51
|
Dosadina E, Agyeiwaa C, Ferreira W, Cutting S, Jibawi A, Ferrari E, Soloviev M. Oriented Immobilization on Gold Nanoparticles of a Recombinant Therapeutic Zymogen. Methods Mol Biol 2020; 2118:213-225. [PMID: 32152982 DOI: 10.1007/978-1-0716-0319-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Direct immobilization of functional proteins on gold nanoparticles (AuNPs) affects their structure and function. Changes may vary widely and range from strong inhibition to the enhancement of protein function. More often though the outcome of direct protein immobilization results in protein misfolding and the loss of protein activity. Additional complications arise when the protein being immobilized is a zymogen which requires and relies on additional protein-protein interactions to exert its function. Here we describe molecular design of a glutathione-S-transferase-Staphylokinase fusion protein (GST-SAK) and its conjugation to AuNPs. The multivalent AuNP-(GST-SAK)n complexes generated show plasminogen activation activity in vitro. The methods described are transferable and could be adapted for conjugation and functional analysis of other plasminogen activators, thrombolytic preparations or other functional enzymes.
Collapse
|
52
|
Saccardo A, Ma W, Soloviev M, Ferrari E. Directed and Modular Protein Immobilization on Gold and Silver Nanoparticles. Methods Mol Biol 2020; 2118:227-234. [PMID: 32152983 DOI: 10.1007/978-1-0716-0319-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conjugation of proteins to gold nanoparticles (AuNP), silver nanoparticles (AgNP), or other metal nanoparticles (NPs) can often be achieved using passive adsorption. Although such an approach is simple and effective, there is usually no control over the orientation of the protein and denaturation due to close contact with the metal surface. The method described here makes use of adapter proteins which have the ability to adsorb to the NP surface in an oriented and stable way and at the same time enable straightforward attachment to other proteins of interest.
Collapse
|
53
|
Liu W, Tian J, Hou N, Yu N, Zhang Y, Liu Z. Identification, genomic organization and expression pattern of glutathione transferase in Pardosa pseudoannulata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100626. [PMID: 31669773 DOI: 10.1016/j.cbd.2019.100626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
The pond wolf spider, Pardosa pseudoannulata, is one of the dominant natural enemies in farmlands and plays important roles in controlling a range of insect pests. The spider is less sensitive to many insecticides than the target pests such as the brown planthopper, Nilaparvata lugens. The different sensitivity to a certain insecticide between species is mostly attributed to the differences in both molecular targets and detoxification enzymes. As one of the most important detoxification enzymes, glutathione transferases (GSTs) play a key role as phase II enzyme in the enzymic detoxification in organisms. Until now, there are few studies on spiders' GSTs, limiting the understanding of insecticide selectivity between insect pests and natural enemy spiders. In this study, based on the transcriptome and genome sequencing of P. pseudoannulata, thirteen full-length transcripts encoding GSTs were identified and analyzed. Interestingly, Delta family, which is thought to be specific to the Insecta, was identified in P. pseudoannulata. Further, vertebrate/mammalian-specific Mu family was also identified in P. pseudoannulata. The mRNA expression levels of cytosolic GSTs in different tissues were determined, and most GST genes were abundant in the gut and the fat body. To investigate GST candidates involving in insecticide detoxification, the mRNA levels of cytosolic GSTs were tested after spiders' exposure to either imidacloprid or deltamethrin. The results showed that PpGSTD3 and PpGSTT1 responded to at least one of these two insecticides. The present study helped understand the function of GSTs in P. pseudoannulata and enriched the genetic information of natural enemy spiders.
Collapse
|
54
|
Ye F, Zhai Y, Guo KL, Liu YX, Li N, Gao S, Zhao LX, Fu Y. Safeners Improve Maize Tolerance under Herbicide Toxicity Stress by Increasing the Activity of Enzymes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11568-11576. [PMID: 31584809 DOI: 10.1021/acs.jafc.9b03587] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tribenuron-methyl (TM), as one of the sulfonylurea (SU) herbicides, has been widely and effectively applied for many kinds of plants. SUs inhibit plant growth by restraining the biosynthetic pathway of branched-chain amino acids (BCAAs) catalyzed by acetolactate synthase (ALS). Safeners are agrochemicals that protect crops from herbicide injuries. To improve the crop tolerance under TM toxicity stress, this paper evaluated the protective effect of N-tosyloxazolidine-3-carboxamide. It turned out that most of the tested compounds showed significant protection against TM via enhancing the glutathione (GSH) content and glutathione S-transferase (GST) activity. Among all of the tested compounds, compound 16 exhibited more excellent protection than the contrast safener R-28725 and other target compounds. A positive correlation between the growth level, endogenous GSH content, and GST activity was observed in this research. The GST kinetic parameter Vmax of the maize was increased by 29.6% after treatment with compound 16, while Km was decreased by 51.9% compared to the untreated control. The molecular docking model indicated that compound 16 could compete with TM in the active site of ALS, which could interpret the protective effects of safeners. The present work demonstrated that N-tosyloxazolidine-3-carboxamide derivatives could be considered as potential candidates for developing new safeners in the future.
Collapse
|
55
|
Samaraweera AV, Sandamalika WMG, Liyanage DS, Lee S, Priyathilaka TT, Lee J. Molecular characterization and functional analysis of glutathione S-transferase kappa 1 (GSTκ1) from the big belly seahorse (Hippocampus abdominalis): Elucidation of its involvement in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 92:356-366. [PMID: 31200074 DOI: 10.1016/j.fsi.2019.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) are essential enzymes for the bioactivation of xenobiotics through the conjugation of the thiol group of glutathione (GSH). In this study, a kappa class of GST was identified from the big belly seahorse (Hippocampus abdominalis) (HaGSTκ1) and its biochemical and functional properties were analyzed. HaGSTκ1 has 231 amino acids encoded by a 696 bp open reading frame (ORF). The protein has a predicted molecular mass of 26.04 kDa and theoretical isoelectric point (pI) of 8.28. It comprised a thioredoxin domain, disulfide bond formation protein A (DsbA) general fold, and Ser15 catalytic site as well as GSH-binding and polypeptide-binding sites. Phylogenetic analysis revealed that HaGSTκ1 is closely clustered with the kappa class of GSTs from teleost fishes. The recombinant (rHaGSTκ1) protein exhibited activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 4-nitrobenzyl (4-NBC), and 4-nitrophenethyl bromide (4-NPB) but not 1,2-dichloro-4-nitrobenzene (DCNB). The optimum pH and temperature were 8 and 30 °C, respectively, for the catalysis of CDNB and the universal substrate of GSTs. The rHaGSTκ1 activity was efficiently inhibited in the presence of Cibacron blue (CB) as compared with hematin. Most prominent expression of HaGSTκ1 was observed in the liver and kidney among the fourteen different tissues of normal seahorse. After challenge with lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), gram-negative Edwardsiella tarda, and gram-positive Streptococcus iniae, HaGSTκ1 expression was significantly modulated in the liver and blood tissues. Altogether, our study proposes the plausible important role of HaGSTκ1 in innate immunity and detoxification of harmful xenobiotics.
Collapse
|
56
|
Saruta F, Yamada N, Yamamoto K. Functional Analysis of an Epsilon-Class Glutathione S-Transferase From Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5586714. [PMID: 31606747 PMCID: PMC6790247 DOI: 10.1093/jisesa/iez096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 05/24/2023]
Abstract
Glutathione conjugation is a crucial step in xenobiotic detoxification. In the current study, we have functionally characterized an epsilon-class glutathione S-transferase (GST) from a brown planthopper Nilaparvata lugens (nlGSTE). The amino acid sequence of nlGSTE revealed approximately 36-44% identity with epsilon-class GSTs of other species. The recombinant nlGSTE was prepared in soluble form by bacterial expression and was purified to homogeneity. Mutation experiments revealed that the putative substrate-binding sites, including Phe107, Arg112, Phe118, and Phe119, were important for glutathione transferase activity. Furthermore, inhibition study displayed that nlGSTE activity was affected by insecticides, proposing that, in brown planthopper, nlGSTE could recognize insecticides as substrates.
Collapse
|
57
|
Sandamalika WMG, Priyathilaka TT, Lee S, Yang H, Lee J. Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): With molecular characterization and functional analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 91:159-171. [PMID: 31091462 DOI: 10.1016/j.fsi.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Representing a multifunctional complex group of proteins, glutathione S- transferases (GSTs) play a major role in the phase II detoxification process in a wide range of organisms. This study focused on the potential detoxification ability of disk abalone (Haliotis discus discus) GST theta (AbGST-θ) under different stress conditions with special reference to post immune challenges. Characterization of AbGST-θ revealed with 226 amino acids, 26.6 kDa of predicted molecular mass and 8.9 of theoretical isoelectric point. As illustrated in the multiple sequence alignment, eight glutathione binding sites (G-sites) and ten substrate binding sites (H-sites) were identified in well-distinct N-terminal and C-terminal domains of AbGST-θ, respectively. AbGST-θ exhibited its highest sequence identity with Mizuhopecten yessoensis (59.1%) and the phylogenetic tree clearly positioned AbGST-θ with pre-defined GST-θ molluscan homologues. The AbGST-θ was highly expressed in the digestive tract of un-challenged abalones. Upon administering the challenge experiment, AbGST-θ showed significant modulations in their transcriptional levels depending on the time and the tissue type. The optimum temperature was 37 °C and optimum pH was 7.5 for AbGST-θ. The determined enzyme kinetic parameters of AbGST-θ showed low affinity towards 1-Chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH) as substrates. Nonetheless, with Cibacron blue IC50 (half maximal inhibitory concentration) was calculated to be 0.08 μM while observing 100% inhibition with 100 μM. Furthermore, AbGST-θ resulted in significant protection ability towards H2O2, CdCl2, and ZnCl2 in the disk diffusion assay. Collectively, this study provides evidences for the detoxification ability and the immunological host defensive capability of AbGST-θ in disk abalone.
Collapse
|
58
|
Liu Y, Qi Y, Zhang A, Wu H, Liu Z, Ren X. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). PLANT MOLECULAR BIOLOGY 2019; 100:451-465. [PMID: 31079310 DOI: 10.1007/s11103-019-00870-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 05/11/2023]
Abstract
AcGST1, an anthocyanin-related GST, may functions as a carrier to transport anthocyanins from ER to tonoplast in kiwifruit. It was positively regulated by AcMYBF110 through directly binding to its promoter. Anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum but accumulate predominantly in the vacuole. Previous studies in model and ornamental plants have suggested that a member of the glutathione S-transferase (GST) gene family is involved in sequestration of anthocyanins into the vacuole. However, little is known about anthocyanin-related GST protein in kiwifruit. Here, four putative AcGSTs were identified from the genome of the red-fleshed Actinidia chinensis cv 'Hongyang'. Expression analyses reveal only the expression of AcGST1 was highly consistent with anthocyanin accumulation. Molecular complementation of Arabidopsis tt19 demonstrates AcGST1 can complement the anthocyanin-less phenotype of tt19. Transient expression in Actinidia arguta fruits further confirms that AcGST1 is functional in anthocyanin accumulation in kiwifruit. In vitro assays show the recombinant AcGST1 increases the water solubility of cyanidin-3-O-galactoside (C3Gal) and cyanidin-3-O-xylo-galactoside (C3XG). We further show that AcGST1 protein is localized not only in the ER but also on the tonoplast, indicating AcGST1 (like AtTT19) may functions as a carrier protein to transport anthocyanins to the tonoplast in kiwifruit. Moreover, the promoter of AcGST1 can be activated by AcMYBF110, based on results from transient dual-luciferase assays and yeast one-hybrid assays. EMSAs show that AcMYBF110 binds directly to CAGTTG and CCGTTG motifs in the AcGST1 promoter. These results indicate that AcMYBF110 plays an important role in transcriptional regulation of AcGST1 and, therefore, in controlling accumulation of anthocyanins in kiwifruit.
Collapse
|
59
|
Türkan F, Huyut Z, Demir Y, Ertaş F, Beydemir Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Arch Physiol Biochem 2019; 125:235-243. [PMID: 29564935 DOI: 10.1080/13813455.2018.1452037] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Glutathione S-transferase (GST) and acetylcholinesterase (AChE) are important enzymes in the metabolism. GSTs are primarily available in phase II metabolism. AChE is vital for neurodegenerative disorders. SUBJECTS AND METHODS The in vitro and in vivo effects of cefoperazone sodium (CFP), cefuroxime (CXM), and cefazolin (CZO) were investigated on GST and AChE activity in the present study. GST was purified using Glutathione-Agarose affinity chromatography. RESULTS Ki constants of CFP, CXM, and CZO were 0.1392 ± 0.02, 1.5179 ± 0.33, and 1.006 ± 0.11 mM for GST and 0.3010 ± 0.07, 0.3561 ± 0.09, and 0.3844 ± 0.04 mM, for AChE, respectively. The most effective inhibitor was CFP for both enzymes in in vitro. CZO (50 mg/kg), CXM (25 mg/kg), and CFP (100 mg/kg) inhibit in vivo GST and AChE activities. CXM had the most effective in vivo inhibition on AChE and GST. CONCLUSIONS CZO, CXM, and CFP are effective AChE and GST inhibitors in both in vitro and in vivo.
Collapse
|
60
|
Hou X, Tan L, Tang SF. Molecular mechanism study on the interactions of cadmium (II) ions with Arabidopsis thaliana glutathione transferase Phi8. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:411-417. [PMID: 30925335 DOI: 10.1016/j.saa.2019.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Accumulation of cadmium ions may result in adverse effects on plant due to the oxidative stress via destructions of antioxidants and antioxidant enzymes. As the core component of the glutathione antioxidant system, glutathione S-transferases (GSTs) have been reported as biomarkers for evaluating the metal-induced oxidative damage to plants, but the potential toxicity and underlying toxic molecular mechanisms remain unknown. This article investigated the molecular interactions of cadmium ions with Arabidopsis thaliana glutathione S-transferase phi8 (AtGSTF8) by multi-spectroscopic techniques and enzyme activity measurements. The intrinsic fluorescence of AtGSTF8 was quenched statically upon the addition of cadmium ions accompanied with the complex formation and structural and conformational alterations from multiple spectroscopic measurements, resulting in deconstructed protein skeleton and microenvironmental alterations around the Tyr and Trp residues. A single binding site was predicted for AtGSTF8 towards cadmium ions and the van der Walls interactions and hydrogen bonds are the major driving forces of the interaction. In addition, the transferase activity changes of AtGSTF8 upon the addition of cadmium ions have been observed. The implementation of this work helps to clarify the mechanism of oxidative damage and antioxidant enzymes response induced by heavy metal accumulation in plant at molecular level.
Collapse
|
61
|
Hamdi H, Othmène YB, Ammar O, Klifi A, Hallara E, Ghali FB, Houas Z, Najjar MF, Abid-Essefi S. Oxidative stress, genotoxicity, biochemical and histopathological modifications induced by epoxiconazole in liver and kidney of Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17535-17547. [PMID: 31025280 DOI: 10.1007/s11356-019-05022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Epoxiconazole (EPX) is a triazole fungicide commonly used in agriculture and for domestic purposes around the world. The excessive application of this pesticide may result in a variety of adverse effects on non-target organisms, including humans. Since, the liver and kidneys are the target organs of this fungicide, potential hepatotoxic and nephrotoxic effects are of high relevance. Thus, our study aimed to investigate the toxic effects of EPX on the liver and kidney of Wistar rats. The exposure of rats to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing, respectively, NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days significantly enhances hepatic and renal lipid peroxidation which is accompanied by an increase in the level of protein oxidation. Furthermore, the results of the present study clearly indicated that EPX administration induces an increase in the levels of DNA damage in a dose-dependent manner. In addition, the activities of liver and kidney antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) are increased significantly in EPX-treated rats at concentrations of 8, 24, and 40 mg/kg bw. However, with the dose NOEL × 7 (56 mg/kg bw of EPX), the activities of CAT, GPx, and GST are decreased. Indeed, EPX-intoxicated rats revealed a significant reduction in acetylcholinesterase (AChE) activity in both liver and kidney compared with the control group. Also, our results demonstrated that the EPX administration leads to a disruption of the hepatic (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH)) and renal (uric acid and creatinine) functions. The biochemical perturbations obtained in the present study are corroborated with the histopathological modifications. Since EPX treatment caused severe damage in the overall histo-architecture of liver and kidney tissues, these results suggest that administration of EPX induced a marked deregulation of liver and kidney functions. Graphical abstract.
Collapse
|
62
|
Meng LW, Yuan GR, Lu XP, Jing TX, Zheng LS, Yong HX, Wang JJ. Two delta class glutathione S-transferases involved in the detoxification of malathion in Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2019; 75:1527-1538. [PMID: 30610767 DOI: 10.1002/ps.5318] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/25/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis (Hendel), a widespread agricultural pest, has evolved resistance to many insecticides, including organophosphorus compounds. Glutathione S-transferases (GSTs) are involved in xenobiotic detoxification and insecticide resistance in many insects. However, the role of delta class GSTs in detoxifying malathion in B. dorsalis is unknown. Here, we evaluated the roles of two delta class GSTs in malathion detoxification in this species. RESULTS Two delta class GSTs genes, BdGSTd1 and BdGSTd10, were characterized in B. dorsalis. They were highly expressed in 5-day-old adults, as well as in midgut and Malpighian tubules. Upon malathion exposure, the two genes were upregulated by 2.63- and 2.85-fold, respectively. Injection of double-stranded RNA targeting BdGSTd1 or BdGSTd10 significantly reduced their mRNA levels in adults and also significantly increased adult susceptibility to malathion. The expression of these two GSTs in Escherichia coli helped the host to endure malathion stress at a concentration of 10 µg mL-1 according to a Cell Counting Kit-8 assay. High-performance liquid chromatography analyses indicated that malathion could be significantly depleted by the two delta GSTs. The role of BdGSTd10 in malathion sequestration was also discussed. CONCLUSION BdGSTd1 and BdGSTd10 play important roles in the detoxification of malathion in B. dorsalis. © 2019 Society of Chemical Industry.
Collapse
|
63
|
Gomes A, Correia AT, Nunes B. Worms on drugs: ecotoxicological effects of acetylsalicylic acid on the Polychaeta species Hediste diversicolor in terms of biochemical and histological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13619-13629. [PMID: 30919192 DOI: 10.1007/s11356-019-04880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals are important environmental stressors since they have a worldwide use; they are usually released in the aquatic compartment without adequate treatment, and because of their intrinsic properties, they may affect several non-target organisms. Acetylsalicylic acid (ASA), the active substance of aspirin, is a non-steroidal anti-inflammatory drug, being one of the most widely prescribed analgesics in human medical care. Consequently, this compound is systematically reported to occur in the wild, where it may exert toxic effects on non-target species, which are mostly uncharacterized so far. The objective of the present work was to assess the acute and chronic effects of ASA on selected oxidative stress biomarkers [catalase (CAT), glutathione reductase (GRed), glutathione peroxidase (GPx), glutathione S-transferase (GST)], lipid peroxidation (thiobarbituric acid-reactive substance), and histological alterations in the polychaete Hediste diversicolor (Annelida: Polychaeta). The obtained data showed that ASA is not exempt of toxicity, since it was responsible for significant, albeit transient, changes in biomarkers related to the redox status of the organisms, occurring as an increase in the activity of catalase in the individuals exposed acutely to ASA. Chronic exposure to ecologically relevant concentrations of this drug showed to be mostly ineffective in promoting any significant biochemical alteration in H. diversicolor. However, histochemical observations revealed proliferation of mucous cells in the tegument of chronically exposed individuals to ASA.
Collapse
|
64
|
Li L, Zhao Y, Cao R, Li L, Cai G, Li J, Qi X, Chen S, Zhang Z. Activity-based protein profiling reveals GSTO1 as the covalent target of piperlongumine and a promising target for combination therapy for cancer. Chem Commun (Camb) 2019; 55:4407-4410. [PMID: 30916079 DOI: 10.1039/c9cc00917e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Through systematic target identification for piperlongumine, a cancer-selective killing molecule, we identified GSTO1 as its major covalent target for cancer cell death induction. We also reveal that GSTO1 inhibition is a promising combination strategy with other anti-cancer agents by drug combination screening in which piperlongumine exhibits broad-spectrum synergistic effects with a large proportion of the tested anti-cancer agents, especially with PI3K/Akt/mTOR pathway inhibitors.
Collapse
|
65
|
Bašica B, Mihaljević I, Maraković N, Kovačević R, Smital T. Molecular characterization of zebrafish Gstr1, the only member of teleost-specific glutathione S- transferase class. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:196-207. [PMID: 30682622 DOI: 10.1016/j.aquatox.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes with primary function of glutathione conjugation of various endogenous and exogenous compounds. Teleost-specific Gstr1 in zebrafish (Danio rerio) was previously shown to have high expression in toxicologically relevant tissues and high activity towards model substrates. The aim of this study was a detailed functional characterization of zebrafish Gstr1. Molecular docking analyses were used to get novel insight into structural characteristics of Gstr1 and elucidation of the mechanistic interactions with both GSH and various Gstr1 substrates or inhibitors. An initial screening inhibition assay performed using model fluorescence substrate monochlorobimane (MCB) revealed interactions of different endogenous compounds and environmentally relevant xenobiotics with zebrafish Gstr1. All interacting compounds were further analyzed to determine their inhibition type and Ki values. Our data revealed that pregnenolone, progesterone, testosterone, DHEAS and corticosterone competitively inhibited transformation of MCB by Gstr1 with the calculated Ki values in the range 14-26 μM, implying that these hormones are physiological substrates of zebrafish Gstr1. Estrogens had no effect on Gstr1 activity. Taurochenodeoxycholate (TCDC) expressed lower inhibition potency toward Gstr1 with the Ki value of 33 μM. Among tested xenobiotics tributyltin chloride and rifampicin non-enzymatically bound Gstr1 enzyme (the calculated Ki values are 0.26 μM and 65 μM, respectively) and inhibited its activity, showing that these compounds are reversible noncompetitive inhibitors of zebrafish Gstr1. Insecticide diazinon competitively inhibited Gstr1 activity with calculated Ki value of 27 μM, while other Gstr1-interacting insecticides, chlorpyrifos-methyl (CPF-methyl) and malathion, showed allosteric activation-like effect. Among tested pharmaceuticals, tetracycline, erythromycin and methotrexate demonstrated competitive type of inhibition with the calculated Ki values of 17.5, 36.5 and 29 μM, respectively. In summary, we suggest that zebrafish Gstr1 has an important role in steroidogenesis, metabolism and/or physiological actions of androgens, but not estrogens in fish. Finally, our results imply the role of Gstr1 in metabolism of xenobiotics and protection of fish against deleterious environmental contaminants such as organophosphate insecticides and pharmaceuticals.
Collapse
|
66
|
Hou Y, Qiao C, Wang Y, Wang Y, Ren X, Wei Q, Wang Q. Cold-Adapted Glutathione S-Transferases from Antarctic Psychrophilic Bacterium Halomonas sp. ANT108: Heterologous Expression, Characterization, and Oxidative Resistance. Mar Drugs 2019; 17:md17030147. [PMID: 30832239 PMCID: PMC6471826 DOI: 10.3390/md17030147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Glutathione S-transferases are one of the most important antioxidant enzymes to protect against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene, designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and expressed in Escherichia coli (E. coli) BL21. The hsgst gene was 603 bp in length and encoded a protein of 200 amino acids. Compared with the mesophilic EcGST, homology modeling indicated HsGST had some structural characteristics of cold-adapted enzymes, such as higher frequency of glycine residues, lower frequency of proline and arginine residues, and reduced electrostatic interactions, which might be in relation to the high catalytic efficiency at low temperature. The recombinant HsGST (rHsGST) was purified to apparent homogeneity with Ni-affinity chromatography and its biochemical properties were investigated. The specific activity of the purified rHsGST was 254.20 nmol/min/mg. The optimum temperature and pH of enzyme were 25 °C and 7.5, respectively. Most importantly, rHsGST retained 41.67% of its maximal activity at 0 °C. 2.0 M NaCl and 0.2% H₂O₂ had no effect on the enzyme activity. Moreover, rHsGST exhibited its protective effects against oxidative stresses in E. coli cells. Due to its high catalytic efficiency and oxidative resistance at low temperature, rHsGST may be a potential candidate as antioxidant in low temperature health foods.
Collapse
|
67
|
Chronopoulou EG, Vlachakis D, Papageorgiou AC, Ataya FS, Labrou NE. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination. Biochim Biophys Acta Gen Subj 2019; 1863:565-576. [PMID: 30590099 DOI: 10.1016/j.bbagen.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
In the present work, a structure-based design approach was used for the generation of a novel variant of synthetic glutathione transferase (PvGmGSTU) with higher sensitivity towards pesticides. Molecular modelling studies revealed Phe117 as a key residue that contributes to the formation of the hydrophobic binding site (H-site) and modulates the affinity of the enzyme towards xenobiotic compounds. Site-saturation mutagenesis of position Phe117 created a library of PvGmGSTU variants with altered kinetic and binding properties. Screening of the library against twenty-five different pesticides, showed that the mutant enzyme Phe117Ile displays 3-fold higher catalytic efficiency and exhibits increased affinity towards α-endosulfan, compared to the wild-type enzyme. Based on these catalytic features the mutant enzyme Phe117Ile was explored for the development of an optical biosensor for α-endosulfan. The enzyme was entrapped in alkosixylane sol-gel system in the presence of two pH indicators (bromocresol purple and phenol red). The sensing signal was based on the inhibition of the sol-gel entrapped GST, with subsequent decrease of released [H+] by the catalytic reaction, measured by sol-gel entrapped indicators. The assay response at 562 nm was linear in the range pH = 4-7. Linear calibration curves were obtained for α-endosulfan in the range of 0-30 μΜ. The reproducibility of the assay response, expressed by relative standard deviation, was in the order of 4.1% (N = 28). The method was successfully applied to the determination of α-endosulfan in real water samples without sample preparation steps.
Collapse
|
68
|
Balakrishnan B, Su S, Zhang C, Chen M. Identification and Functional Characterization of Two Sigma Glutathione S-Transferase Genes From Bird Cherry-Oat Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:416-424. [PMID: 30371799 DOI: 10.1093/jee/toy316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is an insect pest that persistently attacks wheat crops worldwide. Glutathione S-transferases (GSTs) are important detoxification enzymes that play roles in insecticide resistance. In this study, we identified two GST genes (RpGSTS1 and RpGSTS2) from R. padi. Phylogenetic analysis indicated that the genes are associated with the sigma class of insect GSTs. The RpGSTS1 and RpGSTS2 contain nine α-helices and five β-sheets connected by loops, and had 60 and 50% homology with the 3D structure of the Blattella germanica GST5. We tested the toxicity of chlorpyrifos, imidacloprid, isoprocarb, sulfoxaflor, and λ-cyhalothrin to R. padi, and found that the toxicity of five insecticides to the aphid varied. The detoxification activity of GSTs and the expression patterns of RpGSTS1 and RpGSTS2 after insecticide treatments were also analyzed. Compared to the control, the GST activity was increased by 23, 18.5, 13, and 11.5% in aphids treated by LC50 concentrations of chlorpyrifos, isoprocarb, imidacloprid, and sulfoxaflor, respectively. Exposure to different chemical insecticides showed different effects on the expression of RpGSTS1 and RpGSTS2. These results indicate that RpGSTS1 and RpGSTS2 have unique biochemical characteristics and may play roles in resistance to insecticides in R. padi.
Collapse
|
69
|
Wang W, Hu C, Li XR, Wang XQ, Yang XQ. CpGSTd3 is a lambda-Cyhalothrin Metabolizing Glutathione S-Transferase from Cydia pomonella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1165-1172. [PMID: 30638381 DOI: 10.1021/acs.jafc.8b05432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about the role of specific delta GST genes in the detoxification of lambda-cyhalothrin in the global quarantine fruit pest codling moth, Cydia pomonella (L.). Real-time quantitative PCR shows that CpGSTd3 was ubiquitously expressed at all developmental stages and is most abundant in the larval stage and lowest in the egg stage; the mRNA level of CpGSTd3 is higher in the midgut and Malpighian tubules of fourth-instar larvae and abdomens of adults than in other tissues. Exposure of fourth-instar larvae to an LD10 dosage of lambda-cyhalothrin significantly induced the transcript of CpGSTd3 at 3 h, but the mRNA level was down-regulated after 12 h of treatment. Recombinant CpGSTd3 expressed in Escherichia coli was able to catalyze the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and with an IC50 value of 0.65 mM for lambda-cyhalothrin. Metabolism assays indicate that recombinant CpGSTd3 could metabolize lambda-cyhalothrin. These results suggest that CpGSTd3 is probably a lambda-cyhalothrin metabolizing GST in C. pomonella.
Collapse
|
70
|
Yang Q, Han XM, Gu JK, Liu YJ, Yang MJ, Zeng QY. Functional and structural profiles of GST gene family from three Populus species reveal the sequence-function decoupling of orthologous genes. THE NEW PHYTOLOGIST 2019; 221:1060-1073. [PMID: 30204242 DOI: 10.1111/nph.15430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 05/07/2023]
Abstract
A common assumption in comparative genomics is that orthologous genes are functionally more similar than paralogous genes. However, the validity of this assumption needs to be assessed using robust experimental data. We conducted tissue-specific gene expression and protein function analyses of orthologous groups within the glutathione S-transferase (GST) gene family in three closely related Populus species: Populus trichocarpa, Populus euphratica and Populus yatungensis. This study identified 21 GST orthologous groups in the three Populus species. Although the sequences of the GST orthologous groups were highly conserved, the divergence in enzymatic functions was prevalent. Through site-directed mutagenesis of orthologous proteins, this study revealed that nonsynonymous substitutions at key amino acid sites played an important role in the divergence of enzymatic functions. In particular, a single amino acid mutation (Arg39→Trp39) contributed to P. euphratica PeGSTU30 possessing high enzymatic activity via increasing the hydrophobicity of the active cavity. This study provided experimental evidence showing that orthologues belonging to the gene family have functional divergences. The nonsynonymous substitutions at a few amino acid sites resulted in functional divergence of the orthologous genes. Our findings provide new insights into the evolution of orthologous genes in closely related species.
Collapse
|
71
|
Fu DY, Xue YR, Guo Y, Qu Z, Li HW, Wu H, Wu Y. Strong red-emitting gold nanoclusters protected by glutathione S-transferase. NANOSCALE 2018; 10:23141-23148. [PMID: 30515506 DOI: 10.1039/c8nr05691a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferase (GST) is distributed widely in tissues and has been proven to be vital in the body. For example, it catalyzes reduced glutathione (GSH) to a variety of electrophilic substances and thus protects cells against many toxic chemicals. Therefore, GST-related investigations have always been significant for medical and/or life sciences. In the present study, a new material of gold nanoclusters (Au-NCs) protected by GST, Au-NCs@GST, was fabricated via an improved one-step heating method. The products were fully characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), and Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra. The results confirmed that around 10 gold atoms are encapsulated in one intact GST, forming Au-NCs@GST with strong (QY = 13.5%) red emission at 670 nm. Therefore, a new nanomaterial possessing both strong luminescence and bio-functions of GST was developed, and it has great potential in GST-related investigations. To prove the concept, Au-NCs@GST was successfully applied to detect metronidazole (MNZ) both in solution and in living cells. Therefore, in the present study, we report not only a new nanomaterial of Au-NCs@GST but also a feasible fluorescence probe for antibiotic detection. Both the improved synthetic method and the design concept can be extended to the fabrication of other kinds of metal nanoclusters using different functional proteins for various purposes.
Collapse
|
72
|
Zhao Y, Li Y. Modified neonicotinoid insecticide with bi-directional selective toxicity and drug resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:467-473. [PMID: 30144707 DOI: 10.1016/j.ecoenv.2018.08.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on the molecular structures and the negative logarithm of experimental lethal concentration 50 values (pLC50) of neonicotinoid insecticides. Then, the mechanisms of bi-directional selective toxic effects and drug resistance were determined using homology modeling and molecular docking analyses. The results of the model showed that the 1-, 2-, 4-, and 12- positions of neonicotinoid insecticides strongly affected their toxicity, and that the introduction of bulky or electropositive groups at these positions could increase the pLC50 values. Using Compound 19 as a template, we designed 37 derivatives with greater toxicity (increased by 0.04-11.45%). Among them, 20 derivatives had bioconcentrations lower than that of Compound 19 (reduced by 0.38-147.88%). Further screening of Compound 19 and the 20 derivatives mentioned above by homology modeling and acetylcholine receptors (AChRs) molecular docking analyses showed that 10 derivatives had bi-directional selective toxic effects against pests and bees. Further docking analyses of Compound 19 and these 10 derivatives identified that Derivative-33 showed decreased docking with superoxide dismutase (SOD) and glutathione S transferase (GST) in pests and enhanced docking with these enzymes in bees, indicating bi-directional selective resistance for pests and bees. Accordingly, Derivative-33 was selected as a new insecticide with high toxicity to pests and low toxicity to bees (bi-directional selective toxicity), low resistance in pest populations, and high resistance in bee populations. This study provides valuable reference data and will be useful for the development of strategies to produce new environmentally friendly pesticides.
Collapse
|
73
|
Rajaiah Prabhu P, Moorthy SD, Madhumathi J, Pradhan SN, Perbandt M, Betzel C, Kaliraj P. Wucherria bancrofti glutathione S-Transferase: Insights into the 2.3 Å resolution X-ray structure and function, a therapeutic target for human lymphatic filariasis. Biochem Biophys Res Commun 2018; 505:979-984. [PMID: 30297111 DOI: 10.1016/j.bbrc.2018.09.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022]
Abstract
The notoriety of parasitic nematode survival is directly related to chronic pathogenicity, which is evident in human lymphatic filariasis. It is a disease of poverty which causes severe disability affecting more than 120 million people worldwide. These nematodes down-regulate host immune system through a myriad of strategies that includes secretion of antioxidant and detoxification enzymes like glutathione-S-transferases (GSTs). Earlier studies have shown Wuchereria bancrofti GST to be a potential therapeutic target. Parasite GSTs catalyse the conjugation of glutathione to xenobiotic and other endogenous electrophiles and are essential for their long-term survival in lymph tissues. Hence, the crystal structure of WbGST along with its cofactor GSH at 2.3 Å resolution was determined. Structural comparisons against host GST reveal distinct differences in the substrate binding sites. The parasite xenobiotic binding site is more substrate/solvent accessible. The structure also suggests the presence of putative non-catalytic binding sites that may permit sequestration of endogenous and exogenous ligands. The structure of WbGST also provides a case for the role of the π-cation interaction in stabilizing catalytic Tyr compared to stabilization interactions described for other GSTs. Hence, the obtained information regarding crucial differences in the active sites will support future design of parasite specific inhibitors. Further, the study also evaluates the inhibition of WbGST and its variants by antifilarial diethylcarbamazine through kinetic assays.
Collapse
|
74
|
Malik A, Khan JM, Alamery SF, Fouad D, Labrou NE, Daoud MS, Abdelkader MO, Ataya FS. Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form. PLoS One 2018; 13:e0205274. [PMID: 30303997 PMCID: PMC6179282 DOI: 10.1371/journal.pone.0205274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Glutathione S‒transferases (GSTs) are multifunctional enzymes that play an important role in detoxification, cellular signalling, and the stress response. Camelus dromedarius is well-adapted to survive in extreme desert climate and it has GSTs, for which limited information is available. This study investigated the structure-function and thermodynamic properties of a mu-class camel GST (CdGSTM1) at different pH. Recombinant CdGSTM1 (25.7 kDa) was expressed in E. coli and purified to homogeneity. Dimeric CdGSTM1 dissociated into stable but inactive monomeric subunits at low pH. Conformational and thermodynamic changes during the thermal unfolding pathway of dimeric and monomeric CdGSTM1 were characterised via a thermal shift assay and dynamic multimode spectroscopy (DMS). The thermal shift assay based on intrinsic tryptophan fluorescence revealed that CdGSTM1 underwent a two-state unfolding pathway at pH 1.0-10.0. Its Tm value varied with varying pH. Another orthogonal technique based on far-UV CD also exhibited two-state unfolding in the dimeric and monomeric states. Generally, proteins tend to lose structural integrity and stability at low pH; however, monomeric CdGSTM1 at pH 2.0 was thermally more stable and unfolded with lower van't Hoff enthalpy. The present findings provide essential information regarding the structural, functional, and thermodynamic properties of CdGSTM1 at pH 1.0-10.0.
Collapse
|
75
|
Liu J, Li Y, Tian Z, Sun H, Chen X, Zheng S, Zhang Y. Identification of Key Residues Associated with the Interaction between Plutella xylostella Sigma-Class Glutathione S-Transferase and the Inhibitor S-Hexyl Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10169-10178. [PMID: 30207467 DOI: 10.1021/acs.jafc.8b03967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutathione S-transferases (GSTs) are important detoxification enzymes involved in the development of metabolic resistance in Plutella xylostella. Uncovering the interactions between representative PxGSTs and the inhibitor S-hexyl glutathione (GTX), helps in the development of effective PxGST inhibitors for resistance management. As the PxGST most severely inhibited by GTX, PxGSTσ (sigma-class PxGST) adopts the canonical fold of insect GSTs. The formation of the PxGSTσ-GTX complex is mainly driven by H-bond and hydrophobic interactions derived from the side chains of favorable residues. Of the residues composing the active site of PxGSTσ, Lys43 and Arg99 are two hot spots, first reported in the binding of GSH derivatives to GSTs. Such differences indicate the metabolism discrimination of different insect GSTs. Unfavorable interactions between the PxGSTσ active site and GTX are depicted as well. The research guides the discovery and optimization of PxGSTσ inhibitors.
Collapse
|