51
|
Wu L, Tsang VHM, Sasson SC, Menzies AM, Carlino MS, Brown DA, Clifton-Bligh R, Gunton JE. Unravelling Checkpoint Inhibitor Associated Autoimmune Diabetes: From Bench to Bedside. Front Endocrinol (Lausanne) 2021; 12:764138. [PMID: 34803927 PMCID: PMC8603930 DOI: 10.3389/fendo.2021.764138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors have transformed the landscape of oncological therapy, but at the price of a new array of immune related adverse events. Among these is β-cell failure, leading to checkpoint inhibitor-related autoimmune diabetes (CIADM) which entails substantial long-term morbidity. As our understanding of this novel disease grows, parallels and differences between CIADM and classic type 1 diabetes (T1D) may provide insights into the development of diabetes and identify novel potential therapeutic strategies. In this review, we outline the knowledge across the disciplines of endocrinology, oncology and immunology regarding the pathogenesis of CIADM and identify possible management strategies.
Collapse
|
52
|
Cochran JC, Brown DA. A theory of the piezoelectric slotted cylinder projector. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3417. [PMID: 33379891 DOI: 10.1121/10.0002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
The energy method is used on the radial and circumferential displacement mode shapes of tapered piezoelectric slotted cylinder projectors to determine the electro-mechanical equivalent circuit parameters for the transducer. Results are determined for acoustically unloaded conditions for any degree of shell tapering. The resonance frequency (fr), mechanical quality factor (Qm), and electro-mechanical coupling factor (keff) are calculated and compared to measured data.
Collapse
|
53
|
Abstract
GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-β superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.
Collapse
|
54
|
Aikins EK, Aronov BS, Brown DA. Effects of circumferential stress on tangentially polarized piezoelectric cylinders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3318. [PMID: 33261394 DOI: 10.1121/10.0002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
This paper investigates the dependence of the electromechanical properties of the tangential polarized (stripe-electroded) cylindrical piezoelements made of the hard (PZT-4 like) and soft (PZT-5A like) ceramics on the compressive circumferential stress produced by hydrostatic pressure. Results are presented for the relative change of the effective dielectric constants, elastic constants, coupling coefficients, and piezoelectric moduli. The sensitivity of dielectric constant and piezoelectric modulus to the compressive stress is shown to be less than radially polarized ceramic.
Collapse
|
55
|
King DR, Padget RL, Perry J, Hoeker G, Smyth JW, Brown DA, Poelzing S. Elevated perfusate [Na +] increases contractile dysfunction during ischemia and reperfusion. Sci Rep 2020; 10:17289. [PMID: 33057157 PMCID: PMC7560862 DOI: 10.1038/s41598-020-74069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies revealed that relatively small changes in perfusate sodium ([Na+]o) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+]o modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+]o that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia-reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia-reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+]o decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+]o at baseline and reduced the time to peak ischemic contracture. Ischemia-reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+]o further depressed mechanical function. In summary, elevating [Na+]o by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+]o, with cardiac ischemia may require further investigation.
Collapse
|
56
|
Hennessy RW, Rumble D, Christian M, Brown DA, Trost Z. A Graded Exposure, Locomotion-Enabled Virtual Reality App During Walking and Reaching for Individuals With Chronic Low Back Pain: Cohort Gaming Design. JMIR Serious Games 2020; 8:e17799. [PMID: 32773381 PMCID: PMC7445609 DOI: 10.2196/17799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Chronic low back pain (cLBP) can interfere with daily activities, and individuals with elevated pain-related fear (also known as kinesiophobia or the fear of injury due to movement) can develop worse long-term disability. Graded exposure (GEXP) protocols use successive participation in avoided activities to help individuals overcome fearful movement appraisals and encourage activity. We sought to develop a series of GEXP virtual reality (VR) walking and reaching scenarios to increase the exposure and engagement of people with high kinesiophobia and cLBP. OBJECTIVE This study aims to (1) determine GEXP content validity of the VR application and (2) determine the feasibility of individuals with cLBP performing locomotion-enabled physical activities. METHODS We recruited 13 individuals with cLBP and high pain-related fear to experience six VR modules, which provide progressive movement exposure over three sessions in a 1 week period. At session 1, participants ranked each module by likelihood to avoid and assigned an expected pain and concern for harming their back rating to each module. Participants provided a rating of perceived exertion (RPE) after experiencing each module. To test feasibility, we administered the system usability scale (SUS) and treatment evaluation inventory (TEI) following the final session. In addition, we measured pain and pain-related fear at baseline and follow-up. RESULTS The 12 participants who completed the study period assigned higher avoidance (P=.002), expected pain (P=.002), and expected concern (P=.002) for session 3 modules compared with session 1 modules. RPE significantly increased from session 1 (mean 14.8, SD 2.3) to session 3 (mean 16.8, SD 2.2; P=.009). The VR application showed positive feasibility for individuals with cLBP through acceptable SUS (mean 76.7, SD 13.0) and TEI (mean 32.5, SD 4.9) scores. Neither pain (P=.20) nor pain-related fear (P=.58) changed significantly across sessions. CONCLUSIONS The GEXP VR modules provided progressive exposure to physical challenges, and participants found the VR application acceptable and usable as a potential treatment option. Furthermore, the lack of significant change for pain and pain-related fear reflects that participants were able to complete the modules safely.
Collapse
|
57
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
|
58
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
|
59
|
Husaini Y, Tsai VWW, Manandhar R, Zhang HP, Lee-Ng KKM, Lebhar H, Marquis CP, Brown DA, Breit SN. Growth differentiation factor-15 slows the growth of murine prostate cancer by stimulating tumor immunity. PLoS One 2020; 15:e0233846. [PMID: 32502202 PMCID: PMC7274405 DOI: 10.1371/journal.pone.0233846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Growth Differentiation Factor-15 (GDF15) is a divergent TGF-beta superfamily cytokine that is overexpressed by most cancers and is induced by anticancer therapy. Transgenic and induced animal models suggest that it protects from cancer development but the mechanisms are uncertain. We investigated the role of immunity in GDF15 induced reduction in prostate cancer (PCa) growth. The C57BL/6 transgenic TRAMP prostate cancer prone mice were bred with mice that were immunodeficient and/or systemically overexpressed GDF15. We developed a novel orthotopic TRAMP PCa model in which primary TRAMP tumor cells were implanted into prostates of mice to reduce the study time. These mice were administered recombinant mouse GDF15, antibody to CD8, PD1 or their respective controls. We found that GDF15 induced protection from tumor growth was reversed by lack of adaptive immunity. Flow cytometric evaluation of lymphocytes within these orthotopic tumors showed that GDF15 overexpression was associated with increased CD8 T cell numbers and an increased number and proportion of recently activated CD8+CD11c+ T cells and a reduced proportion of "exhausted" CD8+PD1+ T cells. Further, depletion of CD8 T cells in tumor bearing mice abolished the GDF15 induced protection from tumor growth. Infusion of GDF15 into mice bearing orthotopic TRAMP tumor, substantially reduced tumor growth that was further reduced by concurrent PD1 antibody administration. GDF15 overexpression or recombinant protein protects from TRAMP tumor growth by modulating CD8 T cell mediated antitumor immunity and augments the positive effects of anti-PD1 blockers.
Collapse
|
60
|
Aronov BS, Aikins EK, Brown DA. Increasing piezoelectric effect in radially polarized soft piezoelectric cylinders by pressure treating and its practical applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:4145. [PMID: 32611158 DOI: 10.1121/10.0001395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Subjecting soft piezoelectric ceramics such as lead zirconate titanate (PZT)-5 to uniaxial stress in a direction perpendicular to the principal polarization axis is known to increase its transverse piezoelectric modulus [Krueger, J. Acoust. Soc. Am. 43 (3), 583-559 (1968)], however, practical transducer applications of this effect remain undeveloped. This study explores uniaxial pressure-treatment to develop experimental methods to realize practical pressure treatment, to use dynamic measurements of the electromechanical coupling coefficient k32, piezoelectric modulus, and dielectric constants, and to enhance piezoelectric properties and performance of underwater acoustic cylindrical transducer designs. The results of axial pressure treatment on parameters of the cylinders are shown to increase the coupling coefficient by about 20% and remained stable. The applicability of using pressure treated cylinders in transducer designs is investigated. The performance was analyzed under one-dimensional circumferential static compression and under the hydrostatic compression. When the improved piezoelectric cylinders are used in air-backed transducer designs, the benefit is only useful at shallow depths as it is observed that when subjected to increased hydrostatic pressure, the corresponding induced circumferential stress reduces the piezoelectric properties, namely, the coupling coefficient, to approximately its original pre-treated value. However, when the improved cylinders are used in transducers of the pressure-equalized design, such as liquid filled or free-flooded, the increase in coupling coefficient remains stable with environmental hydrostatic pressure.
Collapse
|
61
|
Jiang JX, Fewings N, Dervish S, Fois AF, Duma SR, Silsby M, Bandodkar S, Ramanathan S, Bleasel A, John B, Brown DA, Lin MW. Novel Surrogate Markers of CNS Inflammation in CSF in the Diagnosis of Autoimmune Encephalitis. Front Neurol 2020; 10:1390. [PMID: 32116981 PMCID: PMC7034172 DOI: 10.3389/fneur.2019.01390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Autoimmune encephalitis (AE) is an important cause of refractory epilepsy, rapidly progressive cognitive decline, and unexplained movement disorders in adults. Whilst there is identification of an increasing number of associated autoantibodies, patients remain with a high clinical probability of autoimmune encephalitis but no associated characterized autoantibody. These patients represent a diagnostic and treatment dilemma. Objective: To evaluate routine and novel diagnostic tests of cerebrospinal fluid (CSF) in patients with a high probability of AE to attempt to identify better biomarkers of neuroinflammation. Methods: Over 18 months (2016-2018), adult patients with a high clinical probability of AE were recruited for a pilot cross-sectional explorative study. We also included viral polymerase-chain-reaction (PCR) positive CSF samples and CSF from neurology patients with "non-inflammatory" (NI) diagnoses for comparison. CSF was examined with standard investigations for encephalitis and novel markers (CSF light chains, and cytokines). Results and Conclusions: Thirty-two AE patients were recruited over 18 months. Twenty-one viral controls, 10 NI controls, and five other autoimmune neurological disease controls (AOND) were also included in the analysis. Our study found that conventional markers: presence of CSF monocytosis, oligoclonal bands, anti-neuronal immunofluorescence, and magnetic resonance imaging (MRI) changes could be suggestive of AE, but these investigations were neither sensitive nor specific. Promising novel makers of autoimmune encephalitis were the CSF cytokines IL-21 and IP10 which may provide better delineation between viral infections and autoimmune encephalitis than conventional markers, potentially leading to more immediate diagnosis and management of these patients.
Collapse
|
62
|
Tea F, Pilli D, Ramanathan S, Lopez JA, Merheb V, Lee FXZ, Zou A, Liyanage G, Bassett CB, Thomsen S, Reddel SW, Barnett MH, Brown DA, Dale RC, Brilot F. Effects of the Positive Threshold and Data Analysis on Human MOG Antibody Detection by Live Flow Cytometry. Front Immunol 2020; 11:119. [PMID: 32117270 PMCID: PMC7016080 DOI: 10.3389/fimmu.2020.00119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Human autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG Ab) have become a useful clinical biomarker for the diagnosis of a spectrum of inflammatory demyelinating disorders. Live cell-based assays that detect MOG Ab against conformational MOG are currently the gold standard. Flow cytometry, in which serum binding to MOG-expressing cells and control cells are quantitively evaluated, is a widely used observer-independent, precise, and reliable detection method. However, there is currently no consensus on data analysis; for example, seropositive thresholds have been reported using varying standard deviations above a control cohort. Herein, we used a large cohort of 482 sera including samples from patients with monophasic or relapsing demyelination phenotypes consistent with MOG antibody-associated demyelination and other neurological diseases, as well as healthy controls, and applied a series of published analyses involving a background subtraction (delta) or a division (ratio). Loss of seropositivity and reduced detection sensitivity were observed when MOG ratio analyses or when 10 standard deviation (SD) or an arbitrary number was used to establish the threshold. Background binding and MOG ratio value were negatively correlated, in which patients seronegative by MOG ratio had high non-specific binding, a characteristic of serum that must be acknowledged. Most MOG Ab serostatuses were similar across analyses when optimal thresholds obtained by ROC analyses were used, demonstrating the robust nature and high discriminatory power of flow cytometry cell-based assays. With increased demand to identify MOG Ab-positive patients, a consensus on analysis is vital to improve patient diagnosis and for cross-study comparisons to ultimately define MOG Ab-associated disorders.
Collapse
|
63
|
Abstract
Here, I recount some adventures that I and my colleagues have had over some 60 years since 1957 studying the effects of drugs and neurotransmitters on neuronal excitability and ion channel function, largely, but not exclusively, using sympathetic neurons as test objects. Studies include effects of centrally active drugs on sympathetic transmission; neuronal action and neuroglial uptake of GABA in the ganglia and brain; the action of muscarinic agonists on sympathetic neurons; the action of bradykinin on neuroblastoma-derived cells; and the identification of M-current as a target for muscarinic action, including experiments to determine its distribution, molecular composition, neurotransmitter sensitivity, and intracellular regulation by phospholipids and their hydrolysis products. Techniques used include electrophysiological recording (extracellular, intracellular microelectrode, whole-cell, and single-channel patch-clamp), autoradiography, messenger RNA and complementary DNA expression, antibody injection, antisense knockdown, and membrane-targeted lipidated peptides. I finish with some recollections about my scientific career, funding, and changes in laboratory life and pharmacology research over the past 60 years.
Collapse
|
64
|
Pollak TA, Lennox BR, Müller S, Benros ME, Prüss H, Tebartz van Elst L, Klein H, Steiner J, Frodl T, Bogerts B, Tian L, Groc L, Hasan A, Baune BT, Endres D, Haroon E, Yolken R, Benedetti F, Halaris A, Meyer JH, Stassen H, Leboyer M, Fuchs D, Otto M, Brown DA, Vincent A, Najjar S, Bechter K. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020; 7:93-108. [PMID: 31669058 DOI: 10.1016/s2215-0366(19)30290-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
There is increasing recognition in the neurological and psychiatric literature of patients with so-called isolated psychotic presentations (ie, with no, or minimal, neurological features) who have tested positive for neuronal autoantibodies (principally N-methyl-D-aspartate receptor antibodies) and who have responded to immunotherapies. Although these individuals are sometimes described as having atypical, mild, or attenuated forms of autoimmune encephalitis, some authors feel that that these cases are sufficiently different from typical autoimmune encephalitis to establish a new category of so-called autoimmune psychosis. We briefly review the background, discuss the existing evidence for a form of autoimmune psychosis, and propose a novel, conservative approach to the recognition of possible, probable, and definite autoimmune psychoses for use in psychiatric practice. We also outline the investigations required and the appropriate therapeutic approaches, both psychiatric and immunological, for probable and definite cases of autoimmune psychoses, and discuss the ethical issues posed by this challenging diagnostic category.
Collapse
|
65
|
Padhi A, Thomson AH, Perry JB, Davis GN, McMillan RP, Loesgen S, Kaweesa EN, Kapania R, Nain AS, Brown DA. Bioenergetics underlying single-cell migration on aligned nanofiber scaffolds. Am J Physiol Cell Physiol 2019; 318:C476-C485. [PMID: 31875698 DOI: 10.1152/ajpcell.00221.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration.
Collapse
|
66
|
Dzikowicz BR, Tressler JF, Brown DA. Demonstration of spiral wave front sonar for active localization. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4821. [PMID: 31893694 DOI: 10.1121/1.5138132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Spiral wave front sonar is a non-imaging, active sonar technique for remote target localization. It operates by transmitting a reference signal and a spiral signal whose phase varies by 2π over the transducer's azimuthal plane. Range is given by time-of-flight, and azimuthal aspect by computing the phase difference between reference and spiral echoes across a range of frequencies on a single receive channel. In addition, the spectral response of the target is available for classification algorithms. Two prototype spiral sonar systems (spiral transducer array, hydrophone receiver, amplifiers, and data acquisition) are tested in a series of laboratory experiments where fixed targets are tracked as the systems are rotated through 360°. The first prototype system uses an array designed for navigation and communications applications. This system demonstrates aspect errors less than 20° where shadowing of the receive hydrophone is not present. Experiments with a second system, utilizing transducers designed for higher frequency, active sonar applications, are performed in a bistatic scattering configuration. These experiments yielded errors less than 10° after calibration.
Collapse
|
67
|
McDaniel DK, Ringel-Scaia VM, Morrison HA, Coutermarsh-Ott S, Council-Troche M, Angle JW, Perry JB, Davis G, Leng W, Minarchick V, Yang Y, Chen B, Reece SW, Brown DA, Cecere TE, Brown JM, Gowdy KM, Hochella MF, Allen IC. Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Front Immunol 2019; 10:2714. [PMID: 31849940 PMCID: PMC6892980 DOI: 10.3389/fimmu.2019.02714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023] Open
Abstract
Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.
Collapse
|
68
|
Birdsall NJM, Bradley S, Brown DA, Buckley NJ, Challiss RJ, Christopoulos A, Eglen RM, Ehlert F, Felder CC, Hammer R, Kilbinger HJ, Lambrecht G, Langmead C, Mitchelson F, Mutschler E, Nathanson NM, Schwarz RD, Tobin AB, Valant C, Wess J. Acetylcholine receptors (muscarinic) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. ACTA ACUST UNITED AC 2019. [DOI: 10.2218/gtopdb/f2/2019.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscarinic acetylcholine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Muscarinic Acetylcholine Receptors [45]) are GPCRs of the Class A, rhodopsin-like family where the endogenous agonist is acetylcholine. In addition to the agents listed in the table, AC-42, its structural analogues AC-260584 and 77-LH-28-1, N-desmethylclozapine, TBPB and LuAE51090 have been described as functionally selective agonists of the M1 receptor subtype via binding in a mode distinct from that utilized by non-selective agonists [243, 242, 253, 155, 154, 181, 137, 11, 230]. There are two pharmacologically characterised allosteric sites on muscarinic receptors, one defined by it binding gallamine, strychnine and brucine, and the other defined by the binding of KT 5720, WIN 62,577, WIN 51,708 and staurosporine [161, 162].
Collapse
|
69
|
Naidu A, Graham SA, Brown DA. Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed. J Neuroeng Rehabil 2019; 16:111. [PMID: 31492156 PMCID: PMC6731616 DOI: 10.1186/s12984-019-0577-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Background Past studies have utilized external interfaces like resistive bands and motor-generated pulling systems to increase limb propulsion during walking on a motorized treadmill. However, assessing changes in limb propulsion against increasing resistance demands during self-controlled walking has not been undertaken. Purpose We assessed limb propulsion against increasing fore-aft loading demands by applying graded fore-aft (FA) resistance at the center of mass during walking in a novel, intent-driven treadmill environment that allowed participants to control their walking speeds. We hypothesized that to maintain a target speed against progressively increasing resistance, participants would proportionately increase their limb propulsion without increasing vertical force production, with accompanying increases in trailing limb angle and positive joint work. Methods Seventeen healthy-nonimpaired participants (mean age 52 yrs., SD = 11) walked at a target, self-controlled speed of 1.0 m/s against 10, 15, 20, and 25% (% body weight) FA resistance levels. We primarily assessed linear slope values across FA resistance levels for mean propulsive force and impulse and vertical impulse of the dominant limb using one-sample t-tests. We further assessed changes in trailing and leading limb angles and joint work using one-way ANOVAs. Results Participants maintained their target velocity within an a priori defined acceptable range of 1.0 m/s ± 0.2. They significantly increased propulsion proportional to FA resistance (propulsive force mean slope = 2.45, SD = 0.7, t (16) =14.44, p < 0.01; and propulsive impulse mean slope = 0.7, SD = 0.25, t (16) = 11.84, p < 0.01), but had no changes in vertical impulse (mean slope = − 0.04, SD =0.17, p > 0.05) across FA resistance levels. Mean trailing limb angle increased from 24.3° at 10% resistance to 27.4° at 25% (p < 0.05); leading limb angle decreased from − 18.4° to − 12.6° (p < 0.05). We also observed increases in total positive limb work (F (1.7, 26) = 16.88, p ≤ 0.001, η2 = 0.5), primarily attributed to the hip and ankle joints. Conclusions FA resistance applied during self-driven walking resulted in increased propulsive-force output of healthy-nonimpaired individuals with accompanying biomechanical changes that facilitated greater limb propulsion. Future rehabilitation interventions for neurological populations may be able to utilize this principle to design task-specific interventions like progressive strength training and workload manipulation during aerobic training for improving walking function. Electronic supplementary material The online version of this article (10.1186/s12984-019-0577-x) contains supplementary material, which is available to authorized users.
Collapse
|
70
|
Goswami I, Perry JB, Allen ME, Brown DA, von Spakovsky MR, Verbridge SS. Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration. Biophys J 2019; 114:2951-2964. [PMID: 29925031 DOI: 10.1016/j.bpj.2018.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5-1 kV/cm, 80-100 pulses, ∼100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used to impact the mitochondria upon compromising the actin. Mitochondrial susceptibility to μsPEF after actin depolymerization provides, to our knowledge, a novel avenue for cancer therapeutics.
Collapse
|
71
|
Tea F, Lopez JA, Ramanathan S, Merheb V, Lee FXZ, Zou A, Pilli D, Patrick E, van der Walt A, Monif M, Tantsis EM, Yiu EM, Vucic S, Henderson APD, Fok A, Fraser CL, Lechner-Scott J, Reddel SW, Broadley S, Barnett MH, Brown DA, Lunemann JD, Dale RC, Brilot F. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol Commun 2019; 7:145. [PMID: 31481127 PMCID: PMC6724269 DOI: 10.1186/s40478-019-0786-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Over recent years, human autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG Ab) have been associated with monophasic and relapsing central nervous system demyelination involving the optic nerves, spinal cord, and brain. While the clinical relevance of MOG Ab detection is becoming increasingly clear as therapeutic and prognostic differences from multiple sclerosis are acknowledged, an in-depth characterization of human MOG Ab is required to answer key challenges in patient diagnosis, treatment, and prognosis. Herein, we investigated the epitope, binding sensitivity, and affinity of MOG Ab in a cohort of 139 and 148 MOG antibody-seropositive children and adults (n = 287 patients at baseline, 130 longitudinal samples, and 22 cerebrospinal fluid samples). MOG extracellular domain was also immobilized to determine the affinity of MOG Ab. MOG Ab response was of immunoglobulin G1 isotype, and was of peripheral rather than intrathecal origin. High affinity MOG Ab were detected in 15% paediatric and 18% adult sera. More than 75% of paediatric and adult MOG Ab targeted a dominant extracellular antigenic region around Proline42. MOG Ab titers fluctuated over the progression of disease, but affinity and reactivity to Proline42 remained stable. Adults with a relapsing course intrinsically presented with a reduced immunoreactivity to Proline42 and had a more diverse MOG Ab response, a feature that may be harnessed for predicting relapse. Higher titers of MOG Ab were observed in more severe phenotypes and during active disease, supporting the pathogenic role of MOG Ab. Loss of MOG Ab seropositivity was observed upon conformational changes to MOG, and this greatly impacted the sensitivity of the detection of relapsing disorders, largely considered as more severe. Careful consideration of the binding characteristics of autoantigens should be taken into account when detecting disease-relevant autoantibodies.
Collapse
|
72
|
Kongsuk J, Brown DA, Hurt CP. Dynamic stability during increased walking speeds is related to balance confidence of older adults: a pilot study. Gait Posture 2019; 73:86-92. [PMID: 31302337 PMCID: PMC6711748 DOI: 10.1016/j.gaitpost.2019.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Some older individuals walk slower, which may be due to decreases in mechanical stability at faster speeds or due to psychological factors like balance confidence. RESEARCH QUESTION What is the relationship between progressively increasing walking speeds on dynamic stability in older and younger adults and how does this relationship interact with balance confidence in older adults? METHODS 10 young adults and 14 older adults were recruited for this pilot study. Individuals completed the Activities Specific Balance Confidence Scale. Individuals walked on a treadmill in a robotic device that interfaced with individuals at the pelvis allowing all degrees of freedom of movement and provided safety for a loss of balance. Participants walked at speeds from 0.4 - 2.0m/s in 0.2m/s increments or until the participant chose not to attempt a faster speed. Margin of stability was assessed. RESULTS The ABC of older adults was lower than younger adults (89±13 vs 99±1 scores, p=0.006) and some older adults chose to stop walking before 2.0m/s (n=6). The margin of stability variability of the older adults was significantly greater than young adults in the sagittal (p=0.013) and frontal plane (p=0.007). Older adults became unstable (margin of stability<0) at a slower speed (p<0.001). For older adults, balance confidence was correlated to the fastest speed attempted on the treadmill (rho=0.85, p<0.001). However, the balance confidence and walking speed individuals became unstable were not significantly correlated. Finally, a significant relationship was found between the zero crossing and the fastest speed attempted (rho=0.60, p=0.022). SIGNIFICANCE Some older adults with lower balance confidence were less willing to experience instability at faster walking speeds on the treadmill, even though the external threat to balance was low. Lower balance confidence and a sense of loss of stability may be factors in decreased willingness to experience activities for some older adults.
Collapse
|
73
|
Hassanpour Golakani M, Mohammad MG, Li H, Gamble J, Breit SN, Ruitenberg MJ, Brown DA. MIC-1/GDF15 Overexpression Is Associated with Increased Functional Recovery in Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3410-3421. [PMID: 31232176 DOI: 10.1089/neu.2019.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) has devastating consequences, with limited therapeutic options; therefore, improving its functional outcome is a major goal. The outcome of SCI is contributed to by neuroinflammation, which may be a target for improved recovery and quality of life after injury. Macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15) has been identified as a potential novel therapy for central nervous system (CNS) injury because it is an immune regulatory cytokine with neurotrophic properties. Here we used MIC-1/GDF15 knockout (KO) and overexpressing/transgenic (Tg) and wild type (WT) animals to explore its putative therapeutic benefits in a mouse model of contusive SCI. MIC-1/GDF15 Tg mice had superior locomotor recovery and reduced secondary tissue loss at 28 days compared with their KO and WT counterparts. Overexpression of MIC-1/GDF15 coincided with increased expression of monocyte chemoattractant protein-1 (MCP-1)/C-C Motif Chemokine Ligand 2 (CCL2) at the lesion site (28 days post-SCI) and enhanced recruitment of inflammatory cells to the injured spinal cord. This inflammatory cellular infiltrate included an increased frequency of macrophages and dendritic cells (DCs) that mostly preceded recruitment of cluster of differentiation (CD)4+ and CD8+ T cells. Collectively, our findings suggest hat MIC-1/GDF15 is associated with beneficial changes in the clinical course of SCI that are characterized by altered post-injury inflammation and improved functional outcome. Further investigation of MIC-1/GDF15 as a novel therapeutic target for traumatic SCI appears warranted.
Collapse
|
74
|
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, Brooks SR, Murray J, Morasso MI, MacLeod AS. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 2019; 14:e0216249. [PMID: 31059533 PMCID: PMC6502346 DOI: 10.1371/journal.pone.0216249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in non-healing wounds affecting body areas of high hair follicle and sweat gland density. The pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant activation of the innate immune system leading to excessive inflammation. Marked dysregulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may contribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from previously published studies and integrated these findings through a comparative analysis with a published wound healing data set and with immunofluorescence and qPCR analysis from new HS patient samples. Among the top differently expressed genes between lesional and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter known as a sweat gland-associated AMP and one of the most downregulated genes in HS lesions. Interestingly, many genes associated with sweat gland function, such as secretoglobins and aquaporin 5, were decreased in HS lesional skin and we discovered that these genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional and wounded skin shared a common gene signature including genes encoding for S100 proteins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland function, and may share a similar pathology with chronic wounds.
Collapse
|
75
|
Ramanathan S, O'grady GL, Malone S, Spooner CG, Brown DA, Gill D, Brilot F, Dale RC. Isolated seizures during the first episode of relapsing myelin oligodendrocyte glycoprotein antibody-associated demyelination in children. Dev Med Child Neurol 2019; 61:610-614. [PMID: 30221764 DOI: 10.1111/dmcn.14032] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 11/27/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibodies have a strong association with acute disseminated encephalomyelitis (ADEM) in children, and bilateral and recurrent optic neuritis in children and adults. Recent reports suggest that seizures and encephalopathy may occur in children and adults with MOG antibody-associated disease. We describe the clinical, laboratory, and radiological course of four MOG antibody-positive children who first presented with isolated seizures without fulfilling clinical or radiological criteria for ADEM or other central nervous system demyelination syndromes, who months to years later developed more typical demyelination. This case series highlights a novel observation that isolated seizures in the absence of ADEM may be the index presentation for MOG antibody-associated disease, which should therefore be considered a form of autoimmune epilepsy. It would be reasonable to test for MOG antibodies in children with seizures accompanied by subtle inflammatory changes on magnetic resonance imaging or cerebrospinal fluid analyses, particularly if followed by demyelination, given the clinical and therapeutic implications of an expedited diagnosis in minimizing long-term disability. WHAT THIS PAPER ADDS: Isolated seizures in the absence of acute disseminated encephalomyelitis may be the index presentation for myelin oligodendrocyte glycoprotein antibody-associated demyelination.
Collapse
|