51
|
Krasavin M, Stavniichuk R, Zozulya S, Borysko P, Vullo D, Supuran CT. Discovery of Strecker-type α-aminonitriles as a new class of human carbonic anhydrase inhibitors using differential scanning fluorimetry. J Enzyme Inhib Med Chem 2016; 31:1707-11. [PMID: 26983069 DOI: 10.3109/14756366.2016.1156676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new type of carbonic anhydrase inhibitors was identified via differential scanning fluorimetry (DSF) screening. The compounds displayed interesting inhibition profile against human carbonic anhydrase isoforms I, II, IX and XII with an obvious selectivity displayed by one compound toward carbonic anhydrase (CA) IX, an established anti-cancer target. A hypothetical mechanism of inhibitory action by the Strecker-type α-aminonitriles has been proposed.
Collapse
|
52
|
Ristic M, Rosa N, Seabrook SA, Newman J. Formulation screening by differential scanning fluorimetry: how often does it work? Acta Crystallogr F Struct Biol Commun 2015; 71:1359-64. [PMID: 26457531 PMCID: PMC4601604 DOI: 10.1107/s2053230x15012662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
There is strong evidence to suggest that a protein sample needs to be well folded and uniform in order to form protein crystals, and it is accepted knowledge that the formulation can have profound effects on the behaviour of the protein sample. The technique of differential scanning fluorimetry (DSF) is a very accessible method to determine protein stability as a function of the formulation chemistry and the temperature. A diverse set of 252 soluble protein samples was subjected to a standard formulation-screening protocol using DSF. Automated analysis of the DSF results suggest that in over 35% of cases buffer screening significantly increases the stability of the protein sample. Of the 28 standard formulations tested, three stood out as being statistically better than the others: these included a formulation containing the buffer citrate, long known to be `protein friendly'; bis-tris and ADA were also identified as being very useful buffers in protein formulations.
Collapse
|
53
|
Ogo N, Ishikawa Y, Sawada JI, Matsuno K, Hashimoto A, Asai A. Structure-Guided Design of Novel l-Cysteine Derivatives as Potent KSP Inhibitors. ACS Med Chem Lett 2015; 6:1004-9. [PMID: 26396688 DOI: 10.1021/acsmedchemlett.5b00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Kinesin spindle protein (KSP), known as Hs Eg5, a member of the kinesin-5 family, plays an important role in the formation and maintenance of the bipolar spindle. We previously reported S-trityl-l-cysteine derivatives as selective KSP inhibitors. Here, we report further optimizations using docking modeling in the L5 allosteric binding site, which led to the discovery of several high affinity derivatives with two fused phenyl rings in the trityl group giving low nanomolar range KSP ATPase inhibition. The representative derivatives potently inhibited cell growth of HCT116 cells in correlation with KSP inhibitory activities and significantly suppressed tumor growth in the xenograft model in vivo.
Collapse
|
54
|
Rosa N, Ristic M, Seabrook SA, Lovell D, Lucent D, Newman J. Meltdown: A Tool to Help in the Interpretation of Thermal Melt Curves Acquired by Differential Scanning Fluorimetry. ACTA ACUST UNITED AC 2015; 20:898-905. [PMID: 25918038 DOI: 10.1177/1087057115584059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
The output of a differential scanning fluorimetry (DSF) assay is a series of melt curves, which need to be interpreted to get value from the assay. An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called "Meltdown," conducts four main activities--control checks, curve normalization, outlier rejection, and melt temperature (T(m)) estimation--and performs optimally in the presence of triplicate (or higher) sample data. The final output is a report that summarizes the results of a DSF experiment. The goal of Meltdown is not to replace human analysis of the raw fluorescence data but to provide a meaningful and comprehensive interpretation of the data to make this useful experimental technique accessible to inexperienced users, as well as providing a starting point for detailed analyses by more experienced users.
Collapse
|
55
|
Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay. ACTA ACUST UNITED AC 2015; 79:28.9.1-28.9.14. [PMID: 25640896 DOI: 10.1002/0471140864.ps2809s79] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye.
Collapse
|
56
|
Douse CH, Vrielink N, Wenlin Z, Cota E, Tate EW. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex. ChemMedChem 2015; 10:134-43. [PMID: 25367834 PMCID: PMC4506568 DOI: 10.1002/cmdc.201402357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.
Collapse
|
57
|
Škerlová J, Král V, Fábry M, Sedláček J, Veverka V, Řezáčová P. Optimization of the crystallizability of a single-chain antibody fragment. Acta Crystallogr F Struct Biol Commun 2014; 70:1701-6. [PMID: 25484230 PMCID: PMC4259244 DOI: 10.1107/s2053230x1402247x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 11/10/2022] Open
Abstract
Single-chain variable antibody fragments (scFvs) are molecules with immense therapeutic and diagnostic potential. Knowledge of their three-dimensional structure is important for understanding their antigen-binding mode as well as for protein-engineering approaches such as antibody humanization. A major obstacle to the crystallization of single-chain variable antibody fragments is their relatively poor homogeneity caused by spontaneous oligomerization. A new approach to optimization of the crystallizability of single-chain variable antibody fragments is demonstrated using a representative single-chain variable fragment derived from the anti-CD3 antibody MEM-57. A Thermofluor-based assay was utilized to screen for optimal conditions for antibody-fragment stability and homogeneity. Such an optimization of the protein storage buffer led to a significantly improved ability of the scFv MEM-57 to yield crystals.
Collapse
|
58
|
Genick CC, Barlier D, Monna D, Brunner R, Bé C, Scheufler C, Ottl J. Applications of Biophysics in High-Throughput Screening Hit Validation. ACTA ACUST UNITED AC 2014; 19:707-14. [PMID: 24695619 DOI: 10.1177/1087057114529462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 02/21/2014] [Indexed: 01/12/2023]
Abstract
For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article.
Collapse
|
59
|
Tsirka T, Boukouvala S, Agianian B, Fakis G. Polymorphism p.Val231Ile alters substrate selectivity of drug-metabolizing arylamine N-acetyltransferase 2 (NAT2) isoenzyme of rhesus macaque and human. Gene 2013; 536:65-73. [PMID: 24333853 DOI: 10.1016/j.gene.2013.11.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125-129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.
Collapse
|
60
|
Leonardi A, Sajevic T, Kovačič L, Pungerčar J, Lang Balija M, Halassy B, Trampuš Bakija A, Križaj I. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity. Toxicon 2013; 77:141-55. [PMID: 24269369 DOI: 10.1016/j.toxicon.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 01/23/2023]
Abstract
In the envenomation caused by a bite of Vipera ammodytes ammodytes, the most venomous snake in Europe, hemorrhage is usually the most severe consequence in man. Identifying and understanding the hemorrhagic components of its venom is therefore particularly important in optimizing medical treatment of patients. We describe a novel high molecular mass hemorrhagin, VaH4. The isolated molecule is a covalent dimer of two homologous subunits, VaH4-A and VaH4-B. Complete structural characterization of A and partial characterization of B revealed that both belong to the P-III class of snake venom metalloproteinases (SVMPs), comprising a metalloproteinase, a disintegrin-like domain and a cysteine-rich domain. However, neither VaH4-A nor VaH4-B possess the Cys174 involved in the inter-subunit disulphide bond of P-III SVMPs. A three-dimensional model of the VaH4 dimer suggests that Cys132 serves this function. This implies that dimers in the P-III class of SVMPs can be formed either between their Cys132 or Cys174 residues. The proteolytic activity and stability of VaH4 depend on Zn²⁺ and Ca²⁺ ions and the presence of glycosaminoglycans, which indicates physiological interaction of VaH4 with the latter element of the extracellular matrix (ECM). The molecular mass of VaH4, determined by MALDI/TOF mass spectrometry, is 110.2 kDa. N-deglycosylation reduced the mass of each monomer by 8.7 kDa. The two possible N-glycosylation sites in VaH4-A are located at completely different positions from those in homodimeric P-IIIc VaH3 from the same venom, however, without any evident functional implications. The hemorrhagic activity of this slightly acidic SVMP is ascribed to its hydrolysis of components of the ECM, particularly fibronectin and nidogen, and of some blood coagulation proteins, in particular the α-chain of fibrinogen. VaH4 is also significant medically as we found it cytotoxic against cancer cells and due to its substantial sequence similarity to ADAM/ADAMTS family of physiologically very important human proteins of therapeutic potential.
Collapse
|
61
|
Fung SPS, Wang H, Tomek P, Squire CJ, Flanagan JU, Palmer BD, Bridewell DJA, Tijono SM, Jamie JF, Ching LM. Discovery and characterisation of hydrazines as inhibitors of the immune suppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1). Bioorg Med Chem 2013; 21:7595-603. [PMID: 24262887 DOI: 10.1016/j.bmc.2013.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
Abstract
Screening of a fragment library identified 2-hydrazinobenzothiazole as a potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme expressed by tumours that suppresses the immune system. Spectroscopic studies indicated that 2-hydrazinobenzothiazole interacted with the IDO1 haem and in silico docking predicted that the interaction was through hydrazine. Subsequent studies of hydrazine derivatives identified phenylhydrazine (IC50=0.25 ± 0.07 μM) to be 32-fold more potent than 2-hydrazinobenzothiazole (IC50=8.0 ± 2.3 μM) in inhibiting rhIDO1 and that it inhibited cellular IDO1 at concentrations that were noncytotoxic to cells. Here, phenylhydrazine is shown to inhibit IDO1 through binding to haem.
Collapse
|
62
|
Rottier K, Faille A, Prudhomme T, Leblanc C, Chalut C, Cabantous S, Guilhot C, Mourey L, Pedelacq JD. Detection of soluble co-factor dependent protein expression in vivo: application to the 4'-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis. J Struct Biol 2013; 183:320-328. [PMID: 23916562 DOI: 10.1016/j.jsb.2013.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
Abstract
The need for early-on diagnostic tools to assess the folding and solubility of expressed protein constructs in vivo is of great interest when dealing with recalcitrant proteins. In this paper, we took advantage of the picomolar sensitivity of the bipartite GFP1-10/GFP11 system to investigate the solubility of the Mycobacterium tuberculosis 4'-phosphopantetheinyl transferase PptT, an enzyme essential for the viability of the tubercle bacillus. In vivo and in vitro complementation assays clearly showed the improved solubility of the full-length PptT compared to its N- and C-terminally truncated counterparts. However, initial attempts to purify the full-length enzyme overexpressed in Escherichia coli cells were hampered by aggregation issues overtime that caused the protein to precipitate within hours. The fact that the naturally occurring Coenzyme A and Mg(2+), essentials for PptT to carry out its function, could play a role in stabilizing the enzyme was confirmed using DSF experiments. In vitro activity assays were performed using the ACP substrate from the type I polyketide synthase PpsC from M. tuberculosis, a 2188 amino-acid enzyme that plays a major role in the virulence and pathogenicity of this microbial pathogen. We selected the most soluble and compact ACP fragment (2042-2188), identified by genetic selection of in-frame fragments from random library experiments, to monitor the transfer of the P-pant moiety from Coenzyme A onto a conserved serine residue of this ACP domain.
Collapse
|
63
|
Ylilauri M, Mattila E, Nurminen EM, Käpylä J, Niinivehmas SP, Määttä JA, Pentikäinen U, Ivaska J, Pentikäinen OT. Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1988-97. [PMID: 23856547 DOI: 10.1016/j.bbapap.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.
Collapse
|
64
|
Gatti-Lafranconi P, Dijkman WP, Devenish SRA, Hollfelder F. A single mutation in the core domain of the lac repressor reduces leakiness. Microb Cell Fact 2013; 12:67. [PMID: 23834731 PMCID: PMC3722110 DOI: 10.1186/1475-2859-12-67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/29/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements triggered by binding of the lactose isomer allolactose to the core domain of the repressor impede DNA binding and lift repression. In Nature, the ability to detect and respond to environmental conditions comes at the cost of the encoded enzymes being constitutively expressed at low levels. The readily-switched regulation provided by LacI has resulted in its widespread use for protein overexpression, and its applications in molecular biology represent early examples of synthetic biology. However, the leakiness of LacI that is essential for the natural function of the lac operon leads to an increased energetic burden, and potentially toxicity, in heterologous protein production. RESULTS Analysis of the features that confer promiscuity to the inducer-binding site of LacI identified tryptophan 220 as a target for saturation mutagenesis. We found that phenylalanine (similarly to tryptophan) affords a functional repressor that is still responsive to IPTG. Characterisation of the W220F mutant, LacIWF, by measuring the time dependence of GFP production at different IPTG concentrations and at various incubation temperatures showed a 10-fold reduction in leakiness and no decrease in GFP production. Cells harbouring a cytotoxic protein under regulatory control of LacIWF showed no decrease in viability in the early phases of cell growth. Changes in responsiveness to IPTG observed in vivo are supported by the thermal shift assay behaviour of purified LacIWF with IPTG and operator DNA. CONCLUSIONS In LacI, long-range communications are responsible for the transmission of the signal from the inducer binding site to the DNA binding domain and our results are consistent with the involvement of position 220 in modulating these. The mutation of this single tryptophan residue to phenylalanine generated an enhanced repressor with a 10-fold decrease in leakiness. By minimising the energetic burden and cytotoxicity caused by leakiness, LacIWF constitutes a useful switch for protein overproduction and synthetic biology.
Collapse
|
65
|
Reinhard L, Mayerhofer H, Geerlof A, Mueller-Dieckmann J, Weiss MS. Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:209-14. [PMID: 23385769 PMCID: PMC3564630 DOI: 10.1107/s1744309112051858] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Abstract
The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.
Collapse
|
66
|
Geders TW, Gustafson K, Finzel BC. Use of differential scanning fluorimetry to optimize the purification and crystallization of PLP-dependent enzymes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:596-600. [PMID: 22691796 PMCID: PMC3374521 DOI: 10.1107/s1744309112012912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/24/2012] [Indexed: 11/10/2022]
Abstract
Differential scanning fluorimetry (DSF) is a practical and accessible technique that allows the assessment of multiphasic unfolding behavior resulting from subsaturating binding of ligands. Multiphasic unfolding is indicative of a heterogenous protein solution, which frequently interferes with crystallization and complicates functional characterization of proteins of interest. Along with UV-Vis spectroscopy, DSF was used to guide purification and crystallization improvements for the pyridoxal 5'-phosphate (PLP) dependent transaminase BioA from Mycobacterium tuberculosis. The incompatibility of the primary amine-containing buffer 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) and PLP was identified as a significant contributor to heterogeneity. It is likely that the utility of DSF for ligand-binding assessment is not limited to the cofactor PLP but will be applicable to a variety of ligand-dependent enzymes.
Collapse
|
67
|
Procházková K, Čermáková K, Pachl P, Sieglová I, Fábry M, Otwinowski Z, Řezáčová P. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:176-85. [PMID: 22281747 PMCID: PMC3337009 DOI: 10.1107/s090744491105414x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/15/2011] [Indexed: 11/10/2022]
Abstract
In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector L-arabinose has been determined at 2.2 Å resolution. The L-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K(d) value was 8.4 ± 0.4 µM. The effect of L-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.
Collapse
|
68
|
Jasheway K, Pruet J, Anslyn EV, Robertus JD. Structure-based design of ricin inhibitors. Toxins (Basel) 2011; 3:1233-48. [PMID: 22069693 PMCID: PMC3210460 DOI: 10.3390/toxins3101233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 11/17/2022] Open
Abstract
Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and structurally well characterized, and is an attractive target for structure-based drug design. Aided by computer docking simulations, several ricin toxin A chain (RTA) inhibitors have been identified; the most promising leads belonging to the pterin family. Development of these lead compounds into potent drug candidates is a challenging prospect for numerous reasons, including poor solubility of pterins, the large and highly polar secondary binding pocket of RTA, as well as the enzyme’s near perfect catalytic efficiency and tight binding affinity for its natural substrate, the eukaryotic ribosome. To date, the most potent RTA inhibitors developed using this approach are only modest inhibitors with apparent IC50 values in the 10−4 M range, leaving significant room for improvement. This review highlights the variety of techniques routinely employed in structure-based drug design projects, as well as the challenges faced in the design of RTA inhibitors.
Collapse
|
69
|
Froese D, Healy S, McDonald M, Kochan G, Oppermann U, Niesen F, Gravel R. Thermolability of mutant MMACHC protein in the vitamin B12-responsive cblC disorder. Mol Genet Metab 2010; 100:29-36. [PMID: 20219402 PMCID: PMC2923755 DOI: 10.1016/j.ymgme.2010.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/29/2022]
Abstract
Methylmalonic aciduria and homocystinuria, cblC type, is the most common inborn error of cellular vitamin B12 metabolism. We previously showed that the protein carrying the mutation responsible for late-onset cblC (MMACHC-R161Q), treatable with high dose OHCbl, is able to bind OHCbl with wild-type affinity, leaving undetermined the disease mechanism involved [Froese et al., Mechanism of responsiveness, Mol. Genet. Metab. (2009).]. To assess whether the mutation renders the protein unstable, we investigated the thermostability of the wild-type and mutant MMACHC proteins, either unbound or bound to different cobalamins (Cbl), using differential scanning fluorimetry. We found that MMACHC-wt and MMACHC-R161Q are both very thermolabile proteins in their apo forms, with melting temperatures (T(m)) of 39.3+/-1.0 and 37.1+/-0.7 degrees C, respectively; a difference confirmed by unfolding of MMACHC-R161Q but not MMACHC-wt by isothermal denaturation at 35 degrees C over 120 min. However, with the addition of OHCbl, MMACHC-wt becomes significantly stabilized (Delta T(m max)=8 degrees C, half-maximal effective ligand concentration, AC(50)=3 microM). We surveyed the effect of different cobalamins on the stabilization of the wild-type protein and found that AdoCbl was the most stabilizing, exerting a maximum increase in T(m) of approximately 16 degrees C, followed by MeCbl at approximately 13 degrees C, each evaluated at 50 microM cofactor. The other cobalamins stabilized in the order (CN)(2)Cbi>OHCbl>CNCbl. Interestingly, the AC(50)'s for AdoCbl, MeCbl, (CN)(2)Cbi and OHCbl were similar and ranged from 1-3 microM, which compares well with the K(d) of 6 microM for OHCbl [Froese et al., Mechanism of responsiveness, Mol. Genet. Metab. (2009).]. Unlike MMACHC-wt, the mutant protein MMACHC-R161Q is only moderately stabilized by OHCbl (Delta T(m max)=4 degrees C). The dose-response curve also shows a lower effectivity of OHCbl with respect to stabilization, with an AC(50) of 7 microM. MMACHC-R161Q showed the same order of stabilization as MMACHC-wt, but each cobalamin stabilized this mutant protein less than its wild-type counterpart. Additionally, MMACHC-R161Q had a higher AC(50) for each cobalamin form compared to MMACHC-wt. Finally, we show that MMACHC-R161Q is able to support the base-off transition for AdoCbl and CNCbl, indicating this mutant is not blocked in that respect. Taken together, our results suggest that protein stability, as well as propensity for ligand-induced stabilization, contributes to the disease mechanism in late-onset cblC disorder. Our results underscore the importance of cofactor stabilization of MMACHC and suggest that even small increases in the concentration of cobalamin complexed with MMACHC may have therapeutic benefit in children with the late-onset, vitamin responsive cblC disease.
Collapse
|