51
|
Sick F, Breithaupt A, Golender N, Bumbarov V, Beer M, Wernike K. Shuni virus-induced meningoencephalitis after experimental infection of cattle. Transbound Emerg Dis 2020; 68:1531-1540. [PMID: 32910551 DOI: 10.1111/tbed.13823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Shuni virus (SHUV), an insect-transmitted orthobunyavirus of the Simbu serogroup within the family Peribunyaviridae, may induce severe congenital malformations when naïve ruminants are infected during gestation. Only recently, another clinical presentation in cattle, namely neurological disease after postnatal infection, was reported. To characterize the course of the disease under experimental conditions and to confirm a causal relationship between the virus and the neurological disorders observed in the field, six calves each were experimentally inoculated (subcutaneously) with two different SHUV strains from both clinical presentations, that is encephalitis and congenital malformation, respectively. Subsequently, the animals were monitored clinically, virologically and serologically for three weeks. All animals inoculated with the 'encephalitis strain' SHUV 2162/16 developed viremia for three to four consecutive days, seroconverted, and five out of six animals showed elevated body temperature for up to three days. No further clinical signs such as neurological symptoms were observed in any of these animals. However, four out of six animals developed a non-suppurative meningoencephalitis, characterized by perivascular cuffing and glial nodule formation. Moreover, SHUV genome could be visualized in brain tissues of the infected animals by in situ hybridization. In contrast to the 'encephalitis SHUV strain', in animals subcutaneously inoculated with the strain isolated from a malformed newborn (SHUV 2504/3/14), which expressed a truncated non-structural protein NSs, a major virulence factor, no viremia or seroconversion, was observed, demonstrating an expected severe replication defect of this strain in vivo. The lack of viremia further indicates that virus variants evolving in malformed foetuses may represent attenuated artefacts as has been described for closely related viruses. As the neuropathogenicity of SHUV could be demonstrated under experimental conditions, this virus should be included in differential diagnosis for encephalitis in ruminants, and cattle represent a suitable animal model to study the pathogenesis of SHUV.
Collapse
|
52
|
Dalmann A, Wernike K, Snijder EJ, Oreshkova N, Reimann I, Beer M. Single-Round Infectious Particle Production by DNA-Launched Infectious Clones of Bungowannah Pestivirus. Viruses 2020; 12:v12080847. [PMID: 32759644 PMCID: PMC7472241 DOI: 10.3390/v12080847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Reverse genetics systems are powerful tools for functional studies of viral genes or for vaccine development. Here, we established DNA-launched reverse genetics for the pestivirus Bungowannah virus (BuPV), where cDNA flanked by a hammerhead ribozyme sequence at the 5′ end and the hepatitis delta ribozyme at the 3′ end was placed under the control of the CMV RNA polymerase II promoter. Infectious recombinant BuPV could be rescued from pBuPV-DNA-transfected SK-6 cells and it had very similar growth characteristics to BuPV generated by conventional RNA-based reverse genetics and wild type BuPV. Subsequently, DNA-based ERNS deleted BuPV split genomes (pBuPV∆ERNS/ERNS)—co-expressing the ERNS protein from a separate synthetic CAG promoter—were constructed and characterized in vitro. Overall, DNA-launched BuPV genomes enable a rapid and cost-effective generation of recombinant BuPV and virus mutants, however, the protein expression efficiency of the DNA-launched systems after transfection is very low and needs further optimization in the future to allow the use e.g., as vaccine platform.
Collapse
|
53
|
Wernike K, Keller M, Conraths FJ, Mettenleiter TC, Groschup MH, Beer M. Pitfalls in SARS-CoV-2 PCR diagnostics. Transbound Emerg Dis 2020; 68:253-257. [PMID: 32536002 PMCID: PMC7323359 DOI: 10.1111/tbed.13684] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/03/2023]
Abstract
To combat the COVID-19 pandemic, millions of PCR tests are performed worldwide. Any deviation of the diagnostic sensitivity and specificity will reduce the predictive values of the test. Here, we report the occurrence of contaminations of commercial primers/probe sets with the SARS-CoV-2 target sequence of the RT-qPCR as an example for pitfalls during PCR diagnostics affecting diagnostic specificity. In several purchased in-house primers/probe sets, quantification cycle values as low as 17 were measured for negative control samples. However, there were also primers/probe sets that displayed very low-level contaminations, which were detected only during thorough internal validation. Hence, it appears imperative to pre-test each batch of reagents extensively before use in routine diagnosis, to avoid false-positive results and low positive predictive value in low-prevalence situations. As such, contaminations may have happened more widely, and COVID-19 diagnostic results should be re-assessed retrospectively to validate the epidemiological basis for control measures.
Collapse
|
54
|
Wernike K, Beer M. Schmallenberg Virus: To Vaccinate, or Not to Vaccinate? Vaccines (Basel) 2020; 8:E287. [PMID: 32521621 PMCID: PMC7349947 DOI: 10.3390/vaccines8020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Schmallenberg virus (SBV), a teratogenic orthobunyavirus that infects predominantly ruminants, emerged in 2011 in Central Europe, spread rapidly throughout the continent, and subsequently established an endemic status with re-circulations to a larger extent every 2 to 3 years. Hence, it represents a constant threat to the continent's ruminant population when no effective countermeasures are implemented. Here, we discuss potential preventive measures to protect from Schmallenberg disease. Previous experiences with other arboviruses like bluetongue virus have already demonstrated that vaccination of livestock against a vector-transmitted disease can play a major role in reducing or even stopping virus circulation. For SBV, specific inactivated whole-virus vaccines have been developed and marketing authorizations were granted for such preparations. In addition, candidate marker vaccines either as live attenuated, DNA-mediated, subunit or live-vectored preparations have been developed, but none of these DIVA-capable candidate vaccines are currently commercially available. At the moment, the licensed inactivated vaccines are used only to a very limited extent. The high seroprevalence rates induced in years of virus re-occurrence to a larger extent, the wave-like and sometimes hard to predict circulation pattern of SBV, and the expenditures of time and costs for the vaccinations presumably impact on the willingness to vaccinate. However, one should bear in mind that the consequence of seronegative young animals and regular renewed virus circulation might be again more cases of fetal malformation caused by an infection of naïve dams during one of their first gestations. Therefore, an appropriate and cost-effective strategy might be to vaccinate naïve female animals of all affected species before the reproductive age.
Collapse
|
55
|
Wernike K, Beer M. Re-circulation of Schmallenberg virus, Germany, 2019. Transbound Emerg Dis 2020; 67:2290-2295. [PMID: 32320536 DOI: 10.1111/tbed.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Schmallenberg virus (SBV), an insect-transmitted orthobunyavirus that induces severe foetal malformation in calves and lambs, was detected for the first time in late summer 2011 in Central Europe. Thereafter, the virus spread rapidly across the continent causing a large epidemic in the ruminant population. In 2019, detection of virus was again reported more frequently in Germany. From March to November, infections of viremic adult animals were noticed. In September, SBV genome was also detected in newborn lambs. Altogether, affected species included cattle, sheep, a goat and a fallow deer. M-segment sequences were generated from viruses detected in viremic cattle and compared to viral sequences from previous years. The genome of viruses detected in the blood of acutely infected adult cattle and sheep, which represent the circulating SBV strains, seems very stable over the course of nine years and in various European countries. The nucleotide similarities of these viruses are as high as 99.4%-100%. The renewed SBV circulation in 2019 in the country, in which the virus was first detected in 2011 and where it circulated again in 2014 and 2016, suggests the establishment of an enzootic status in Central Europe with regular larger waves in a cycle of around 3 years. Therefore, it has to be anticipated that SBV will re-emerge at similar intervals in future, and hence, it represents a constant threat for the continent's ruminant population.
Collapse
|
56
|
Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D, Grosveld F, Wernike K, Beer M, Aebischer A, Daramola O, Rodriguez Conde S, Brennan K, Kozub D, Søndergaard Kristiansen M, Mistry KK, Deng Z, Hellert J, Guardado-Calvo P, Rey FA, van Keulen L, Kortekaas J. Multimeric single-domain antibody complexes protect against bunyavirus infections. eLife 2020; 9:52716. [PMID: 32314955 PMCID: PMC7173960 DOI: 10.7554/elife.52716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.
Collapse
|
57
|
Forth LF, Scholes SFE, Pesavento PA, Jackson K, Mackintosh A, Carson A, Howie F, Schlottau K, Wernike K, Pohlmann A, Höper D, Beer M. Novel Picornavirus in Lambs with Severe Encephalomyelitis. Emerg Infect Dis 2019; 25:963-967. [PMID: 31002069 PMCID: PMC6478204 DOI: 10.3201/eid2505.181573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using metagenomic analysis, we identified a novel picornavirus in young preweaned lambs with neurologic signs associated with severe nonsuppurative encephalitis and sensory ganglionitis in 2016 and 2017 in the United Kingdom. In situ hybridization demonstrated intralesional neuronotropism of this virus, which was also detected in archived samples of similarly affected lambs (1998–2014).
Collapse
|
58
|
Kasi KK, Sas MA, Sauter-Louis C, von Arnim F, Gethmann JM, Schulz A, Wernike K, Groschup MH, Conraths FJ. Epidemiological investigations of Crimean-Congo haemorrhagic fever virus infection in sheep and goats in Balochistan, Pakistan. Ticks Tick Borne Dis 2019; 11:101324. [PMID: 31757688 DOI: 10.1016/j.ttbdis.2019.101324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 11/25/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a tick-borne zoonotic disease caused by the arbovirus Crimean-Congo haemorrhagic fever virus (CCHFV). Livestock serve as a transient reservoir for CCHFV, but do not show clinical signs. In this cross-sectional study, sheep and goats in Balochistan, Pakistan, were examined to determine the CCHFV seroprevalence, spatial distribution of seropositive sheep and goats, and to identify potential risk factors for seropositivity to CCHFV in these animals. To this end, farms and animals were selected by systematic sampling, blood samples from 800 sheep and 800 goats were collected and information regarding farm management and the kept animals were retrieved using a standard questionnaire. Sera were tested for antibodies against CCHFV in two independent ELISA formats and an immunofluorescence assay (IFA) following a hierarchical diagnostic decision tree. By these assays 149 (19 %, 95 %-CI: 16-21 %) out of 800 sheep serum samples and 37 (5 %, 95 %-CI: 3-6 %) out of 800 goat serum samples were positive for CCHFV-specific IgG antibodies. Interestingly, at least 8 (5 %, 95 %-CI: 2-10 %) out of 160 sera pools were from CCHFV viraemic sheep, as sera (in pools of 5) tested positive for CCHFV genome by real-time PCR (RT-qPCR). Risk factor analysis revealed that the open type of housing (OR = 3.76, 95 %-CI:1.57-9.56, p-value = 0.003), grazing (OR = 4.18, 95 %-CI:1.79-10.37, p-value = 0.001), presence of vegetation in or around the farm (OR = 3.13, 95 %-CI: 1.07-10.15, p-value = 0.043), lack of treatment against ticks (OR = 3.31, 95 %-CI: 1.16-10.21, p-value = 0.029), absence of rural poultry (OR = 2.93, 95 %-CI: 1.41-6.29, p-value = 0.004), animals with age ≥ 2 years (OR = 4.15, 95 %-CI: 2.84-6.19, p-value<0.001), animals infested with ticks (OR = 2.35, 95 %-CI: 1.59-3.52, p-value<0.001), and sheep species (OR = 4.72, 95 %-CI:3.24-6.86, p-value<0.001) represented statistically significant risk factors associated with seropositivity to CCHFV. Taken together this study confirms the circulation of CCHFV in livestock in Balochistan, Pakistan. The identification of risk factors might help to reduce the risk of infection in sheep and goats, which may also mitigate the risk for human infection. An interesting option for reducing the risk of CCHFV infection in small ruminants is keeping also chickens, since they pick ticks that transmit CCHFV.
Collapse
|
59
|
Michelitsch A, Dalmann A, Wernike K, Reimann I, Beer M. Seroprevalences of Newly Discovered Porcine Pestiviruses in German Pig Farms. Vet Sci 2019; 6:E86. [PMID: 31717716 PMCID: PMC6958323 DOI: 10.3390/vetsci6040086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023] Open
Abstract
Several novel porcine pestiviruses that are linked to disease outbreaks in commercial pig farms were discovered during recent years. Bungowannah pestivirus (BuPV; new species Pestivirus F) causes sudden death in young pigs, but has only ever been isolated in the Australian region Bungowannah. Atypical porcine pestivirus (APPV; new species Pestivirus K) on the other hand has been found in multiple countries worldwide and is potentially linked to congenital tremor, a disease that causes considerable production problems in pig farms. To assess the seroprevalences of both viruses in German commercial farms during the years 2009/10 and 2018, two approaches were selected. Antibodies against Pestivirus F were detected by a traditional in-house indirect immunofluorescence test against the culture-grown virus isolate, while for the detection of Pestivirus K-specific antibodies, a newly developed test system utilizing a chimeric construct of bovine viral diarrhea virus 1 (BVDV-1; species Pestivirus A) containing the E1 and E2 encoding sequences of APPV was established. A total of 1115 samples originating from 122 farms located in seven German federal states were investigated. Antibodies against Bungowannah virus could not be detected, confirming the absence of this virus in other regions than the initially affected Australian pig farm complex. In contrast, antibodies against APPV were highly prevalent throughout Germany at both investigated time points. The seroprevalence at the state level fluctuated to some degree, but the overall percentage remained stable, as is to be expected for an endemic pestivirus lacking any form of control measures.
Collapse
|
60
|
Wernike K, Beer M. Diagnostics in the context of an eradication program: Results of the German bovine viral diarrhea proficiency trial. Vet Microbiol 2019; 239:108452. [PMID: 31767099 DOI: 10.1016/j.vetmic.2019.108452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 11/18/2022]
Abstract
Bovine viral diarrhea (BVD), one of the most important infectious diseases in cattle, causes major economic losses and significant impact on animal welfare worldwide. The major source for virus spread is persistently infected, immunotolerant calves and, therefore, their early identification is of utmost importance for disease prevention. Here, a ring trial was initiated to control the performance of diagnostic tests used in German regional laboratories in charge of the diagnostics within the country's BVD control program. A panel of five ear notch and five serum samples was provided for virological analysis. By an antigen ELISA, which was applied 26 times, the status of every sample was correctly identified in any case. In addition, a total of 54 real-time RT-PCR result sets was generated and also in most cases correctly classified. In addition to the virological test panel, a set of six sera and four milk samples was sent to the participating laboratories to be analyzed by serological methods. With serum neutralization tests, an excellent diagnostic sensitivity was achieved. However, one serum and both milk samples - positive for BVDV antibodies - repeatedly tested false negative by some of the used ELISA kits. All negative serum and milk samples were correctly identified by every commercial antibody ELISA. In conclusion, the BVDV proficiency test demonstrated that the used antigen/genome test systems allowed predominantly reliable diagnostics, while for four of the applied nine antibody ELISA kits adjustments are recommended.
Collapse
|
61
|
Bumbarov V, Golender N, Jenckel M, Wernike K, Beer M, Khinich E, Zalesky O, Erster O. Characterization of bluetongue virus serotype 28. Transbound Emerg Dis 2019; 67:171-182. [PMID: 31469936 DOI: 10.1111/tbed.13338] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (Reoviridae; Orbivirus, BTV), which is usually transmitted by biting midges, affects wild and domestic ruminants worldwide, thereby causing an economically important disease. Recently, a putative new BTV strain was isolated from contaminated vaccine batches. In this study, we investigated the genomic and clinical characteristics of this isolate, provisionally designated BTV-28. Phylogenetic analysis of BTV-28 segment 2 (Seg-2) showed that it is related to Seg-2 from BTV serotypes 4, 10, 11, 17, 20 and 24, sharing 64%-66% identity in nucleotide sequences (nt) and 59%-62% in amino acid (aa) sequences of BTV VP2. BTV-28 Seg-6 is related to the newly reported XJ1407 BTV isolate, sharing 76.70% nt and 90.87% aa sequence identity. Seg-5 was most closely related to a South African BTV-4 strain, and all other segments showed close similarity to BTV-26. Experimental infection by injection of 6-month-old ewes caused clinical signs in all injected animals, lasting from 2 to 3 days to several weeks post-infection, including high body temperature, conjunctivitis, nasal discharge and rhinitis, facial oedema, oral hyperaemia, coronitis, cough, depression and tongue cyanosis. Naïve control animals, placed together with the infected sheep, displayed clinical signs and were positive for viral RNA, but their acute disease phase was shorter than that of BTV-injected ewes. Control animals that were kept in a separated pen did not display any clinical signs and were negative for viral RNA presence throughout the experiment. Seroconversion was observed in the injected and in one of the two contact-infected animals. These findings demonstrate that BTV-28 infection of sheep can result in clinical manifestation, and the clinical signs detected in the contact animals suggest that it might be directly transmitted between the mammalian hosts.
Collapse
|
62
|
Binder F, Lenk M, Weber S, Stoek F, Dill V, Reiche S, Riebe R, Wernike K, Hoffmann D, Ziegler U, Adler H, Essbauer S, Ulrich RG. Common vole (Microtus arvalis) and bank vole (Myodes glareolus) derived permanent cell lines differ in their susceptibility and replication kinetics of animal and zoonotic viruses. J Virol Methods 2019; 274:113729. [PMID: 31513859 DOI: 10.1016/j.jviromet.2019.113729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022]
Abstract
Pathogenesis and reservoir host adaptation of animal and zoonotic viruses are poorly understood due to missing adequate cell culture and animal models. The bank vole (Myodes glareolus) and common vole (Microtus arvalis) serve as hosts for a variety of zoonotic pathogens. For a better understanding of virus association to a putative animal host, we generated two novel cell lines from bank voles of different evolutionary lineages and two common vole cell lines and assayed their susceptibility, replication and cytopathogenic effect (CPE) formation for rodent-borne, suspected to be rodent-associated or viruses with no obvious rodent association. Already established bank vole cell line BVK168, used as control, was susceptible to almost all viruses tested and efficiently produced infectious virus for almost all of them. The Puumala orthohantavirus strain Vranica/Hällnäs showed efficient replication in a new bank vole kidney cell line, but not in the other four bank and common vole cell lines. Tula orthohantavirus replicated in the kidney cell line of common voles, but was hampered in its replication in the other cell lines. Several zoonotic viruses, such as Cowpox virus, Vaccinia virus, Rift Valley fever virus, and Encephalomyocarditis virus 1 replicated in all cell lines with CPE formation. West Nile virus, Usutu virus, Sindbis virus and Tick-borne encephalitis virus replicated only in a part of the cell lines, perhaps indicating cell line specific factors involved in replication. Rodent specific viruses differed in their replication potential: Murine gammaherpesvirus-68 replicated in the four tested vole cell lines, whereas murine norovirus failed to infect almost all cell lines. Schmallenberg virus and Foot-and-mouth disease virus replicated in some of the cell lines, although these viruses have never been associated to rodents. In conclusion, these newly developed cell lines may represent useful tools to study virus-cell interactions and to identify and characterize host cell factors involved in replication of rodent associated viruses.
Collapse
|
63
|
Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019; 11:E669. [PMID: 31336624 PMCID: PMC6669706 DOI: 10.3390/v11070669] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important arbovirus, which is found across large parts of Eurasia and is considered to be a major health risk for humans. Like any other arbovirus, TBEV relies on complex interactions between vectors, reservoir hosts, and the environment for successful virus circulation. Hard ticks are the vectors for TBEV, transmitting the virus to a variety of animals. The importance of these animals in the lifecycle of TBEV is still up for debate. Large woodland animals seem to have a positive influence on virus circulation by providing a food source for adult ticks; birds are suspected to play a role in virus distribution. Bank voles and yellow-necked mice are often referred to as classical virus reservoirs, but this statement lacks strong evidence supporting their highlighted role. Other small mammals (e.g., insectivores) may also play a crucial role in virus transmission, not to mention the absence of any suspected reservoir host for non-European endemic regions. Theories highlighting the importance of the co-feeding transmission route go as far as naming ticks themselves as the true reservoir for TBEV, and mammalian hosts as a mere bridge for transmission. A deeper insight into the virus reservoir could lead to a better understanding of the development of endemic regions. The spatial distribution of TBEV is constricted to certain areas, forming natural foci that can be restricted to sizes of merely 500 square meters. The limiting factors for their occurrence are largely unknown, but a possible influence of reservoir hosts on the distribution pattern of TBE is discussed. This review aims to give an overview of the multiple factors influencing the TBEV transmission cycle, focusing on the role of virus reservoirs, and highlights the questions that are waiting to be further explored.
Collapse
|
64
|
Wernike K, Beer M. International proficiency trial demonstrates reliable Schmallenberg virus infection diagnosis in endemic and non-affected countries. PLoS One 2019; 14:e0219054. [PMID: 31247024 PMCID: PMC6597195 DOI: 10.1371/journal.pone.0219054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Schmallenberg virus (SBV), an orthobunyavirus infecting ruminants, emerged in 2011 in Central Europe, spread very rapidly throughout the continent and established an endemic status, thereby representing a constant threat not only to the European livestock population, but also to neighboring countries. Hence, in endemically infected regions, the maintenance and regular verification of diagnostics is needed and in not yet affected regions, suitable diagnostic systems should be established to be prepared for a potential introduction of the disease. In addition, also for the trade of animals into free regions, highly reliable and sensitive diagnostics are of utmost importance. Therefore, a laboratory proficiency trial was initiated to allow for performance evaluations of test systems available for SBV-diagnostics, but also for evaluation of veterinary diagnostic laboratories performing those tests. Ten serum samples (six seropositive, four seronegative) were provided for serological analysis, four of the seropositive samples were provided undiluted, while the remaining samples represented 1/2 and 1/4 dilutions of one of the aforementioned samples in negative serum. Ten further sera (five virus-positive, five negative) were sent to the participants to be analyzed by SBV genome detection methods. A total of 48 diagnostic laboratories from 15 countries of three continents (Europe, Asia, North America) and three kit manufacturers participated in the SBV proficiency test, thereby generating 131 result sets, corresponding to 1310 individual results. The sample panel aimed for serological analysis was tested 72 times; the applied diagnostic methods comprised different commercial ELISAs and standard micro-neutralization tests. The sample set aimed for genome detection was analyzed in 59 approaches by various commercial or in-house (real-time) RT-PCR protocols. Antibody or genome positive samples were correctly identified in every case, independent of the applied diagnostic test system. For seronegative samples, three incorrect, false-positive test results were produced. Virus-negative samples tested false-positive in two cases. Thus, a very high diagnostic accuracy of 99.58% and 99.66% was achieved by the serological and virological methods, respectively. Hence, this ring trial demonstrated that reliable and robust SBV-diagnostics has been established in veterinary diagnostic laboratories in affected and non-affected countries.
Collapse
|
65
|
Sick F, Beer M, Kampen H, Wernike K. Culicoides Biting Midges-Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019; 11:E376. [PMID: 31022868 PMCID: PMC6520762 DOI: 10.3390/v11040376] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Culicoides biting midges, small hematophagous dipterans, are the demonstrated or putative vectors of multiple arboviruses of veterinary and public health importance. Despite its relevance in disease spread, the ceratopogonid genus Culicoides is still a largely neglected group of species, predominantly because the major human-affecting arboviruses are considered to be transmitted by mosquitoes. However, when a pathogen is detected in a certain vector species, a thorough search for further vectors often remains undone and, therefore, the relevant vector species may remain unknown. Furthermore, for many hematophagous arthropods, true vector competence is often merely suspected and not experimentally proven. Therefore, we aim to illuminate the general impact of Culicoides biting midges and to summarize the knowledge about biting midge-borne disease agents using the order Bunyavirales, the largest and most diverse group of RNA viruses, as an example. When considering only viruses evidentially transmitted by Culicoides midges, the Simbu serogroup (genus Orthobunyavirus) is presumably the most important group within the virus order. Its members are of great veterinary importance, as a variety of simbuviruses, e.g., the species Akabane orthobunyavirus or Schmallenberg orthobunyavirus, induces severe congenital infections in pregnant animals. The major zoonotic representative of this serogroup occurs in South and Central America and causes the so-called Oropouche fever, an acute febrile illness in humans.
Collapse
|
66
|
Golender N, Bumbarov V, Assis I, Beer M, Khinich Y, Koren O, Edery N, Eldar A, Wernike K. Shuni virus in Israel: Neurological disease and fatalities in cattle. Transbound Emerg Dis 2019; 66:1126-1131. [PMID: 30864252 DOI: 10.1111/tbed.13167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
The insect-transmitted Shuni virus (SHUV) belongs to the Simbu serogroup of orthobunyaviruses and it is known to induce abortions, stillbirths and severe congenital malformations in ruminants and may cause neurological signs in infected horses. Here, SHUV was detected in brain samples of two Israeli cattle, which suffered from severe neurological signs that led to the deaths of the animals. During histopathological examination of the first case, a 5-month-old calf, small perivascular cuffs, composed mainly of neutrophils with few lymphocytes were observed in the brain stem and cerebrum. Similar infiltrates were also found to a lesser extent in the cerebellar meninges leading to the diagnosis of acute-subacute meningoencephalitis. The histological examination of the brainstem from the second case, a 16-month-old heifer, revealed perivascular infiltration composed of equal numbers of macrophages and neutrophils associated with cerebral and meningeal haemorrhages. In this case encephalitis was diagnosed. Viral RNA was extracted from brain samples of both cattle that suffered from severe neurological signs and was subsequently tested by a polymerase chain reaction PCR assay specific for Simbu serogroup viruses and found positive. The presence of SHUV was subsequently confirmed by the isolation of the virus from one sample and sequence analysis of both brain samples. The comparison of the complete sequences of the coding regions of all three genome segments from both cases revealed a close relationship to Shuni viruses detected in tissue samples of aborted or malformed calves or lambs born during the last years in Israel.
Collapse
|
67
|
van der Hoek L, Verschoor E, Beer M, Höper D, Wernike K, Van Ranst M, Matthijnssens J, Maes P, Sastre P, Rueda P, Drexler JF, Barr J, Edwards T, Millner P, Vermeij P, de Groof A, Thiel V, Dijkman R, Suter-Riniker F, Leib S, Koller R, Ramette A, Engler O, Beuret C. Host switching pathogens, infectious outbreaks and zoonosis: A Marie Skłodowska-Curie innovative training network (HONOURs). Virus Res 2019; 257:120-124. [PMID: 30316331 DOI: 10.1016/j.virusres.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
The increase of the human population is accompanied by growing numbers of livestock to feed this population, as well as by an increase of human invasion into natural habitats of wild animals. As a result, both animals and humans are becoming progressively vulnerable to infections with known (zoonotic) pathogens, but are also increasingly exposed to novel viruses. Global trade as well as climate changes can contribute to pathogen transmission, e.g. through import of infected vectors or expansion of habitats for arthropod vectors such as mosquitoes and midges. Infectious disease outbreaks, especially those by novel viruses, are generally unexpected, and therefore we should be prepared with tools and abilities for immediate action, including the identification of the causative agent, the evaluation of its pathogenic potential for animals and humans, and the fast development of diagnostic assays to allow contact tracing and quarantine measures. HONOURs is a Marie Skłodowska-Curie Actions Innovative Training Network (MSCA-ITN), teaching 15 talented young researchers to become "preparedness-experts". HONOURs, initiated in April 2017, involves 11 laboratories from 6 different European countries, all at the forefront of novel virus investigations and characterizations. The network includes surveillance experts in both the veterinary and the human health sector, who have developed and utilize highly sensitive virus discovery techniques, e.g. next generation sequencing based genomics and universal primers based PCR, to allow identification and characterization of novel viruses. Production of pure viral proteins, providing high-resolution structures, aids in the design of novel, fast and easy-to-use diagnostics. Organotypic in vitro cell cultures systems (e.g. pseudostratified human airway epithelia) provide tools for virus replication, if needed via a reverse genetics platform, and the production of virus stocks permits inoculation in animal models to examine disease, evaluate candidate vaccines, and fulfilment of the Koch's postulates. Scientists of the various institutes will provide training in the HONOURs network through specialized courses and workshops, combined with challenging research projects. The final aim of the network is to deliver 15 expert scientists, ready to act in case of the emergence of an epidemic.
Collapse
|
68
|
Hellert J, Aebischer A, Wernike K, Haouz A, Brocchi E, Reiche S, Guardado-Calvo P, Beer M, Rey FA. Orthobunyavirus spike architecture and recognition by neutralizing antibodies. Nat Commun 2019; 10:879. [PMID: 30787296 PMCID: PMC6382863 DOI: 10.1038/s41467-019-08832-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Orthobunyaviruses (OBVs) form a distinct genus of arthropod-borne bunyaviruses that can cause severe disease upon zoonotic transmission to humans. Antigenic drift or genome segment re-assortment have in the past resulted in new pathogenic OBVs, making them potential candidates for causing emerging zoonoses in the future. Low-resolution electron cryo-tomography studies have shown that OBV particles feature prominent trimeric spikes, but their molecular organization remained unknown. Here we report X-ray crystallography studies of four different OBVs showing that the spikes are formed by an N-terminal extension of the fusion glycoprotein Gc. Using Schmallenberg virus, a recently emerged OBV, we also show that the projecting spike is the major target of the neutralizing antibody response, and provide X-ray structures in complex with two protecting antibodies. We further show that immunization of mice with the spike domains elicits virtually sterilizing immunity, providing fundamental knowledge essential in the preparation for potential newly emerging OBV zoonoses. Orthobunyaviruses (OBVs) cause severe disease in humans and farm animals, but the molecular basis for infection is not fully understood. Here, the authors present crystal structures of free and antibody-bound OBV envelope glycoproteins and show that their domains enable efficient immunization in a mouse model.
Collapse
|
69
|
Dalmann A, Wernike K, Reimann I, Finlaison DS, Kirkland PD, Beer M. Bungowannah virus in the affected pig population: a retrospective genetic analysis. Virus Genes 2019; 55:298-303. [PMID: 30706196 DOI: 10.1007/s11262-019-01642-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
Bungowannah virus, which belongs to the genus Pestivirus within the family Flaviviridae, has been associated with myocarditis and a high incidence of stillbirths in pigs. In 2003, the virus was initially detected in a large pig farming complex on two separate sites in New South Wales, Australia. Until now, it has not been detected at other locations. Despite a program of depopulation and disinfection, the virus could be only eradicated from one of the affected farm complexes, the Bungowannah unit, but became endemic on the second complex, the Corowa unit. In the present study, the genetic variability of virus isolates collected between 2003 and 2014 in the endemically infected population has been retrospectively investigated. Phylogenetic analysis carried out based on sequences of the E2 and NS5B coding regions and the full-length open-reading frame revealed that the isolates from the different farm sites are closely related, but that samples collected between 2010 and 2014 at the Corowa farm site clustered in a different branch of the phylogenetic tree. Since 2010, a high-genetic stability of this RNA virus within the Corowa farm complex, probably due to an effective adaptation of the virus to the affected pig population, could be observed.
Collapse
|
70
|
Wernike K, Holsteg M, Szillat KP, Beer M. Development of within-herd immunity and long-term persistence of antibodies against Schmallenberg virus in naturally infected cattle. BMC Vet Res 2018; 14:368. [PMID: 30477532 PMCID: PMC6258403 DOI: 10.1186/s12917-018-1702-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, the teratogenic, insect-transmitted Schmallenberg virus (SBV) emerged at the German/Dutch border region and subsequently spread rapidly throughout the European continent. In cattle, one of the major target species of SBV, first antibodies are detectable between one and three weeks after infection, but the duration of humoral immunity is unknown. To assess the course of immunity in individual animals and the development of the within-herd seroprevalence, cattle kept in a German farm with a herd size of about 300 lactating animals were annually blood sampled between December 2011 and December 2017 and tested for the presence of SBV-specific antibodies. Results During the monitored period, the within-herd seroprevalence declined from 74.92% in 2011 to 39.93% in 2015 and, thereafter, slightly increased to 49.53% in 2016 and 48.44% in 2017. From the animals that were tested in 2014 and 2015 for the first time (between 24 and 35 months of age) only 14.77% and 7.45%, respectively, scored positive. Thereafter, the seropositivity rate of this age group rose markedly to 58.04% in 2016 and 48.10% in 2017 indicating a circulation of SBV. Twenty-three individual animals were consistently sampled once per year between 2011 and 2017 after the respective insect vector season, 17 of them tested positive at the first sampling. Fourteen animals were still seropositive in December 2017, while three cattle (17.65%) became seronegative. Conclusions The regular re-emergence of SBV in Central Europe is a result of decreasing herd immunity caused by the replacement of animals by seronegative youngstock rather than of a drop of antibody levels in previously infected individual animals. The consequences of the overall decline in herd seroprevalence may be increasing virus circulation and more cases of fetal malformation caused by infection of naïve dams during gestation.
Collapse
|
71
|
König P, Wernike K, Hechinger S, Tauscher K, Breithaupt A, Beer M. Fetal infection with Schmallenberg virus - An experimental pathogenesis study in pregnant cows. Transbound Emerg Dis 2018; 66:454-462. [PMID: 30354028 DOI: 10.1111/tbed.13045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/16/2018] [Indexed: 11/29/2022]
Abstract
Since its first appearance in 2011, Schmallenberg virus (SBV) has been repeatedly detected in aborted ruminant foetuses or severely malformed newborns whose mothers were naturally infected during pregnancy. However, especially the knowledge about dynamics of foetal infection in cattle is still scarce. Therefore, a total of 36 pregnant heifers were experimentally infected during two animal trials with SBV between days 60 and 150 of gestation. The foetuses were collected between 10 and 35 days after infection and virologically and pathologically investigated. Overall, 33 heifers yielded normally developed, macroscopically inconspicuous foetuses, but abundant virus replication was evident at the maternal/foetal interface and viral genome was detectable in at least one organ system of 18 out of 35 foetuses. One heifer was found to be not pregnant at autopsy. One of the animals aborted at day 4 after infection, viral RNA was detectable in the lymphatic tissue of the dam, in the maternal and foetal placenta, and in organs and lymphatic tissue of the foetus. In another foetus, SBV typical malformations like torticollis and arthrogryposis were observed. The corresponding dam was infected at day 90 of pregnancy and viral genome was detectable in the cerebellum of the unborn. Interestingly, no common patterns of infected foetal organs or maternal/foetal placentas could be identified, and both, sites of virus replication and genome loads, varied to a high degree in the individual foetuses. It is therefore concluded, that SBV infects in many cases also the bovine foetus of naïve pregnant cattle, however, the experimentally observed low abortion/malformation rate is in concordance to the reported low rates in the field during the first outbreak wave following the introduction of SBV. This observation speaks for a natural resistance of most bovine foetuses even during the vulnerable phase of early pregnancy, which has to be further studied in the future.
Collapse
|
72
|
Golender N, Bumbarov V, Erster O, Beer M, Khinich Y, Wernike K. Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. J Virol Methods 2018; 261:80-85. [DOI: 10.1016/j.jviromet.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
|
73
|
Wernike K, Wylezich C, Höper D, Schneider J, Lurz PWW, Meredith A, Milne E, Beer M, Ulrich RG. Widespread occurrence of squirrel adenovirus 1 in red and grey squirrels in Scotland detected by a novel real-time PCR assay. Virus Res 2018; 257:113-118. [PMID: 30237072 DOI: 10.1016/j.virusres.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023]
Abstract
The Eurasian Red Squirrel (Sciurus vulgaris) is distributed throughout large parts of Europe and Asia. However, its distribution in certain regions of Europe is endangered by the invasive, non-native Grey Squirrel (Sciurus carolinensis). Adenoviruses were already described in squirrels in Great Britain almost two decades ago. In 2013, a squirrel adenovirus (SqAdV-1) was additionally found in a red squirrel from Germany, which suffered from acute diffuse catarrhal enteritis, and the complete genome sequence was determined. Here, samples from dead red (n = 25) and grey (n = 12) squirrels collected in Scotland, UK, were analysed for the presence of this squirrel-associated virus. By using a newly developed real-time PCR targeting the adenoviral polymerase gene, viral DNA was detected in at least one of four tissue samples tested per animal in 64.0% of the red squirrels and 41.7% of the grey squirrels. Exceptionally high viral genome loads were detected in the intestine and liver, but SqAdV-1 DNA was also present in lung and kidney samples of affected animals. Almost complete genome sequence determination of a red squirrel-derived SqAdV-1 strain from Scotland indicated a very high degree of identity to the first German strain. Sequence analysis of the hexon gene, which encodes one of the major antigens of the virion, revealed an identity of 100% between viruses found in red and grey squirrels from Scotland. In conclusion, SqAdV-1 appears to be widespread in the Scottish red and grey squirrel population, which highlights the necessity for continuous wildlife surveillance. The novel real-time PCR assay offers a highly sensitive and robust method for SqAdV-1 surveillance.
Collapse
|
74
|
Oluwayelu D, Wernike K, Adebiyi A, Cadmus S, Beer M. Neutralizing antibodies against Simbu serogroup viruses in cattle and sheep, Nigeria, 2012-2014. BMC Vet Res 2018; 14:277. [PMID: 30200958 PMCID: PMC6131948 DOI: 10.1186/s12917-018-1605-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Simbu serogroup viruses of the Orthobunyavirus genus (Family Peribunyaviridae) include teratogenic pathogens that cause severe economic losses, abortions, stillbirths and congenital abnormalities in ruminants worldwide. Although they were initially isolated from ruminants and Culicoides biting midges about five decades ago in Nigeria, there is no current information on their prevalence and geographical distribution despite reports of abortions and congenital malformations in the country’s ruminant population. Here, apparently healthy cattle and sheep obtained from eight states in the three major vegetation zones of Nigeria were screened for the presence of specific neutralizing antibodies against Schmallenberg virus (SBV), Simbu virus (SIMV) and Shamonda virus (SHAV). Results Using a cross-sectional design, 490 cattle and 165 sheep sera were collected between 2012 and 2014 and tested by a commercial SBV ELISA kit which enables the detection of antibodies against various Simbu serogroup viruses. The seropositivity rates for cattle and sheep were 91.2% and 65.4%, respectively. In cattle, there was no association between ELISA seropositivity and vegetation zone. However, the prevalence of anti-Simbu serogroup antibodies was significantly higher in Ebonyi State compared to other states in the rainforest vegetation zone. The seroprevalence was significantly higher in sheep obtained from live animal markets compared to farms (OR = 5.8). Testing of 20 selected ELISA-positive sera by serum neutralisation test showed that all were positive for one or more of SBV, SIMV and SHAV with the highest titres obtained for SHAV. Antibodies to SBV or a closely related virus were detected in the Sudan savannah and rainforest zones, anti-SIMV antibodies were detected only in the rainforest zone, while anti-SHAV antibodies were found in the three vegetation zones. Conclusion The findings of this study reveal that following the early isolation of Simbu serogroup viruses in Nigeria in the 1960s, members of this virus group are still circulating in the country. Specifically, SBV, SIMV and SHAV or closely related viruses infect cattle and sheep across the three vegetation zones of Nigeria suggesting that insect vector activity is extensive in the country. The exact vegetation zone where the animals became exposed to the viruses could, however, not be determined in this study.
Collapse
|
75
|
Endalew AD, Morozov I, Davis AS, Gaudreault NN, Wernike K, Bawa B, Ruder MG, Drolet BS, McVey DS, Shivanna V, Ma W, Faburay B, Wilson WC, Richt JA. Virological and Serological Responses of Sheep and Cattle to Experimental Schmallenberg Virus Infection. Vector Borne Zoonotic Dis 2018; 18:697-703. [PMID: 30109977 DOI: 10.1089/vbz.2018.2297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schmallenberg virus (SBV) is an orthobunyavirus in the Simbu serogroup that emerged in Germany in late 2011 and was mostly associated with a mild transient disease of sheep and cattle. SBV is transmitted by biting midges (Culicoides species) and causes abortions, stillbirths, and congenital defects in naïve pregnant ruminants. Two separate studies were conducted with a primary objective of better understanding the virological and serological responses of sheep and cattle to different SBV isolates after experimental infection. The second objective was to produce immunoreagents and challenge materials for use in future vaccine and diagnostics research. These studies were carried out using the following infectious inocula: (i) infectious serum (IS) (ii) cell culture-grown virus, and (iii) infectious lamb brain homogenate. The responses were assessed in both species throughout the course of the experiment. SBV RNA in serum (RNAemia) was detected as early as 2 (in sheep) and 3 (in cattle) days postinfection (dpi) and peaked on 3 and 4 dpi in cattle and sheep, respectively. Cattle had higher levels of RNAemia compared with sheep. Experimental infection with IS resulted in the highest level of RNAemia in both species followed by cell culture-grown virus. A delayed, low level RNAemia was detected in cattle inoculated with infectious sheep brain. Isolation of SBV was only possible from 4 dpi sera from all cattle inoculated with IS and one sheep inoculated with cell culture-derived virus. SBV neutralizing antibodies were first detected on 14 dpi in both species. No specific gross and microscopic lesions were observed in either study. In conclusion, these studies highlight not only the difference in viremia and anti-SBV antibody level against the different SBV isolates, but also the extent of the response in the two host species.
Collapse
|