51
|
Winiewska-Szajewska M, Maciejewska AM, Speina E, Poznański J, Paprocki D. Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2. Molecules 2021; 26:molecules26113163. [PMID: 34070615 PMCID: PMC8198750 DOI: 10.3390/molecules26113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/07/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.
Collapse
|
Journal Article |
4 |
1 |
52
|
Kim KH, Hwang J, Kim JH, Son KP, Jang Y, Kim M, Kang SJ, Lee JO, Kang JY, Choi BS. Structural and biophysical properties of RIG-I bound to dsRNA with G-U wobble base pairs. RNA Biol 2020; 17:325-334. [PMID: 31852354 PMCID: PMC6999645 DOI: 10.1080/15476286.2019.1700034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is responsible for innate immunity via the recognition of short double-stranded RNAs in the cytosol. With the clue that G-U wobble base pairs in the influenza A virus's RNA promoter region are responsible for RIG-I activation, we determined the complex structure of RIG-I ΔCARD and a short hairpin RNA with G-U wobble base pairs by X-ray crystallography. Interestingly, the overall helical backbone trace was not affected by the presence of the wobble base pairs; however, the base pair inclination and helical axis angle changed upon RIG-I binding. NMR spectroscopy revealed that RIG-I binding renders the flexible base pair of the influenza A virus's RNA promoter region between the two G-U wobble base pairs even more flexible. Binding to RNA with wobble base pairs resulted in a more flexible RIG-I complex. This flexible complex formation correlates with the entropy-favoured binding of RIG-I and RNA, which results in tighter binding affinity and RIG-I activation. This study suggests that the structure and dynamics of RIG-I are tailored to the binding of specific RNA sequences with different flexibility.
Collapse
|
research-article |
5 |
0 |
53
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative cross-species comparison of serum albumin binding of per- and polyfluoroalkyl substances from five structural classes. Toxicol Sci 2024; 199:132-149. [PMID: 38518100 PMCID: PMC11057469 DOI: 10.1093/toxsci/kfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.
Collapse
|
Comparative Study |
1 |
|
54
|
Cina NP, Frank DW, Klug CS. Residues within the LptC transmembrane helix are critical for Escherichia coli LptB 2 FG ATPase regulation. Protein Sci 2024; 33:e4879. [PMID: 38131105 PMCID: PMC10804673 DOI: 10.1002/pro.4879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Lipopolysaccharide (LPS) synthesis in Gram-negative bacteria is completed at the outer leaflet of the inner membrane (IM). Following synthesis, seven LPS transport (Lpt) proteins facilitate the movement of LPS to the outer membrane (OM), an essential process that if disrupted at any stage has lethal effects on bacterial viability. LptB2 FG, the IM component of the Lpt bridge system, is a type VI ABC transporter that provides the driving force for LPS extraction from the IM and subsequent transport across a stable protein bridge to the outer leaflet of the OM. LptC is a periplasmic protein anchored to the IM by a single transmembrane (TM) helix intercalating within the lateral gate formed by LptF TM5 and LptG TM1. LptC facilitates the hand-off of LPS from LptB2 FG to the periplasmic protein LptA and has been shown to regulate the ATPase activity of LptB2 FG. Here, using an engineered chromosomal knockout system in Escherichia coli to assess the effects of LptC mutations in vivo, we identified six partial loss of function LptC mutations in the first unbiased alanine screen of this essential protein. To investigate the functional effects of these mutations, nanoDSF (differential scanning fluorimetry) and site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy in combination with an in vitro ATPase assay show that specific residues in the TM helix of LptC destabilize the LptB2 FGC complex and regulate the ATPase activity of LptB.
Collapse
|
research-article |
1 |
|
55
|
Yudkina AV, Kovalenko EA, Endutkin AV, Panferova EP, Kirilenko AA, Kokhanenko AA, Zharkov DO. [Factors Affecting the Stability of the Trimer of 2'-Deoxyuridine 5'-Triphosphate Nucleotide Hydrolase from Escherichia coli]. Mol Biol (Mosk) 2023; 57:330-339. [PMID: 37000660 DOI: 10.31857/s0026898423020246, edn: eejrnt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 04/01/2023]
Abstract
2'-Deoxyuridine 5'-triphosphate nucleotide hydrolase (Dut) hydrolyzes dUTP to dUMP and pyrophosphate to prevent erroneous incorporation of dUMP from the dUTP metabolic pool into DNA. Dut is considered as a promising pharmacological target for antimetabolite therapy. Enzymatically active Dut is a trimer that binds the substrate at the interface between the subunits. High-speed nanoscale differential scanning fluorimetry (nanoDSF) was used to study how various physicochemical factors affect the stability of the Escherichia coli Dut trimer. Unlike with monomeric proteins, thermal unfolding of Dut occurred in two steps, the first one corresponding to dissociation of the trimer into monomeric subunits. Hydrophobic interactions and hydrogen bonds at the interfaces between the subunits were found to contribute most to trimer stabilization. The binding of nucleotide ligands partly stabilized the Dut trimer. In general, nanoDSF is a convenient assay for screening low-molecular-weight compounds for their ability to destabilize the active Dut trimer.
Collapse
|
English Abstract |
2 |
|
56
|
Deka RK, Liu WZ, Tso SC, Norgard MV, Brautigam CA. Biophysical insights into a highly selective l-arginine-binding lipoprotein of a pathogenic treponeme. Protein Sci 2018; 27:2037-2050. [PMID: 30242931 DOI: 10.1002/pro.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Biophysical and biochemical studies on the lipoproteins and other periplasmic proteins from the spirochetal species Treponema pallidum have yielded numerous insights into the functioning of the organism's peculiar membrane organization, its nutritional requirements, and intermediary metabolism. However, not all T. pallidum proteins have proven to be amenable to biophysical studies. One such recalcitrant protein is Tp0309, a putative polar-amino-acid-binding protein of an ABC transporter system. To gain further information on its possible function, a homolog of the protein from the related species T. vincentii was used as a surrogate. This protein, Tv2483, was crystallized, resulting in the determination of its crystal structure at a resolution of 1.75 Å. The protein has a typical fold for a ligand-binding protein, and a single molecule of l-arginine was bound between its two lobes. Differential scanning fluorimetry and isothermal titration calorimetry experiments confirmed that l-arginine bound to the protein with unusually high selectivity. However, further comparison to Tp0309 showed differences in key amino-acid-binding residues may impart an alternate specificity for the T. pallidum protein.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
|
57
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
|
research-article |
2 |
|
58
|
Cohrs M, Davy A, Van Ackere M, De Smedt S, Braeckmans K, Epe M, Svilenov HL. Intrinsic Differential Scanning Fluorimetry for Protein Stability Assessment in Microwell Plates. Mol Pharm 2025; 22:1697-1706. [PMID: 39919837 DOI: 10.1021/acs.molpharmaceut.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Intrinsic differential scanning fluorimetry (DSF) is essential for analyzing protein thermal stability. Until now, intrinsic DSF was characterized by medium throughput and high consumable costs. Here, we present a microplate-based intrinsic DSF approach that enables the measurement of up to 384 samples in parallel by consuming only 10 μL per sample. We systematically test and benchmark the new intrinsic DSF against gold-standard methods such as differential scanning microcalorimetry and circular dichroism. Using a range of model proteins and sample conditions, we demonstrate the robustness and versatility of the intrinsic DSF method for characterizing protein stability and ranking protein drug candidates. In addition, we demonstrate modulated scanning fluorimetry (MSF) capabilities on the intrinsic DSF hardware that enable simultaneous MSF measurements in 384-microwell plates. Overall, the presented technology is a powerful tool for the early stability analysis of various protein samples and drug candidates.
Collapse
|
|
1 |
|
59
|
Flynn JM, Zvornicanin SN, Tsepal T, Shaqra AM, Kurt Yilmaz N, Jia W, Moquin S, Dovala D, Schiffer CA, Bolon DN. Contributions of Hyperactive Mutations in M pro from SARS-CoV-2 to Drug Resistance. ACS Infect Dis 2024; 10:1174-1184. [PMID: 38472113 PMCID: PMC11179160 DOI: 10.1021/acsinfecdis.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
60
|
Waterworth SC, Shenoy SR, Sharma ND, Wolcott C, Donohue DE, O'Keefe BR, Beutler JA. ShiftScan: A tool for rapid analysis of high-throughput differential scanning fluorimetry data and compound prioritization. Protein Sci 2025; 34:e70055. [PMID: 39989223 PMCID: PMC11848206 DOI: 10.1002/pro.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Differential scanning fluorimetry (DSF) can be an effective high-throughput screening assay in drug discovery for detecting protein-compound interactions that stabilize or destabilize macromolecules. Due to the magnitude and quality of the data produced by this biophysical assay, analyzing and prioritizing compounds from large-scale DSF data sets has proven challenging to the research community. Here, we present ShiftScan-a powerful, stand-alone tool designed for the rapid analysis of DSF data and compound prioritization based on thermal transition patterns. ShiftScan accurately and quickly predicts melting temperatures (Tm values) from both canonical and non-canonical transition patterns, efficiently filtering out spurious data to minimize false positives. We report on the use of this tool for data analysis of screens involving both pure compound and natural product fraction libraries and provide the software to the screening community to aid in the discovery of molecularly-targeted compounds. Instructions for installation and usage of ShiftScan can be found at our GitHub repository: https://github.com/samche42/ShiftScan.
Collapse
|
methods-article |
1 |
|
61
|
Au CW, Manfield I, Webb ME, Paci E, Turnbull WB, Ross JF. The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity. Toxins (Basel) 2024; 16:133. [PMID: 38535799 PMCID: PMC10974167 DOI: 10.3390/toxins16030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.
Collapse
|
research-article |
1 |
|
62
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
|
methods-article |
3 |
|
63
|
Baljinnyam B, Coussens NP, Simeonov A. Editorial: Biophysical target engagement assays in chemical biology and pharmacological research. Front Cell Dev Biol 2023; 11:1163966. [PMID: 36910140 PMCID: PMC9999002 DOI: 10.3389/fcell.2023.1163966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
|
Editorial |
2 |
|
64
|
Montero F, Parra-López M, Rodríguez-Martínez A, Murciano-Calles J, Buzon P, Han Z, Lin LY, Ramos MC, Ruiz-Sanz J, Martinez JC, Radi M, Moog C, Diederich S, Harty RN, Pérez-Sánchez H, Vicente F, Castillo F, Luque I. Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals. Protein Sci 2025; 34:e70005. [PMID: 39724449 DOI: 10.1002/pro.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics. Here, we assess the druggability of the TSG101-UEV/PTAP binding interface by searching for drug-like inhibitors and evaluating their ability to block PTAP recognition, impair budding, and inhibit viral proliferation. A discovery workflow was established by combining in vitro miniaturized HTS assays and a set of cell-based activity assays including high-content bimolecular complementation, virus-like particle release measurement, and antiviral testing in live virus infection. This approach has allowed us to identify a set of chemically diverse molecules that block TSG101-UEV/PTAP binding with IC50s in the low μM range and are able to disrupt the interaction between full-length TSG101 and viral proteins in human cells and inhibit viral replication. State-of-the-art molecular docking studies reveal that the active compounds exploit binding hotspots at the PTAP binding site, unlocking the full binding potential of the TSG101-UEV binding pockets. These inhibitors represent promising hits for the development of novel broad-spectrum antivirals through targeted optimization and are also valuable tools for investigating the involvement of ESCRT in the proliferation of different virus families and study the secondary effects induced by the disruption of ESCRT/virus interactions.
Collapse
|
|
1 |
|
65
|
Chou Y, Hsieh C, Chen Y, Wang T, Wu W, Hwang C. Characterization of the pH-dependent protein stability of 3α-hydroxysteroid dehydrogenase/carbonyl reductase by differential scanning fluorimetry. Protein Sci 2023; 32:e4710. [PMID: 37354013 PMCID: PMC10357940 DOI: 10.1002/pro.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
The characterization of protein stability is essential for understanding the functions of proteins. Hydroxysteroid dehydrogenase is involved in the biosynthesis of steroid hormones and the detoxification of xenobiotic carbonyl compounds. However, the stability of hydroxysteroid dehydrogenases has not yet been characterized in detail. Here, we determined the changes in Gibbs free energy, enthalpy, entropy, and heat capacity of unfolding for 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) by varying the pH and urea concentration through differential scanning fluorimetry and presented pH-dependent protein stability as a function of temperature. 3α-HSD/CR shows the maximum stability of 30.79 kJ mol-1 at 26.4°C, pH 7.6 and decreases to 7.74 kJ mol-1 at 25.7°C, pH 4.5. The change of heat capacity of 30.25 ± 1.38 kJ mol-1 K-1 is obtained from the enthalpy of denaturation as a function of melting temperature at varied pH. Two proton uptakes are linked to protein unfolding from residues with differential pKa of 4.0 and 6.5 in the native and denatured states, respectively. The large positive heat capacity change indicated that hydrophobic interactions played an important role in the folding of 3α-HSD/CR. These studies reveal the mechanism of protein unfolding in HSD and provide a convenient method to extract thermodynamic parameters for characterizing protein stability using differential scanning fluorimetry.
Collapse
|
research-article |
2 |
|
66
|
Manori B, Da'adoosh B, Haitin Y, Giladi M. Identification of a magnesium-binding site at the primary allosteric calcium sensor of the sodium-calcium exchanger: Implications for physiological regulation. Protein Sci 2024; 33:e5114. [PMID: 38989557 PMCID: PMC11237548 DOI: 10.1002/pro.5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Sodium-calcium exchanger (NCX) proteins are ubiquitously expressed and play a pivotal role in cellular calcium homeostasis by mediating uphill calcium efflux across the cell membrane. Intracellular calcium allosterically regulates the exchange activity by binding to two cytoplasmic calcium-binding domains, CBD1 and CBD2. However, the calcium-binding affinities of these domains are seemingly inadequate to sense physiological calcium oscillations. Previously, magnesium binding to either domain was shown to tune their affinity for calcium, bringing it into the physiological range. However, while the magnesium-binding site of CBD2 was identified, the identity of the CBD1 magnesium site remains elusive. Here, using molecular dynamics in combination with differential scanning fluorimetry and mutational analysis, we pinpoint the magnesium-binding site in CBD1. Specifically, among four calcium-binding sites (Ca1-Ca4) in this domain, only Ca1 can accommodate magnesium with an affinity similar to its free intracellular concentration. Moreover, our results provide mechanistic insights into the modulation of the regulatory calcium affinity by magnesium, which allows an adequate NCX activity level throughout varying physiological needs.
Collapse
|
brief-report |
1 |
|
67
|
Sorenson AE, Schaeffer PM. Real-Time Temperature Sensing Using a Ratiometric Dual Fluorescent Protein Biosensor. BIOSENSORS 2023; 13:338. [PMID: 36979550 PMCID: PMC10046200 DOI: 10.3390/bios13030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Accurate temperature control within biological and chemical reaction samples and instrument calibration are essential to the diagnostic, pharmaceutical and chemical industries. This is particularly challenging for microlitre-scale reactions typically used in real-time PCR applications and differential scanning fluorometry. Here, we describe the development of a simple, inexpensive ratiometric dual fluorescent protein temperature biosensor (DFPTB). A combination of cycle three green fluorescent protein and a monomeric red fluorescent protein enabled the quantification of relative temperature changes and the identification of temperature discrepancies across a wide temperature range of 4-70 °C. The maximal sensitivity of 6.7% °C-1 and precision of 0.1 °C were achieved in a biologically relevant temperature range of 25-42 °C in standard phosphate-buffered saline conditions at a pH of 7.2. Good temperature sensitivity was achieved in a variety of biological buffers and pH ranging from 4.8 to 9.1. The DFPTB can be used in either purified or mixed bacteria-encapsulated formats, paving the way for in vitro and in vivo applications for topologically precise temperature measurements.
Collapse
|
research-article |
2 |
|
68
|
Tofan VC, Ermeneanu AL, Caraș I, Lenghel A, Ionescu IE, Țucureanu C, Gal C, Stăvaru CG, Onu A. Generation of a DSF-Guided Refolded Bacterially Expressed Hemagglutinin Ectodomain of Influenza Virus A/Puerto Rico/8/1934 H1N1 as a Model for Influenza Vaccine Antigens. Vaccines (Basel) 2023; 11:1520. [PMID: 37896924 PMCID: PMC10610769 DOI: 10.3390/vaccines11101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18-528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18-528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18-528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development.
Collapse
|
research-article |
2 |
|
69
|
Rowley MJ, Prout-Holm RA, Liu RW, Hendrickson-Rebizant T, Ige OO, Lakowski TM, Frankel A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J Biol Chem 2023; 299:105360. [PMID: 37863263 PMCID: PMC10692916 DOI: 10.1016/j.jbc.2023.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.
Collapse
|
research-article |
2 |
|
70
|
Eyraud R, Ayache S, Tsvetkov PO, Kalidindi SS, Baksheeva VE, Boissonneau S, Jiguet-Jiglaire C, Appay R, Nanni-Metellus I, Chinot O, Devred F, Tabouret E. Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status. Cancers (Basel) 2023; 15:cancers15030760. [PMID: 36765718 PMCID: PMC9913157 DOI: 10.3390/cancers15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate EGFR alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.
Collapse
|
research-article |
2 |
|
71
|
Ibreljic N, Draper BE, Lawton CW. Recombinant AAV genome size effect on viral vector production, purification, and thermostability. Mol Ther Methods Clin Dev 2024; 32:101188. [PMID: 38327806 PMCID: PMC10847916 DOI: 10.1016/j.omtm.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Adeno-associated virus (AAV) has shown great promise as a viral vector for gene therapy in clinical applications. The present work studied the effect of genome size on AAV production, purification, and thermostability by producing AAV2-GFP using suspension-adapted HEK293 cells via triple transfection using AAV plasmids containing the same GFP transgene with DNA stuffers for variable-size AAV genomes consisting of 1.9, 3.4, and 4.9 kb (ITR to ITR). Production was performed at the small and large shake flask scales and the results showed that the 4.9 kb GFP genome had significantly reduced encapsidation compared to other genomes. The large shake flask productions were purified by AEX chromatography, and the results suggest that the triple transfection condition significantly affects the AEX retention time and resolution between the full and empty capsid peaks. Charge detection-mass spectrometry was performed on all AEX full-capsid peak samples showing a wide distribution of empty, partial, full length, and copackaged DNA in the capsids. The AEX-purified samples were then analyzed by differential scanning fluorimetry, and the results suggest that sample formulation may improve the thermostability of AAV genome ejection melting temperature regardless of the packaged genome content.
Collapse
|
research-article |
1 |
|
72
|
Klett T, Schwer M, Ernst LN, Engelhardt MU, Jaag SJ, Masberg B, Knappe C, Lämmerhofer M, Gehringer M, Boeckler FM. Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53. Drug Des Devel Ther 2024; 18:2653-2679. [PMID: 38974119 PMCID: PMC11226190 DOI: 10.2147/dddt.s466829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.
Collapse
|
research-article |
1 |
|