576
|
Pavesi E, Canteras NS, Carobrez AP. Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacology 2011; 36:926-39. [PMID: 21209611 PMCID: PMC3077262 DOI: 10.1038/npp.2010.231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; β-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of β-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (β-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd β-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning.
Collapse
|
577
|
Okamura N, Garau C, Duangdao DM, Clark SD, Jüngling K, Pape HC, Reinscheid RK. Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology 2011; 36:744-52. [PMID: 21150909 PMCID: PMC3037424 DOI: 10.1038/npp.2010.207] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide S (NPS) has been shown to promote arousal and anxiolytic-like effects, as well as facilitation of fear extinction. In rodents, NPS receptors (NPSR) are prominently expressed in brain structures involved in learning and memory. Here, we investigate whether exogenous or endogenous NPS signaling can modulate acquisition, consolidation, or recall of emotional, spatial, and contextual memory traces, using two common behavioral paradigms, inhibitory avoidance (IA) and novel object recognition. In the IA paradigm, immediate and delayed post-training central NPS administration dose dependently enhanced memory retention in mice, indicating that NPS may act during the consolidation phase to enhance long-term memory. In contrast, pre-training or pre-test NPS injections were ineffective, suggesting that NPS had no effect on IA memory acquisition or recall. Peripheral administration of a synthetic NPSR antagonist attenuated NPS-induced IA memory enhancement, showing pharmacological specificity. NPS also enhanced hippocampal-dependent non-aversive memory in the novel object recognition task. In contrast, NPSR knockout mice displayed deficits in IA memory, novel object recognition, and novel place or context recognition, suggesting that activity of the endogenous NPS system is required for memory formation. Blockade of adrenergic signaling by propranolol attenuated NPS-induced memory enhancement in the IA task, indicating involvement of central noradrenergic systems. These results provide evidence for a facilitatory role of NPS in long-term memory, independent of memory content, possibly by acting as a salience signal or as an arousal-promoting factor.
Collapse
|
578
|
Zhang J, Ma RCW, Kong APS, So WY, Li AM, Lam SP, Li SX, Yu MWM, Ho CS, Chan MHM, Zhang B, Wing YK. Relationship of sleep quantity and quality with 24-hour urinary catecholamines and salivary awakening cortisol in healthy middle-aged adults. Sleep 2011; 34:225-33. [PMID: 21286244 DOI: 10.1093/sleep/34.2.225] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES a. Explore the stability in sleep/wake patterns of middle-aged adults over a 3-year follow-up period. b. Explore the relationship between objectively measured sleep indices, urinary catecholamines, and salivary cortisol. DESIGN Naturalistic follow-up for sleep/wake patterns (n = 114) by 2-week sleep log and cross-sectional design for objective sleep assessments and hormonal measures (n = 96) at follow-up period nearly 3 years after baseline measurements. SETTING Community PARTICIPANTS Healthy middle-aged adults INTERVENTIONS N/A. MEASUREMENTS AND RESULTS There were high correlations between baseline and follow-up period (2.6 ± 0.5 years) on sleep/wake patterns (r = 0.6-0.79) as measured by 2-week sleep log. For wave 2 cross-sectional study, objective poor sleepers (3-day actigraphy sleep efficiency < 85%) had a higher 24-h urinary norepinephrine (NE) level (205.7 ± 105 nmol/d vs 162.1 ± 55.6 nmol/d, P = 0.03) and a nearly significantly higher 24-h urinary epinephrine (E) level (P = 0.12) than good sleepers. There were no differences in 3-day mean salivary awakening cortisol and 24-h urinary catecholamines (NE and E) between short and normal/long sleepers. Linear regression results, however, showed that shorter time in bed and actual sleep time, longer sleep onset latency, and lower sleep efficiency were correlated with higher 24-h urinary E and NE (all P < 0.05) but not salivary cortisol. The effect of poor sleep quality on 24-h urinary catecholamines was stronger in males than females. CONCLUSIONS Increased sympathetic activity as measured by 24-h urinary catecholamines might play a critical role in the pathogenesis mediating the relationship of insufficient sleep (quantity and quality) with subsequent cardiovascular and metabolic complications. Salivary awakening cortisol was not associated with sleep quantity and quality in healthy middle-aged adults.
Collapse
|
579
|
Lutgendorf SK, DeGeest K, Dahmoush L, Farley D, Penedo F, Bender D, Goodheart M, Buekers TE, Mendez L, Krueger G, Clevenger L, Lubaroff DM, Sood AK, Cole SW. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav Immun 2011; 25:250-5. [PMID: 20955777 PMCID: PMC3103818 DOI: 10.1016/j.bbi.2010.10.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/06/2010] [Accepted: 10/11/2010] [Indexed: 12/11/2022] Open
Abstract
Noradrenergic pathways have been implicated in growth and progression of ovarian cancer. Intratumoral norepinephrine (NE) has been shown to increase with stress in an animal cancer model, but little is known regarding how tumor NE varies with disease stage and with biobehavioral factors in ovarian cancer patients. This study examined relationships between pre-surgical measures of social support, depressed mood, perceived stress, anxiety, tumor histology and tumor catecholamine (NE and epinephrine [E]) levels among 68 ovarian cancer patients. We also examined whether associations observed between biobehavioral measures and tumor catecholamines extended to other compartments. Higher NE levels were found in advanced stage (p=0.006) and higher grade (p=0.001) tumors. Adjusting for stage, grade, and peri-surgical beta blockers, patients with a perceived lack of social support had significantly higher tumor NE (β=-0.29, p=0.012). A similar trend was seen for social support and ascites NE (adjusting for stage, peri-surgical beta blockers and caffeine: β=-0.50, p=0.075), but not for plasma NE. Other biobehavioral factors were not related to tumor, ascites, or plasma NE (p values >0.21). Tumor E was undetectable in the majority of tumors and thus E was not further analyzed. In summary, these results suggest that tumor NE provides distinct information from circulating plasma concentrations. Tumor NE levels were elevated in relationship to tumor grade and stage. Low subjective social support was associated with elevated intratumoral NE. As beta-adrenergic signaling is related to key biological pathways involved in tumor growth, these findings may have implications for patient outcomes in ovarian cancer.
Collapse
|
580
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
|
581
|
Abstract
OBJECTIVES To test the hypothesis that those who provide care for a spouse diagnosed with Alzheimer's disease would have increased prevalence of carotid artery plaque compared with noncaregiving controls and that prolonged sympathoadrenal arousal to acute stress would relate to this difference. Providing care for a spouse with Alzheimer's disease has been associated with an increased risk of coronary heart disease, potentially due to the impact of caregiving stress on the atherosclerotic disease process. METHODS Participants were 111 spousal caregivers (74 ± 8 years of age; 69% women) to patients with Alzheimer's disease and 51 noncaregiving controls (75 ± 6 years of age; 69% women). Inhome assessment of carotid artery plaque via B-mode ultrasonography was conducted. Plasma catecholamine response to an acute speech stressor task was also measured. RESULTS Logistic regression indicated that caregiving status (i.e., caregiver versus noncaregiver) was associated significantly with a 2.2 times greater odds for the presence of plaque independent of other risk factors of atherosclerosis (95% confidence interval, 1.01-4.73, p = .048). Decreased recovery to basal levels of epinephrine after a psychological stress task was associated significantly with the presence of plaque in caregivers, but not in noncaregivers. Norepinephrine recovery post stressor was not associated with plaque in either group. CONCLUSIONS Caregivers had a higher frequency of carotid plaque compared with noncaregivers. Poorer epinephrine recovery after acute stress was associated with the presence of plaque in caregivers but not in noncaregivers. A prolonged sympathoadrenal response to acute stress might enhance the development of atherosclerosis in chronically stressed Alzheimer caregivers.
Collapse
|
582
|
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011; 36:74-97. [PMID: 20881948 PMCID: PMC3055522 DOI: 10.1038/npp.2010.151] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/08/2022]
Abstract
Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine.
Collapse
|
583
|
Minzenberg MJ, Yoon JH, Carter CS. Modafinil modulation of the default mode network. Psychopharmacology (Berl) 2011; 215:23-31. [PMID: 21153806 PMCID: PMC3072511 DOI: 10.1007/s00213-010-2111-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/22/2010] [Indexed: 12/01/2022]
Abstract
RATIONALE The default mode network (DMN) is a functional network which is implicated in a range of cognitive processes. This network is proposed to consist of hubs located in the ventromedial prefrontal cortex (vmPFC), posterior cingulate/retrosplenial cortex (PCC/rSpl), and inferior parietal lobule (IPL), with other midline cortical and temporal lobe nodes connected to these hubs. How this network is modulated by neurochemical systems during functional brain activity is not yet understood. OBJECTIVES In the present study, we used the norepinephrine/dopamine transporter inhibitor modafinil to test the hypothesis that this drug modulates the DMN. METHODS Eighteen healthy right-handed adults participated in a double-blind, placebo-controlled study of single oral dose modafinil 200 mg. They performed a simple visual sensorimotor task during slow event-related fMRI. Drug effects were interrogated within the DMN defined by task-induced deactivation (TID) on placebo. RESULTS There was a trend toward faster reaction time (RT) on modafinil (Cohen's d = 0.38). Brain regions within the DMN which exhibited significant modafinil-induced augmentation of TID included vmPFC, PCC/rSpl, and left IPL. Across subjects, the modafinil effect on TID in the vmPFC was significantly and specifically associated with drug effects on RT speeding. CONCLUSIONS Modafinil augments TID in the DMN to facilitate sensorimotor processing speed, an effect which may be particularly dependent on changes in vmPFC activity. This is consistent with the gain control function of catecholamine systems and may represent an important aspect of the pro-cognitive effects of modafinil.
Collapse
|
584
|
Spencer WA, Jeyabalan J, Kichambre S, Gupta RC. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species. Free Radic Biol Med 2011; 50:139-47. [PMID: 21075203 PMCID: PMC3353411 DOI: 10.1016/j.freeradbiomed.2010.10.693] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 11/28/2022]
Abstract
There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest a possible contributory role of oxidatively generated DNA damage by dopamine and related catechol neurotransmitters/neurotoxins in neurodegeneration and cell death. We also found that a naturally occurring broad-spectrum antioxidant, ellagic acid, was substantially effective (nearly 50% inhibition) at low doses (1μM) at preventing this dopamine/Cu(II)-mediated oxidatively generated DNA damage. Because dietary ellagic acid has been found to reduce oxidative stress in rat brains, a neuroprotective role of this polyphenol is plausible.
Collapse
|
585
|
Mehta NK, Aurigemma G, Rafeq Z, Starobin O. Reverse takotsubo cardiomyopathy: after an episode of serotonin syndrome. Tex Heart Inst J 2011; 38:568-572. [PMID: 22163138 PMCID: PMC3231548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress-induced cardiomyopathy is characterized by transient left ventricular dysfunction, usually followed by complete resolution. It is precipitated by severe stress, and the most common variant (takotsubo) is marked by apical hypokinesis and ballooning with basal hyperkinesis. Serotonin syndrome is best understood as excess serotonergic activity in the central and peripheral nervous system. This imposes significant stress on the body. We report what we believe is the 1st case of serotonin syndrome as an indirect cause of stress-induced cardiomyopathy with a reverse takotsubo profile.
Collapse
|
586
|
Tweedell A, Mulligan KX, Martel JE, Chueh FY, Santomango T, McGuinness OP. Metabolic response to endotoxin in vivo in the conscious mouse: role of interleukin-6. Metabolism 2011; 60:92-8. [PMID: 20102773 PMCID: PMC2889039 DOI: 10.1016/j.metabol.2009.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
Abstract
Inflammation and insulin resistance are characteristics of endotoxemia. Although the role of interleukin (IL)-6 in insulin-resistant states has been characterized, little is known of its role in the metabolic response to inflammation. To study the role of IL-6, conscious chronically catheterized mice were used. Five days before being studied, catheters were implanted in the carotid artery and jugular vein. After a 5-hour fast, Escherichia coli (250 μg per mouse) lipopolysaccharide (LPS) was injected in IL-6⁻/⁻ (KO, n = 13) and IL-6+/+ (WT, n = 10) littermates. The IL-6 response to LPS was simulated in an additional group of KO mice (KO + IL-6, n = 10). Interleukin-6 increased in WT (15 ± 0.7 ng/mL) 4 hours after LPS and was undetectable in KO. Interleukin-6 replacement in the KO restored circulating IL-6 to levels observed in the WT group (14 ± 0.3 ng/mL). Tumor necrosis factor-α increased more rapidly in WT than in both KO and KO + IL-6 mice. The KO mice exhibited a more profound glucose excursion 30 minutes after LPS injection and no apparent hypoglycemia at 4 hours (95 ± 5 vs 70 ± 8 mg/dL, KO vs WT), despite having a blunted glucagon and epinephrine response. Glucose levels in KO + IL-6 mice, while decreased (93 ± 4 mg/dL) at 4 hours, remained higher than those in WT mice. In summary, the absence of IL-6 protected against LPS-induced hypoglycemia. Acute restoration of the IL-6 response to LPS did not potentiate hypoglycemia but partially restored the glucagon response. Thus, although IL-6 promotes glucose intolerance in insulin-resistant states, IL-6 promotes hypoglycemia during acute inflammation.
Collapse
|
587
|
Zack M, Woodford TM, Tremblay AM, Steinberg L, Zawertailo LA, Busto UE. Stress and alcohol cues exert conjoint effects on go and stop signal responding in male problem drinkers. Neuropsychopharmacology 2011; 36:445-58. [PMID: 20927046 PMCID: PMC3055670 DOI: 10.1038/npp.2010.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress, cues, and pharmacological priming are linked with relapse to addictive behavior. Increased salience and decreased inhibitory control are thought to mediate the effects of relapse-related stimuli. However, the functional relationship between these two processes is unclear. To address this issue, a modified Stop Signal Task was employed, which used Alcohol, Neutral, and Non-Words as Go stimuli, and lexical decision as the Go response. Subjects were 38 male problem drinkers (mean Alcohol Dependence Scale (ADS) score: 18.0). Uncontrollable noise (∼ 10 min at 110 dB) was the stressor; nonalcoholic placebo beer (P-Beer) was the cue manipulation, and alcohol (0.7 g/kg), the pharmacological prime. Half the sample received alcohol, and half P-Beer. Stress and beverage (test drink vs soft drink) were manipulated within subjects on two sessions, with half the sample receiving active manipulations together and half receiving them separately. Go response time (RT) and Stop Signal RT (SSRT) were slower to Alcohol than Neutral words. Stress augmented this bias. Alcohol and P-Beer impaired overall SSRT. Stress impaired neither overall SSRT nor Go RT. SSRT to Neutral words and Non-Words correlated inversely with Go RT to Alcohol and Neutral words, and Non-Words. ADS correlated directly with SSRT to Alcohol words. A resource allocation account was proposed, whereby diversion of limited resources to salient cues effectively yoked otherwise independent Go and Stop processes. Disturbances of prefrontal norepinephrine and dopamine were cited as possibly accounting for these effects. Treatments that optimize prefrontal catecholamine transmission may deter relapse by reducing disinhibitory effects of salient eliciting stimuli.
Collapse
|
588
|
Moraska A, Pollini RA, Boulanger K, Brooks MZ, Teitlebaum L. Physiological adjustments to stress measures following massage therapy: a review of the literature. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2010; 7:409-18. [PMID: 18955340 PMCID: PMC2892349 DOI: 10.1093/ecam/nen029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 04/04/2008] [Indexed: 11/23/2022]
Abstract
Use of massage therapy by the general public has increased substantially in recent years. In light of the popularity of massage therapy for stress reduction, a comprehensive review of the peer-reviewed literature is important to summarize the effectiveness of this modality on stress-reactive physiological measures. On-line databases were searched for articles relevant to both massage therapy and stress. Articles were included in this review if (i) the massage therapy account consisted of manipulation of soft tissues and was conducted by a trained therapist, and (ii) a dependent measure to evaluate physiological stress was reported. Hormonal and physical parameters are reviewed. A total of 25 studies met all inclusion criteria. A majority of studies employed a 20-30 min massage administered twice-weekly over 5 weeks with evaluations conducted pre-post an individual session (single treatment) or following a series of sessions (multiple treatments). Single treatment reductions in salivary cortisol and heart rate were consistently noted. A sustained reduction for these measures was not supported in the literature, although the single-treatment effect was repeatable within a study. To date, the research data is insufficient to make definitive statements regarding the multiple treatment effect of massage therapy on urinary cortisol or catecholamines, but some evidence for a positive effect on diastolic blood pressure has been documented. While significant improvement has been demonstrated following massage therapy, the general research body on this topic lacks the necessary scientific rigor to provide a definitive understanding of the effect massage therapy has on many physiological variables associated with stress.
Collapse
|
589
|
Disulfiram attenuates drug-primed reinstatement of cocaine seeking via inhibition of dopamine β-hydroxylase. Neuropsychopharmacology 2010; 35:2440-9. [PMID: 20736996 PMCID: PMC2956132 DOI: 10.1038/npp.2010.127] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antialcoholism medication disulfiram (Antabuse) inhibits aldehyde dehydrogenase (ALDH), which results in the accumulation of acetaldehyde upon ethanol ingestion and produces the aversive 'Antabuse reaction' that deters alcohol consumption. Disulfiram has also been shown to deter cocaine use, even in the absence of an interaction with alcohol, indicating the existence of an ALDH-independent therapeutic mechanism. We hypothesized that disulfiram's inhibition of dopamine β-hydroxylase (DBH), the catecholamine biosynthetic enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons, underlies the drug's ability to treat cocaine dependence. We tested the effects of disulfiram on cocaine and food self-administration behavior and drug-primed reinstatement of cocaine seeking in rats. We then compared the effects of disulfiram with those of the selective DBH inhibitor, nepicastat. Disulfiram, at a dose (100 mg/kg, i.p.) that reduced brain NE by ∼40%, did not alter the response for food or cocaine on a fixed ratio 1 schedule, whereas it completely blocked cocaine-primed (10 mg/kg, i.p.) reinstatement of drug seeking following extinction. A lower dose of disulfiram (10 mg/kg) that did not reduce NE had no effect on cocaine-primed reinstatement. Nepicastat recapitulated the behavioral effects of disulfiram (100 mg/kg) at a dose (50 mg/kg, i.p.) that produced a similar reduction in brain NE. Food-primed reinstatement of food seeking was not impaired by DBH inhibition. Our results suggest that disulfiram's efficacy in the treatment of cocaine addiction is associated with the inhibition of DBH and interference with the ability of environmental stimuli to trigger relapse.
Collapse
|
590
|
Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine. Neuropsychopharmacology 2010; 35:2346-56. [PMID: 20686455 PMCID: PMC2955791 DOI: 10.1038/npp.2010.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The psychotomimetic drug D-amphetamine (AMPH), disrupts prepulse inhibition (PPI) of the startle response, an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Historically, this effect has been attributed to dopaminergic substrates; however, AMPH also increases norepinephrine (NE) levels, and enhancement of central NE transmission has been shown recently to disrupt PPI. This study examined the extent to which NE might participate in AMPH-induced disruptions of PPI and increases in locomotor activity, another classic behavioral effect of AMPH, by determining whether antagonism of postsynaptic NE receptors blocked these effects. Separate groups of male Sprague-Dawley rats received either the α1 receptor antagonist, prazosin (0, 0.3, 1 mg/kg), or the β receptor antagonist timolol (0, 3, 10 mg/kg) before administration of AMPH (0 or 1 mg/kg) before testing for PPI or locomotor activity. As an initial exploration of the anatomical substrates underlying possible α1 receptor-mediated effects on AMPH-induced PPI deficits, the α1 receptor antagonist terazosin (0 or 40 μg/0.5 μl) was microinfused into the nucleus accumbens shell (NAccSh) in conjunction with systemic AMPH administration before startle testing in a separate experiment. Prazosin, but not timolol, blocked AMPH-induced hyperactivity; both drugs reversed AMPH-induced PPI deficits without altering baseline startle responses. Interestingly, AMPH-induced PPI deficits also were partially blocked by terazosin in NAccSh. Thus, behavioral sequelae of AMPH (PPI disruption and hyperactivity) may be mediated in part by NE receptors, with α1 receptors in NAccSh possibly having an important role in the sensorimotor gating deficits induced by this psychotomimetic drug.
Collapse
|
591
|
Koumaras C, Anagnostis P, Tzimou M, Giavanidis I, Gossios T, Antoniadis A, Athyros VG, Karagiannis A. Paraganglioma in a young patient with asymptomatic severe hypertension: a case report and review of the literature. Hippokratia 2010; 14:300-302. [PMID: 21311646 PMCID: PMC3031332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a case of a 19-year old woman who was admitted to our department with a recently, and incidentally, diagnosed severe hypertension [220/140 mmHg systolic/diastolic blood pressure (BP)]. The patient was asymptomatic. The laboratory investigation demonstrated both elevated plasma norepinephrine (1807 pg/ml, normal range 120-350 pg/ml) and 24h urinary free catecholamines (483 µg/24h, normal range <150 µg/24h), making the diagnosis of a catecholamineproducing tumor highly probable. Although magnetic resonance imaging of the abdomen showed normal adrenal glands, it revealed a mass (4x4 cm) anterior to the inferior vena cava. The diagnosis of paraganglioma was confirmed by the (131)Imeta- iodobenzylguanidine scintigraphy. Preoperatively, α- and β-adrenergic receptor blockers were administered. After successful resection of the tumor, the patient's BP was restored to normal and remained stable during the 3-month follow up. Plasma and 24h urinary catecholamine levels were also normalized. In conclusion, it is important to consider paragangliomas as a possible cause of secondary hypertension and proceed to diagnosis and treatment as described above, since surgical removal of the tumor, especially in sporadic cases, may cure the patient.
Collapse
|
592
|
Altered dopamine modulation of inhibition in the prefrontal cortex of cocaine-sensitized rats. Neuropsychopharmacology 2010; 35:2292-304. [PMID: 20664581 PMCID: PMC2939941 DOI: 10.1038/npp.2010.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC.
Collapse
|
593
|
Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H. Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology 2010; 35:2165-78. [PMID: 20613718 PMCID: PMC2939933 DOI: 10.1038/npp.2010.86] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20-25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate.
Collapse
|
594
|
Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 2010; 35:1943-51. [PMID: 20463658 PMCID: PMC3055632 DOI: 10.1038/npp.2010.68] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.
Collapse
|
595
|
Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology 2010; 35:1860-7. [PMID: 20410875 PMCID: PMC3055626 DOI: 10.1038/npp.2010.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mounting evidence from animal studies show that the mesolimbic dopaminergic pathways are modulated by the brain-derived neurotrophic factor (BDNF). This study investigates in N=768 healthy Caucasian participants the influence of two prominent functional single-nucleotide polymorphisms (SNPs) on the BDNF gene (BDNF Val66Met SNP) and the ankyrin repeat and kinase domain containing 1 (ANKK1) gene (DRD2 Taq Ia/ANKK1 SNP) on the personality traits of Novelty Seeking and Harm Avoidance, which are mediated, in part, through dopaminergic mesolimbic circuitry. Carriers of the 66Met+/A1+ variant scored lowest on Novelty Seeking and highest on Harm Avoidance, compared to all other genotype groups. These participants are characterized by a relatively low D(2) receptor density in the striatum and an impaired activity-dependent secretion of BDNF. This is one of the first genetic association studies to show a modulatory role for BDNF genetic variation on genetically mediated differences in the mesolimbic dopaminergic system in the context of human personality.
Collapse
|
596
|
Radek KA. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J Leukoc Biol 2010; 88:263-77. [PMID: 20442225 PMCID: PMC2908944 DOI: 10.1189/jlb.1109740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 01/08/2023] Open
Abstract
Leukocytes and epithelial cells are fundamental to antimicrobial immunity. Their antimicrobial responses are an evolutionarily conserved component of the innate immune system and are influenced by the host's response to external stimuli. The efficacy of host defense via antimicrobial responses derives from the ability of AMPs to rapidly identify and eradicate foreign microbes and activate proinflammatory pathways, and from the capacity of later innate and adaptive immune responses to amplify protection through distinct biochemical mechanisms. Recent advances in neuroimmunology have identified a direct link between the neuroendocrine and immune systems, where environmental stimuli are generally believed to promote a transient effect on the immune system in response to environmental challenges and are presumably brought back to baseline levels via neuroendocrine pathways. Stress is an environmental stimulus that flares from a variety of circumstances and has become engrained in human society. Small bouts of stress are believed to enhance the host's immune response; however, prolonged periods of stress can be detrimental through excess production of neuroendocrine-derived mediators that dampen immune responses to invasive pathogens. Elucidation of the mechanisms behind stress-induced immune modulation of antimicrobial responses will ultimately lead to the development of more effective therapeutic interventions for pathologic conditions. It is the intent of this review to broaden the existing paradigm of how stress-related molecules dampen immune responses through suppression of antimicrobial mechanisms, and to emphasize that bacteria can use these factors to enhance microbial pathogenesis during stress.
Collapse
|
597
|
West CHK, Ritchie JC, Weiss JM. Paroxetine-induced increase in activity of locus coeruleus neurons in adolescent rats: implication of a countertherapeutic effect of an antidepressant. Neuropsychopharmacology 2010; 35:1653-63. [PMID: 20357759 PMCID: PMC2888691 DOI: 10.1038/npp.2010.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 02/18/2010] [Indexed: 11/08/2022]
Abstract
The concern that antidepressant (AD) drugs, especially selective serotonin reuptake inhibitors and paroxetine (PAR) in particular, can increase suicidality during the early treatment of juvenile patients (children and adolescents) has created a dilemma for clinicians treating depressives. Although preclinical research cannot resolve controversy in this area, our present findings may provide insight into how AD drugs might, under certain conditions, exacerbate rather than ameliorate the depressive state. Both clinical and preclinical evidences indicate that the principal noradrenergic cell group in the brain, the locus coeruleus (LC), is overactive in depressives and that, conversely, effective AD treatments decrease the activity of LC neurons. We report here that short-term (2 and 4 days) administration of PAR produces an increase in the activity of LC neurons (spontaneous firing rate and sensory-evoked responses) in young rats, contrary to the 'therapeutic' decrease in activity typically observed in adult rats. Blood levels of PAR were lower in young rats than in adult rats, although similar low blood levels produced by a lower dose of PAR in adult rats failed to produce an increase in LC activity. In addition, activity of young rats in the swim test was determined to assess depressive-like responses. The same dose/durations of PAR, which produced the largest increases in LC activity in young rats, produced decreases in swim-test activity, indicating that brief administration of PAR in young rats can promote, rather than reduce, the depressive state. These results offer a model that may help screen potential adjunctive treatments to avoid early adverse effects of ADs.
Collapse
|
598
|
Mantione KJ, Kream RM, Stefano GB. Catechol-O-methyltransferase: potential relationship to idiopathic hypertension. Arch Med Sci 2010; 6:291-5. [PMID: 22371762 PMCID: PMC3282503 DOI: 10.5114/aoms.2010.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/07/2010] [Accepted: 06/19/2010] [Indexed: 12/03/2022] Open
Abstract
Catecholamine signaling pathways in the peripheral and central nervous systems (PNS, CNS, respectively) utilize catechol-O-methyltransferase (COMT) as a major regulatory enzyme responsible for deactivation of dopamine (DA), norepinephrine (NE) and epinephrine (E). Accordingly, homeostasis of COMT gene expression is hypothesized to be functionally linked to regulation of autonomic control of normotensive vascular events. Recently, we demonstrated that morphine administration in vitro resulted in decreased cellular concentrations of COMT-encoding mRNA levels, as compared to control values. In contrast, cells treated with E up regulated their COMT gene expression. In sum, these observations indicate a potential reciprocal linkage between end product inhibition of COMT gene expression by E and morphine. Interestingly, the observed effects of administered E on COMT gene expression suggest an enhancement of its own catabolism or, reciprocally, a stimulation morphine biosynthesis.
Collapse
|
599
|
Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology 2010; 35:1464-76. [PMID: 20200509 PMCID: PMC3055463 DOI: 10.1038/npp.2010.16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tesofensine is a novel monoamine reuptake inhibitor that inhibits both norepinephrine, 5-HT, and dopamine (DA) reuptake function. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong effect in obesity management is not clarified. Using a rat model of diet-induced obesity (DIO), we characterized the pharmacological mechanisms underlying the appetite suppressive effect of tesofensine. DIO rats treated with tesofensine (2.0 mg/kg, s.c.) for 16 days showed significantly lower body weights than vehicle-treated DIO rats, being reflected by a marked hypophagic response. Using an automatized food intake monitoring system during a 12 h nocturnal test period, tesofensine-induced hypophagia was investigated further by studying the acute interaction of a variety of monoamine receptor antagonists with tesofensine-induced hypophagia in the DIO rat. Tesofensine (0.5-3.0 mg/kg, s.c.) induced a dose-dependent and marked decline in food intake with an ED(50) of 1.3 mg/kg. The hypophagic response of tesofensine (1.5 mg/kg, s.c.) was almost completely reversed by co-administration of prazosin (1.0 mg/kg, alpha(1) adrenoceptor antagonist) and partially antagonized by co-administration of SCH23390 (0.03 mg/kg, DA D(1) receptor antagonist). In contrast, tesofensine-induced hypophagia was not affected by RX821002 (0.3 mg/kg, alpha(2) adrenoceptor antagonist), haloperidol (0.03 mg/kg, D(2) receptor antagonist), NGB2904 (0.1 mg/kg, D(3) receptor antagonist), or ritanserin (0.03 mg/kg, 5-HT(2A/C) receptor antagonist). Hence, the mechanism underlying the suppression of feeding by tesofensine in the obese rat is dependent on the drug's ability to indirectly stimulate alpha(1) adrenoceptor and DA D(1) receptor function.
Collapse
|
600
|
Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW, Koch WJ. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 2010; 285:16378-86. [PMID: 20351116 PMCID: PMC2871505 DOI: 10.1074/jbc.m109.077859] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.
Collapse
|