydroxylation or midazolam 1'-hydroxylation was used to quantify CYP3A activity. The possibility that verapamil and its metabolites form metabolic-intermediate complex (MIC) with CYP3A was assessed using dual beam spectrophotometry. Verapamil and N-desalkylverapamil (D617) were found to have little inhibitory effect on cDNA-expressed CYP3A5 activity and did not form a MIC with cDNA-expressed CYP3A5 as indicated by the appearance of the characteristic peak at 455 nm. At 50 microM, norverapamil showed time-dependent inhibition of CYP3A5 (30%), but to a much lesser extent compared with that of CYP3A4 (80%). The estimated values of the inactivation parameters k(inact) and K(I) of norverapamil were 4.53 microM and 0.07 min(-1) for cDNA-expressed CYP3A5, and 10.3 microM and 0.30 min(-1) for cDNA-expressed CYP3A4. Human liver microsomes that expressed CYP3A5 were less inhibited by both verapamil and norverapamil. The inactivation efficiency of verapamil and norverapamil was 30 times and 45 times lower, respectively, for CYP3A5-expressing microsomes compared with CYP3A5-non-expressing microsomes. These findings indicate that the presence of variable CYP3A5/CYP3A4 expression in the liver may contribute to the interindividual variability associated with verapamil-mediated drug interactions.
Collapse
|
|
20 |
65 |
43
|
van Dalen R, Vree TB. Pharmacokinetics of antibiotics in critically ill patients. Intensive Care Med 1990; 16 Suppl 3:S235-8. [PMID: 2289997 DOI: 10.1007/bf01709707] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differences in pharmacokinetic data of aminoglycosides, ceftazidime and ceftriaxone between intensive care patients and volunteers or patients who are less severely ill, are described. Similar differences are observed for midazolam. In severely ill patients with normal renal function a wide interpatient variability of aminoglycoside half-life (t1/2) and increased distribution volume (Vd) are observed. This results in inadequate serum levels. A pharmacokinetic approach of drug dosing, based on serum concentrations in individual patients, is advised. For ceftazidime and ceftriaxone similar changes of t1/2 and Vd are observed. Since protein binding is frequently reduced in severely ill patients, the influence of altered binding of highly bound drugs on Vd and drug clearance is discussed. As both may be increased by reduced protein binding, the change of t1/2 to be expected is unpredictable. Dosing regimens should be based on pharmacokinetic data derived from patients whose severity of disease is comparable to that of the patients to be treated.
Collapse
|
|
35 |
65 |
44
|
Paulussen A, Lavrijsen K, Bohets H, Hendrickx J, Verhasselt P, Luyten W, Konings F, Armstrong M. Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. PHARMACOGENETICS 2000; 10:415-24. [PMID: 10898111 DOI: 10.1097/00008571-200007000-00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 3A subfamily members (CYP3A) are the most abundant liver cytochrome P450 forms, responsible for the biotransformation of over 50% of all drugs. The expression and activity of isoforms CYP3A4 and CYP3A5 show wide inter-individual variation, influencing both drug response and disease susceptibility. The molecular basis for this variation has never been defined. In this study, we used midazolam to characterize CYP3A5 phenotype in a panel of liver samples. A clear bimodality in metabolism was observed. Analysis of the 5' flanking region of the CYP3A5 gene identified two linked polymorphisms, T-369G and A-45G, located in transcriptional regulatory elements which are associated with increased expression and activity of the gene. A polymerase chain reaction based detection assay is described facilitating future studies into both the metabolic consequences of this variation and disease association studies relating to CYP3A5.
Collapse
|
|
25 |
64 |
45
|
Di L, Kerns EH, Li SQ, Carter GT. Comparison of cytochrome P450 inhibition assays for drug discovery using human liver microsomes with LC–MS, rhCYP450 isozymes with fluorescence, and double cocktail with LC–MS. Int J Pharm 2007; 335:1-11. [PMID: 17137735 DOI: 10.1016/j.ijpharm.2006.10.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 11/25/2022]
Abstract
The disparity of IC(50)s from CYP450 inhibition assays used to assess drug-drug interaction potential was investigated, in order to have evidence for selecting a reliable in vitro CYP450 inhibition assay to support drug discovery. Three assays were studied: individual rhCYP isozymes and corresponding coumarin derivative-probe substrates with fluorescent detection, human liver microsomes (HLM) and cocktail drug-probe substrates with LC-MS detection, and double cocktail rhCYP isozymes mix and drug-probe mix with LC-MS detection. Data comparisons showed that the rhCYP-fluorescent assay and the cocktail assay with HLM-LC-MS had weak correlation. Detection method and probe substrates were shown to not be the major cause of the disparity in IC(50)s. However, the enzyme source and composition (HLM versus, rhCYP) caused disparity in IC(50)s. Specifically, the high concentrations of CYP isozymes often used with HLM-based assays produced high probe substrate conversion and test compound metabolism, which should both contribute to artificially higher IC(50)s. Non-specific binding of substrate to higher concentration proteins and lipids in the HLM-based assays should also contribute to higher IC(50)s. The modified double cocktail assay was found to overcome limitations of the other two assays. It uses an rhCYP isozymes mix, drug-probe substrate mix, low protein concentration, and LC-MS detection. The double cocktail assay is sensitive, selective, and high throughout for use in drug discovery to provide an early alert to potential toxicity with regard to drug-drug interaction, prioritize chemical series, and guide structural modification to circumvent CYP450 inhibition.
Collapse
|
|
18 |
64 |
46
|
Seo KA, Bae SK, Choi YK, Choi CS, Liu KH, Shin JG. Metabolism of 1'- and 4-hydroxymidazolam by glucuronide conjugation is largely mediated by UDP-glucuronosyltransferases 1A4, 2B4, and 2B7. Drug Metab Dispos 2010; 38:2007-13. [PMID: 20713656 DOI: 10.1124/dmd.110.035295] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Midazolam undergoes oxidative hydroxylation by CYP3A to its metabolites, which are excreted mainly as glucuronidated conjugates into the urine. In this study, we examined the glucuronidation of hydroxymidazolam in human liver microsomes (HLMs) and characterized the UDP-glucuronosyltransferases (UGTs) involved in 1'- and 4-hydroxymidazolam glucuronidation. Among the 12 UGT isoforms tested, the O- and N-glucuronidation of 1'-hydroxymidazolam was mediated by UGT2B4/2B7 and 1A4, respectively. In contrast, the glucuronidation of 4-hydroxymidazolam was mediated by UGT1A4. Consistent with these observations, the UGT1A4 inhibitor hecogenin and the UGT2B7 substrate diclofenac potently inhibited the N- and O-glucuronidation of 1'-hydroxymidazolam in HLMs, respectively. A correlation analysis of UGT enzymatic activity and the formation rate of glucuronide metabolites from 1'- and 4-hydroxymidazolam in 25 HLMs showed that hydroxymidazolam glucuronidation is correlated with UGT1A4-mediated lamotrigine glucuronidation and UGT2B7-mediated diclofenac glucuronidation activity. Taken together, these findings indicate that UGT1A4, 2B4, and 2B7 are major isoforms responsible for glucuronide conjugate formation from 1'- and 4-hydroxymidazolam, which are the two major oxidative metabolites of midazolam.
Collapse
|
|
15 |
62 |
47
|
Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S. Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine. Br J Clin Pharmacol 1997; 43:245-52. [PMID: 9088578 PMCID: PMC2042745 DOI: 10.1046/j.1365-2125.1997.00556.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS Our previous studies using in vitro hepatic microsomal preparations suggested that the hepatic metabolism of quinine to form the major metabolite 3-hydroxyquinine is most likely catalysed by human P450 3A (CYP3A). The present study was carried out to investigate the kinetics and to identify and further characterise the human liver CYP isoforms involved in the metabolism of quinine. METHODS In vitro human microsomal techniques were employed. RESULTS The mean apparent Km value for 3-hydroxyquinine formation was 83 +/- 19 (s.d.) microM, ranging from 57 microM to 123 microM in microsomes from ten human livers. There was a 6.7-fold variation in Vmax values (mean 547 +/- 416 pmol min-1 mg-1). Quinine 3-hydroxylation was inhibited by the specific CYP3A inhibitors, troleandomycin, midazolam and erythromycin. Inhibitors selective for CYP1A1/2, CYP2D6, CYP2E1, CYP2C9/10 or CYP2C19 had little or no effect on quinine 3-hydroxylation. Using microsomes from a panel of livers, significant correlations were found only between 3-hydroxyquinine activity and other CYP3A activities (caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) and immunoreactive CYP3A content. There were no statistically significant correlation with activities selective for CYP1A2, CYP2C9 and CYP2E1. Competitive inhibition of quinine 3-hydroxylation was observed with a substrate known to be specifically metabolized by human CYP3A, i.e. midazolam, with an apparent Ki value of 11.0 microM. CONCLUSIONS The present results strongly indicate that the conversion of quinine to 3-hydroxyquinine is the major metabolic pathway in human liver in vitro and that the reaction is catalysed by CYP3A isoforms.
Collapse
|
research-article |
28 |
62 |
48
|
Hostler D, Zhou J, Tortorici MA, Bies RR, Rittenberger JC, Empey PE, Kochanek PM, Callaway CW, Poloyac SM. Mild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers. Drug Metab Dispos 2010; 38:781-8. [PMID: 20164112 PMCID: PMC2872942 DOI: 10.1124/dmd.109.031377] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 12/18/2022] Open
Abstract
The clinical use of therapeutic hypothermia has been rapidly expanding due to evidence of neuroprotection. However, the effect of hypothermia on specific pathways of drug elimination in humans is relatively unknown. To gain insight into the potential effects of hypothermia on drug metabolism and disposition, we evaluated the pharmacokinetics of midazolam as a probe for CYP3A4/5 activity during mild hypothermia in human volunteers. A second objective of this work was to determine whether benzodiazepines and magnesium administered intravenously would facilitate the induction of hypothermia. Subjects were enrolled in a randomized crossover study, which included two mild hypothermia groups (4 degrees C saline infusions and 4 degrees C saline + magnesium) and two normothermia groups (37 degrees C saline infusions and 37 degrees C saline + magnesium). The lowest temperatures achieved in the 4 degrees C saline + magnesium and 4 degrees C saline infusions were 35.4 +/- 0.4 and 35.8 +/- 0.3 degrees C, respectively. A significant decrease in the formation clearance of the major metabolite 1'-hydroxymidazolam was observed during the 4 degrees C saline + magnesium compared with that in the 37 degrees C saline group (p < 0.05). Population pharmacokinetic modeling identified a significant relationship between temperature and clearance and intercompartmental clearance for midazolam. This model predicted that midazolam clearance decreases 11.1% for each degree Celsius reduction in core temperature from 36.5 degrees C. Midazolam with magnesium facilitated the induction of hypothermia, but shivering was minimally suppressed. These data provided proof of concept that even mild and short-duration changes in body temperature significantly affect midazolam metabolism. Future studies in patients who receive lower levels and a longer duration of hypothermia are warranted.
Collapse
|
Randomized Controlled Trial |
15 |
61 |
49
|
Transon C, Lecoeur S, Leemann T, Beaune P, Dayer P. Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymes. Eur J Clin Pharmacol 1996; 51:79-85. [PMID: 8880056 DOI: 10.1007/s002280050164] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Interindividual variations in immunoreactivity and function of three major human drug metabolising P450 monooxygenases has been investigated in liver microsomes from 42 Caucasians (kidney donors or liver biopsies). METHODS Diclofenac 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation, measured by HPLC in incubates, were used as probes to determine CYP2C9, CYP2D6 and CYP3A4 function kinetics, respectively. Immunoquantification of the three isoforms was achieved by Western blotting, using rabbit polyclonal antibodies raised against human CYP2C9 and human CYP3A4, and mouse monoclonal antibody raised against human CYP2D6. RESULTS Diclofenac 4'-hydroxylation exhibited Michaelis-Menten kinetics with kM = 3.4 mumol.l-1 and Vmax = 45 nmole.mg-1 P.h-1. Relative immunoreactivity of CYP2C9 was correlated with Vmax and CL(int). Dextromethorphan O-demethylation in EM (extensive metabolisers) liver microsomes also showed Michaelis-Menten kinetics, with kM = 4.4 mumol.l-1 and Vmax = 5.0 nmol.mg-1 P.h-1. Relative immunoreactivity of CYP2D6 was correlated with Vmax and CL(int). Midazolam 1'-hydroxylation also exhibited Michaelis-Menten kinetics with kM = 3.3 mumol.l-1 and Vmax = 35 nmol.mg-1 P.h-1. Relative immunoreactivity of CYP3A4 was correlated with Vmax and CL(int). Immunoreactivity and function were correlated for each isozyme, but there was no cross correlation between isozymes. CONCLUSION The velocity of metabolite formation (Vmax) by the three major human drug metabolising P450 monoxygenases is correlated with their immunoreactivity in liver microsomes. Interindividual variation was much larger for Vmax than kM. Interindividual variability was more pronounced for CYP2D6, probably due to the presence of several different functional alleles in the population of extensive metabolisers.
Collapse
|
|
29 |
61 |
50
|
Zhu B, Liu ZQ, Chen GL, Chen XP, Ou-Yang DS, Wang LS, Huang SL, Tan ZR, Zhou HH. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol 2003; 55:264-9. [PMID: 12630976 PMCID: PMC1884221 DOI: 10.1046/j.1365-2125.2003.01728.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS To investigate the distribution of CYP3A activity in the Chinese population, and to test for gender-related differences in CYP3A activity. METHODS Using midazolam as a probe drug, CYP3A activity in 202 Chinese healthy subjects (104 men) was measured by plasma 1'-hydroxymidazolam:midazolam (1'-OH-MDZ:MDZ) ratio at 1 h after oral administration of 7.5 mg midazolam. The different phases of the menstrual cycle including preovulatory, ovulatory and luteal phases of 66 women phenotyped with midazolam were recorded. The concentrations of 1'-OH-MDZ and MDZ in plasma were measured by HPLC RESULTS: A 13-fold variation of CYP3A activity (log1'-OH-MDZ:MDZ: range -0.949-0.203) was shown. The CYP3A activity was normally distributed as indicated by the frequency distribution histogram, the probit plot and the Kolmogorov-Smirnov test (P > 0.05). The CYP3A activity of women was higher than that of men (median: -0.36 vs -0.43, P < 0.05; 95% CI for difference: -0.127, -0.012). There was a significant difference in CYP3A activity between the three phases of the menstrual cycle. The activity was highest in the preovulatory phase and decreased sequentially in the ovulatory and luteal phases (P < 0.05). CONCLUSIONS A normal distribution of CYP3A activity was observed in the Chinese population. The CYP3A activity is higher in female subjects than in males. CYP3A activity differed across the phases of the menstrual cycle.
Collapse
|
research-article |
22 |
60 |