51
|
Fuciarelli TM, Rollo CD. Impacts of ionization radiation on the cuticular hydrocarbon profile and mating success of male house crickets ( Acheta domesticus). Int J Radiat Biol 2021; 97:564-570. [PMID: 33471571 DOI: 10.1080/09553002.2021.1876954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Ionizing radiation is well known to have drastic impacts on major life history features including survivorship, growth, fertility, and longevity. What is much less appreciated is how radiation stress can cause changes to more subtle traits, such as those associated with sexual signaling, an underappreciated but vital aspect of insect reproduction. In the House Cricket (Acheta domesticus) cuticular hydrocarbons are vital for sex and species recognition, as well as a possible indicator of stress, making them crucial for successful mating and reproduction. MATERIALS AND METHODS Here, we analyze the impacts of ionizing radiation on the cuticular hydrocarbons of male crickets and its subsequent impacts on mating success. We exposed juvenile (14-day, 4th instar) male crickets to a broad range of radiation doses (2 Gy - 2 Gy). RESULTS We detected significant changes in individual cuticular hydrocarbons across a broad range of doses in mature male crickets using gas-liquid chromatography. Specifically, dose was identified as a significant contributing factor to hydrocarbon increases p < .0001. Mating success was significantly reduced in 12 Gy (p < .0001), 10 Gy (0.0001), and 7 Gy (0.0060) groups compared to non-irradiated controls. CONCLUSION Insect chemical communication can be species specific, and functionally specialized. Here, we show that radiation can alter the chemical signals used to attract mates in a large bodied insect and this may be a contributing factor to the described reduction in male mating success. Further research should be conducted to further analyze the various modes of communication employed by male crickets to attract mates i.e. acoustic signaling, and how this may also contribute to the reduction in mating success seen in irradiated males.
Collapse
|
52
|
Tinghitella RM, Broder ED, Gallagher JH, Wikle AW, Zonana DM. Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication. Nat Commun 2021; 12:797. [PMID: 33542210 PMCID: PMC7862365 DOI: 10.1038/s41467-021-20971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Inadvertent cues can be refined into signals through coevolution between signalers and receivers, yet the earliest steps in this process remain elusive. In Hawaiian populations of the Pacific field cricket, a new morph producing a novel and incredibly variable song (purring) has spread across islands. Here we characterize the current sexual and natural selection landscape acting on the novel signal by (1) determining fitness advantages of purring through attraction to mates and protection from a prominent deadly natural enemy, and (2) testing alternative hypotheses about the strength and form of selection acting on the novel signal. In field studies, female crickets respond positively to purrs, but eavesdropping parasitoid flies do not, suggesting purring may allow private communication among crickets. Contrary to the sensory bias and preference for novelty hypotheses, preference functions (selective pressure) are nearly flat, driven by extreme inter-individual variation in function shape. Our study offers a rare empirical test of the roles of natural and sexual selection in the earliest stages of signal evolution.
Collapse
|
53
|
de Campos LD, de Souza-Dias PGB, Desutter-Grandcolas L, Shigueo Nihei S. Colonization of different biomes drove the diversification of the Neotropical Eidmanacris crickets (Insecta: Orthoptera: Grylloidea: Phalangopsidae). PLoS One 2021; 16:e0245325. [PMID: 33449941 PMCID: PMC7810296 DOI: 10.1371/journal.pone.0245325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 12/05/2022] Open
Abstract
The phylogeny of the cricket genus Eidmanacris is used to analyse its historical distribution and diversification in three South American biomes: Atlantic Forest, Cerrado, and Chiquitano Dry Forest. A morphological phylogeny with all the 29 species of Eidmanacris and the Geographically explicit Event Model (GEM) is used to explain their colonization and diversification through three different biomes and their ancestral habitats and distributional areas. We analysed ecologically-significant characters, such as body size and metanotal characters, to test whether if morphology, habitat, or behaviour are connected. The relations of these features with the colonisation of wetter or drier biomes based on the distributional area, phylogeny and diversity of the genus were also tested. The results show that the ancestral distribution of the genus was the Atlantic Forest, and that biome occupancy, habitat, size, and mating behaviour evolved congruently through the phylogeny, drawing a coherent pattern of changes through Eidmanacris evolution toward the colonisation of drier biomes. Our results indicate that gallery forests could play a key role in the distribution and diversification of Eidmanacris species.
Collapse
|
54
|
Zhang X, Rayner JG, Blaxter M, Bailey NW. Rapid parallel adaptation despite gene flow in silent crickets. Nat Commun 2021; 12:50. [PMID: 33397914 PMCID: PMC7782688 DOI: 10.1038/s41467-020-20263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which 'flatwing' males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.
Collapse
|
55
|
Narasaki-Funo Y, Tomiyama Y, Nose M, Bando T, Tomioka K. Functional analysis of Pdp1 and vrille in the circadian system of a cricket. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104156. [PMID: 33058831 DOI: 10.1016/j.jinsphys.2020.104156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Circadian rhythms are generated by a circadian clock for which oscillations are based on the rhythmic expression of the so-called clock genes. The present study investigated the role of Gryllus bimaculatus vrille (Gb'vri) and Par domain protein 1 (Gb'Pdp1) in the circadian clock of the cricket Gryllus bimaculatus. Structural analysis of Gb'vri and Gb'Pdp1 cDNAs revealed that they are a member of the bZIP transcription factors. Under light/dark cycles (LD) both genes were rhythmically expressed in the clock tissue, the optic lobes, whereas the rhythm diminished under constant darkness (DD). Gb'vri and Gb'Pdp1 mRNA levels were significantly reduced by RNA interference (RNAi) of Gb'Clk and Gb'cyc, suggesting they are controlled by Gb'CLK/Gb'CYC. RNAi of Gb'vri and Gb'Pdp1 had little effect on locomotor rhythms, although their effects became visible when treated together with Gb'cycRNAi. The average free-running period of Gb'vriRNAi/Gb'cycRNAi crickets was significantly shorter than that of Gb'cycRNAi crickets. A similar period shortening was observed also when treated with Gb'Pdp1RNAi/Gb'cycRNAi. Some Gb'Pdp1RNAi/Gb'cycRNAi crickets showed rhythm splitting into two free-running components with different periods. Gb'vriRNAi and Gb'Pdp1RNAi treatments significantly altered the expression of Gb'Clk, Gb'cyc, and Gb'tim in LD. These results suggest that Gb'vri and Gb'Pdp1 play important roles in cricket circadian clocks.
Collapse
|
56
|
Römer H, Holderied M. Decision making in the face of a deadly predator: high-amplitude behavioural thresholds can be adaptive for rainforest crickets under high background noise levels. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190471. [PMID: 32420855 PMCID: PMC7331017 DOI: 10.1098/rstb.2019.0471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2019] [Indexed: 11/12/2022] Open
Abstract
Many insect families have evolved ears that are adapted to detect ultrasonic calls of bats. The acoustic sensory cues indicating the presence of a bat are then used to initiate bat avoidance behaviours. Background noise, in particular at ultrasonic frequencies, complicates these decisions, since a response to the background may result in costly false alarms. Here, we quantify bat avoidance responses of small rainforest crickets (Gryllidae, Trigoniinae), which live under conditions of high levels of ultrasonic background noise. Their bat avoidance behaviour exhibits markedly higher thresholds than most other studied eared insects. Their responses do not qualitatively differ at suprathreshold amplitudes up to sound pressure levels of 105 dB. Moreover, they also exhibit evasive responses to single, high-frequency events and do not require the repetitive sequence of ultrasonic calls typical for the search phase of bat echolocation calls. Analysis of bat and katydid sound amplitudes and peak frequencies in the crickets' rainforest habitat revealed that the cricket's behavioural threshold would successfully reject the katydid background noise. Using measurements of the crickets' echo target strength for bat predators, we calculated the detection distances for both predators and prey. Despite their high behavioural threshold, the cricket prey still has a significant detection advantage at frequencies between 20 and 40 kHz. The low-amplitude bat calls they ignore are no predation threat because even much louder calls would be detected before the bat would hear the cricket echo. This leaves ample time for evasive actions. Thus, a simple decision criterion based on a high-amplitude behavioural threshold can be adaptive under the high background noise levels in nocturnal rainforests, in avoiding false alarms and only missing detection for bat calls too far away to pose a risk. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
|
57
|
Durrant J, Green MP, Jones TM. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. INSECT SCIENCE 2020; 27:571-582. [PMID: 30720239 PMCID: PMC7277038 DOI: 10.1111/1744-7917.12665] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment.
Collapse
|
58
|
Stahlschmidt ZR, Glass JR. Life History and Immune Challenge Influence Metabolic Plasticity to Food Availability and Acclimation Temperature. Physiol Biochem Zool 2020; 93:271-281. [PMID: 32469272 DOI: 10.1086/709587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Animals vary in their rates of energy expenditure for self-maintenance (standard metabolic rate [SMR]). Yet we still lack a thorough understanding of the determinants of SMR, potentially because of complex interactions among environmental, life-history, and physiological factors. Thus, we used a factorial design in female sand field crickets (Gryllus firmus) to investigate the independent and interactive effects of food availability (unlimited or limited access), acclimation temperature (control or simulated heat wave), life-history strategy (flight-capable or flight-incapable wing morphology), and immune status (control or chronic immune activation) on SMR (CO2 production rate) measured at 28°C. Both environmental factors independently affected SMR where heat wave and food limitation reduced SMR. Furthermore, wing morphology and immune status mediated the plasticity of SMR to food and temperature. For example, the hypermetabolic effect of food availability was greater in flight-capable crickets and reduced in immune-challenged crickets. Therefore, although SMR was directly affected by food availability and acclimation temperature, interactive effects on SMR were more common, meaning several factors (e.g., life history and immune status) influenced metabolic plasticity to food and temperature. We encourage continued use of factorial experiments to reveal interaction dynamics, which are critical to understanding emergent physiological processes.
Collapse
|
59
|
Han CS, Brooks RC, Dingemanse NJ. Condition-Dependent Mutual Mate Preference and Intersexual Genetic Correlations for Mating Activity. Am Nat 2020; 195:997-1008. [PMID: 32469657 DOI: 10.1086/708497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although mating represents a mutual interaction, the study of mate preferences has long focused on choice in one sex and preferred traits in the other. This has certainly been the case in the study of the costs and condition-dependent expression of mating preferences, with the majority of studies concerning female preference. The condition dependence and genetic architecture of mutual mate preferences remain largely unstudied, despite their likely relevance for the evolution of preferences and of mating behavior more generally. Here we measured (a) male and female mate preferences and (b) intersexual genetic correlations for the mating activity in pedigreed populations of southern field crickets (Gryllus bimaculatus) raised on a favorable (free-choice) or a stressful (protein-deprived) diet. In the favorable dietary environment, mutual mate preferences were strong, and the intersexual genetic covariance for mating activity was not different from one. However, in the stressful dietary environment, mutual mate preferences were weak, and the intersexual genetic covariance for mating activity was significantly smaller than one. Altogether, our results show that diet environments affect the expression of genetic variation in mating behaviors: when the environment is stressful, both (a) the strength of mutual mate preference and (b) intersexual genetic covariance for mating activity tend to be weaker. This implies that mating dynamics strongly vary across environments.
Collapse
|
60
|
Abstract
Phenotypic sequences are a type of multivariate trait organized structurally, such as teeth distributed along the dental arch, or temporally, such as the stages of an ontogenetic series. Unlike other multivariate traits, the elements of a phenotypic sequence are distributed along an ordered set, which allows for distinct evolutionary patterns between neighboring and distant positions. In fact, sequence traits share many characteristics with molecular sequences, although important distinctions pose challenges to current comparative methods. We implement an approach to estimate rates of trait evolution that explicitly incorporates the sequence organization of traits. We apply models to study the temporal pattern evolution of cricket calling songs. We test whether neighboring positions along a phenotypic sequence have correlated rates of evolution or whether rate variation is independent of sequence position. Our results show that cricket song evolution is strongly autocorrelated and that models perform well when used with sequence phenotypes even under small sample sizes. Our approach is flexible and can be applied to any multivariate trait with discrete units organized in a sequence-like structure.
Collapse
|
61
|
Morales-Ramos JA, Rojas MG, Dossey AT, Berhow M. Self-selection of food ingredients and agricultural by-products by the house cricket, Acheta domesticus (Orthoptera: Gryllidae): A holistic approach to develop optimized diets. PLoS One 2020; 15:e0227400. [PMID: 31978186 PMCID: PMC6980616 DOI: 10.1371/journal.pone.0227400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
The house cricket, Acheta domesticus L. (Orthoptera: Gryllidae) is one of the most important species of industrialized insects in the United States. Within the past five years the market of cricket powder as a food ingredient has been growing with increasing consumer interest on more sustainable sources of food. However, high labor costs of cricket production and high prices of cricket feed formulations result in cricket powder market prices much higher than other protein-rich food ingredients, making cricket powder only competitive within the novelty food market. In this study new diets formulated using by-products were developed using dietary self-selection followed by regression analysis. Crickets selected among seven different combinations of ingredients. Consumption ratios of food ingredients and by-products were used to determine macro and micro-nutrient intake. Regression analysis was used to determine the individual nutrient intake effect on cricket biomass production. Intake of vitamin C, sterol, manganese, and vitamins B1 and B5 had the most significant impact on live biomass production. Four diets were formulated based on this information and compared with a reference (Patton’s 13) and a commercial diet. Although, crickets reared on Patton’s diet 13 produced the most dry-weight biomass and developed the fastest, diet 4 (consisting of 92% by-products) generated the most profit (with a cost of $0.39 USD per kg) after an economic analysis that did not include the commercial formulation. Dry-weight biomass production was not significantly different among the four new diets and the commercial diet. This study demonstrated the value of dietary self-selection studies in developing oligidic insect diets and in studies of insect nutrition. This is the first such study involving farmed edible crickets and agricultural by-products. Four new cricket diet formulations contain between 62 and 92% agricultural by-products are included.
Collapse
|
62
|
Benavides-Lopez JL, Ter Hofstede H, Robillard T. Novel system of communication in crickets originated at the same time as bat echolocation and includes male-male multimodal communication. Naturwissenschaften 2020; 107:9. [PMID: 31950367 DOI: 10.1007/s00114-020-1666-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 01/01/2020] [Indexed: 11/26/2022]
Abstract
Understanding the evolutionary origins of communication signals requires careful study of multiple species within a known phylogenetic framework. Most cricket species produce low-frequency calls for mate attraction, whereas they startle to high-frequency sounds similar to bat echolocation. Male crickets in the tribe Lebinthini produce high-frequency calls, to which females reply with vibrational signals. This novel communication system likely evolved by male sensory exploitation of acoustic startle to high-frequency sounds in females. This behavior was previously described for the Lebinthini from Asia. Here we demonstrate that this novel communication system is found in a Neotropical species, Ponca hebardi, and is therefore likely shared by the whole tribe Lebinthini, dating the origin of this behavior to coincide with the origin of echolocation in bats. Furthermore, we document male duets involving both acoustic and vibratory signals not previously described in crickets, and we tentatively interpret it as competitive masking between males.
Collapse
|
63
|
Bawa M, Songsermpong S, Kaewtapee C, Chanput W. Effect of Diet on the Growth Performance, Feed Conversion, and Nutrient Content of the House Cricket. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5812897. [PMID: 32219448 PMCID: PMC7136006 DOI: 10.1093/jisesa/ieaa014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 05/20/2023]
Abstract
The house crickets, Acheta domesticus, are sustainable and nutritious future sources of food, due to their nutritional benefits, particular high protein content and potential in solving global malnutrition. Different diets, particularly protein content, can influence the growth and nutritional value of crickets. The aim of this present study was to evaluate the effects of commercial diets and other formulated diets on the nutritional composition and growth parameters of the house crickets, being a major challenge to cricket's farmers in Thailand. Feed conversion ratio were 1.50, 1.50, and 1.51 for fed crickets on a blend of 22% protein and dry pulp pumpkin powder, fed 22% protein plus fresh pumpkin pulp, and fed 22% protein alone, indicated that these groups are high feed convertors and represented the quality of these diets compared to 1.73 and 1.81 for fed crickets on a blend of 22% and 16% protein, and those fed on 16% protein alone. Fed crickets on 22% protein had the highest amount of protein (76%), the lowest (48%) in those fed on 22% protein and fresh pumpkin pulp inclusion. The group on 22% protein diet also had the highest amount of phosphorus, potassium, calcium, and sodium. Fed 22% protein and either dry pulp pumpkin powder or fresh pumpkin pulp condition have shown improvement in vitamin B content. Crickets can effectively be produced on 22% protein diet to improve yield output and several minerals such as phosphorus, potassium, calcium, and sodium. In contrast, the supplementation of 22% protein diet with pumpkin (Cucurbita maxima) will improve vitamin B content.
Collapse
|
64
|
Schöneich S, Hedwig B. Feedforward discharges couple the singing central pattern generator and ventilation central pattern generator in the cricket abdominal central nervous system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:881-895. [PMID: 31691096 PMCID: PMC6863954 DOI: 10.1007/s00359-019-01377-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
We investigated the central nervous coordination between singing motor activity and abdominal ventilatory pumping in crickets. Fictive singing, with sensory feedback removed, was elicited by eserine-microinjection into the brain, and the motor activity underlying singing and abdominal ventilation was recorded with extracellular electrodes. During singing, expiratory abdominal muscle activity is tightly phase coupled to the chirping pattern. Occasional temporary desynchronization of the two motor patterns indicate discrete central pattern generator (CPG) networks that can operate independently. Intracellular recordings revealed a sub-threshold depolarization in phase with the ventilatory cycle in a singing-CPG interneuron, and in a ventilation-CPG interneuron an excitatory input in phase with each syllable of the chirps. Inhibitory synaptic inputs coupled to the syllables of the singing motor pattern were present in another ventilatory interneuron, which is not part of the ventilation-CPG. Our recordings suggest that the two centrally generated motor patterns are coordinated by reciprocal feedforward discharges from the singing-CPG to the ventilation-CPG and vice versa. Consequently, expiratory contraction of the abdomen usually occurs in phase with the chirps and ventilation accelerates during singing due to entrainment by the faster chirp cycle.
Collapse
|
65
|
Blankers T, Oh KP, Shaw KL. Parallel genomic architecture underlies repeated sexual signal divergence in Hawaiian Laupala crickets. Proc Biol Sci 2019; 286:20191479. [PMID: 31594503 PMCID: PMC6790767 DOI: 10.1098/rspb.2019.1479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
When the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala. We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and whether the likelihood of QTL sharing is related to QTL effect size. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more frequently than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.
Collapse
|
66
|
Otieno MHJ, Ayieko MA, Niassy S, Salifu D, Abdelmutalab AGA, Fathiya KM, Subramanian S, Fiaboe KKM, Roos N, Ekesi S, Tanga CM. Integrating temperature-dependent life table data into Insect Life Cycle Model for predicting the potential distribution of Scapsipedus icipe Hugel & Tanga. PLoS One 2019; 14:e0222941. [PMID: 31553778 PMCID: PMC6760797 DOI: 10.1371/journal.pone.0222941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 11/19/2022] Open
Abstract
Scapsipedus icipe Hugel and Tanga (Orthoptera: Gryllidae) is a newly described edible cricket species. Although, there is substantial interest in mass production of S. icipe for human food and animal feed, no information exists on the impact of temperature on their bionomics. Temperature-dependent development, survival, reproductive and life table parameters of S. icipe was generated and integrated into advanced Insect Life Cycle Modeling software to describe relative S. icipe population increase and spatial spread based on nine constant temperature conditions. We examined model predictions and implications for S. icipe potential distribution in Africa under current and future climate. These regions where entomophagy is widely practiced have distinctly different climates. Our results showed that S. icipe eggs were unable to hatch at 10 and 40°C, while emerged nymphs failed to complete development at 15°C. The developmental time of S. icipe was observed to decrease with increased in temperature. The lowest developmental threshold temperatures estimated using linear regressions was 14.3, 12.67 and 19.12°C and the thermal constants for development were 185.2, 1111.1- and 40.7-degree days (DD) for egg, nymph and pre-adult stages, respectively. The highest total fecundity (3416 individuals/female/generation), intrinsic rate of natural increase (0.075 days), net reproductive rate (1330.8 female/female/generation) and shortest doubling time (9.2 days) was recorded at 30°C. The regions predicted to be suitable by the model suggest that S. icipe is tolerant to a wider range of climatic conditions. Our findings provide for the first-time important information on the impact of temperature on the biology, establishment and spread of S. icipe across the Africa continent. The prospect of edible S. icipe production to become a new sector in food and feed industry is discussed.
Collapse
|
67
|
Zhou YJ, Seike H, Nagata S. Function of myosuppressin in regulating digestive function in the two-spotted cricket, Gryllus bimaculatus. Gen Comp Endocrinol 2019; 280:185-191. [PMID: 31054903 DOI: 10.1016/j.ygcen.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/28/2023]
Abstract
Myosuppressin is one of essential peptides controlling biological processes including feeding behavior. Here we identified and characterized the cDNAs that encode myosuppressin precursor and its receptor in the two-spotted cricket Gryllus bimaculatus. The presence of the mature peptide (Grybi-MS) was confirmed by direct measurement of adult brain. RT-PCR revealed the tissue distribution of these transcripts; myosuppressin is expressed predominantly in the brain and central nervous system, whereas its receptor is ubiquitously expressed in the cricket body. To address the function of Grybi-MS, we performed several bioassays to test concerning feeding behavior and digestive function upon exposure to Grybi-MS. Administration of synthetic Grybi-MS resulted in increased feeding motivation, accompanied by an increase in food intake. Meanwhile, the hemolymph lipid and carbohydrate titers were both elevated after Grybi-MS injection. As the intestinal contraction is significantly inhibited by the exposure to Grybi-MS, the upregulating feeding index might be complicated in the cricket body. The current data indicate that Grybi-MS modulates feeding behavior to control the physiological processes in the cricket.
Collapse
|
68
|
Rillich J, Rillich B, Stevenson PA. Differential modulation of courtship behavior and subsequent aggression by octopamine, dopamine and serotonin in male crickets. Horm Behav 2019; 114:104542. [PMID: 31226329 DOI: 10.1016/j.yhbeh.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Aggression is a behavioral strategy for securing limited resources and its expression is strongly influenced by their presence and value. In particular, males are generally thought to guard females after mating to ward off other males, but the underlying control mechanisms are unknown. Here, we investigated the role of amines on male courtship behavior and its subsequent effect on male-male aggression in crickets (Gryllus bimaculatus). Contrary to the guarding hypothesis, female presence alone had no immediate effect on male-male aggression. Furthermore, confirming studies on other species, prior female contact, but not necessarily courtship or copulation, promoted subsequent male-male aggression in subordinate, but not socially naive crickets. This promoting effect of female contact is transient and slowly wanes after her removal. Selective aminergic receptor antagonists revealed that the promoting effect of prior female contact on male-male aggression is mediated by octopamine (OA), as well as by serotonin (5HT) acting most likely via 5HT1 and/or 5HT7 like receptors. This contrasts the role of 5HT2-like receptors in maintaining reduced aggressiveness after social defeat. Furthermore, while dopamine (DA) is necessary for the recovery of aggression in subordinates after defeat, it appears to play no part in female induced aggression. Male courtship, on the other hand, is selectively promoted by DA and 5HT, again most likely via 5HT1 and/or 5HT7 like receptors, but not by OA. We conclude that OA, DA and 5HT each differentially modulate different aspects of courtship and aggressive behavior in a context specific fashion.
Collapse
|
69
|
Stumpner A, Lefebvre PC, Seifert M, Ostrowski TD. Temporal processing properties of auditory DUM neurons in a bush-cricket. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:717-733. [PMID: 31327050 DOI: 10.1007/s00359-019-01359-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
Insects with ears process sounds and respond to conspecific signals or predator cues. Axons of auditory sensory cells terminate in mechanosensory neuropils from which auditory interneurons project into (brain-) areas to prepare response behaviors. In the prothoracic ganglion of a bush-cricket, a cluster of local DUM (dorsal unpaired median) neurons has recently been described and constitutes a filter bank for carrier frequency. Here, we demonstrate that these neurons also constitute a filter bank for temporal patterns. The majority of DUM neurons showed pronounced phasic-tonic responses. The transitions from phasic to tonic activation had different time constants in different DUM neurons. Time constants of the membrane potential were shorter in most DUM neurons than in auditory sensory neurons. Patterned stimuli with known behavioral relevance evoked a broad range of responses in DUM neurons: low-pass, band-pass, and high-pass characteristics were encountered. Temporal and carrier frequency processing were not correlated. Those DUM neurons producing action potentials showed divergent processing of temporal patterns when the graded potential or the spiking was analyzed separately. The extent of membrane potential fluctuations mimicking the patterned stimuli was different between otherwise similarly responding neurons. Different kinds of inhibition were apparent and their relevance for temporal processing is discussed.
Collapse
|
70
|
Vlasáková B, Pinc J, Jůna F, Kotyková Varadínová Z. Pollination efficiency of cockroaches and other floral visitors of Clusia blattophila. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:753-761. [PMID: 30620429 DOI: 10.1111/plb.12956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Cockroaches have rarely been documented as pollinators. In this paper we examine whether this is because they might be inefficient at pollination compared to other pollinators. Clusia blattophila, a dioecious shrub growing on isolated rocky outcrops in French Guiana, is pollinated by Amazonina platystylata cockroaches and provides a valuable system for the study of cockroach pollination efficiency. We examined the species composition of the visitor guild and visitation rates by means of camcorder recordings and visitor sampling. Then, we investigated the capacity for pollen transfer of principal visitors and found correlations between visitation rates and pollen loads on stigmas. In an exclusion experiment we determined the contributions of individual species to pollination success. Amazonina platystylata, crickets and two species of Diptera transferred pollen, but the number of transferred pollen grains was only related to visitation rates in the case of cockroaches. Crickets visited and rarely carried pollen. Dipterans were as frequent as cockroaches, carried similar pollen loads, but transferred much less pollen. An estimated 41% and 17% of ovules were pollinated by cockroaches and dipterans, respectively. The remaining ovules were not pollinated. There was no spatial variation in pollinator guild composition, but cockroaches visited flowers less frequently at the smaller study site. We demonstrate that cockroaches pollinate a large proportion of ovules. Their pollination service is not confined to one study site and, unlike that provided by dipterans, is not limited to certain years. We suggest that cockroach pollination has been overlooked and that cockroach-pollinated plants, which share certain floral features, possess adaptations to pollination by cockroaches.
Collapse
|
71
|
Gurule-Small GA, Tinghitella RM. Life history consequences of developing in anthropogenic noise. GLOBAL CHANGE BIOLOGY 2019; 25:1957-1966. [PMID: 30825350 DOI: 10.1111/gcb.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressures. Anthropogenic noise is a ubiquitous and expanding disturbance with demonstrated effects on fitness-related traits of animals like stress responses, foraging, vigilance, and pairing success. Elucidating the lifetime fitness effects of noise has been challenging because longer-lived vertebrate systems are typically studied in this context. Here, we follow noise-stressed invertebrates throughout their lives, assessing a comprehensive suite of life history traits, and ultimately, lifetime number of surviving offspring. We reared field crickets, Teleogryllus oceanicus, in masking traffic noise, traffic noise from which we removed frequencies that spectrally overlap with the crickets' mate location song and peak hearing (nonmasking), or silence. We found that exposure to masking noise delayed maturity and reduced adult lifespan; crickets exposed to masking noise spent 23% more time in juvenile stages and 13% less time as reproductive adults than those exposed to no traffic noise. Chronic lifetime exposure to noise, however, did not affect lifetime reproductive output (number of eggs or surviving offspring), perhaps because mating provided females a substantial longevity benefit. Nevertheless, these results are concerning as they highlight multiple ways in which traffic noise may reduce invertebrate fitness. We encourage researchers to consider effects of anthropogenic disturbance on growth, survival, and reproductive traits simultaneously because changes in these traits may amplify or nullify one another.
Collapse
|
72
|
Miyashita A, Lee TYM, McMillan LE, Easy R, Adamo SA. Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis). PLoS One 2019; 14:e0209957. [PMID: 31091239 PMCID: PMC6519836 DOI: 10.1371/journal.pone.0209957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Should females alter their reproductive strategy when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts that reproduction should increase when the risk of death increases. However, physiological trade-offs between reproduction and immune function might be expected to produce a decrease in reproduction during a robust immune response. There is evidence for both hypotheses. We examine whether age determines the effect of an immune challenge on reproductive strategy in long-winged females of the Texas field cricket, Gryllus texensis, when fed an ecologically valid (i.e. limited) diet. The limited diet reduced reproductive output. However, even under resource-limited conditions, immune challenge had no effect on the reproductive output of young or middle-aged females. Both reproductive output and immune function (lysozyme-like activity and phenoloxidase (PO) activity) increased with age, which is contrary to both hypotheses. We hypothesize that PO activity is pleiotropic and represents an investment in both reproduction and immune function. Three proPO genes (identified in a published RNA-seq dataset (transcriptome)) were expressed either in the fat body or the ovaries (supporting the hypothesis that PO is bifunctional). The possible bifunctionality of PO suggests that it may not be an appropriate immune measure for studies on immune/reproductive trade-offs. This study also suggests that the threshold for terminal reproductive investment may not decrease prior to senescence in some species.
Collapse
|
73
|
Toxopeus J, McKinnon AH, Štětina T, Turnbull KF, Sinclair BJ. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). JOURNAL OF INSECT PHYSIOLOGY 2019; 113:9-16. [PMID: 30582905 DOI: 10.1016/j.jinsphys.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8 °C, and to temperatures as low as -12 °C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6 °C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. Although we hypothesize that control of ice formation facilitates freeze tolerance, initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance.
Collapse
|
74
|
Suetsugu K. Social wasps, crickets and cockroaches contribute to pollination of the holoparasitic plant Mitrastemon yamamotoi (Mitrastemonaceae) in southern Japan. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:176-182. [PMID: 30098096 DOI: 10.1111/plb.12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Mitrastemon yamamotoi is completely embedded within the tissues of its hosts, except during the reproductive stage, when aboveground parts emerge from host tissues. Its highly modified appearance has attracted attention of many botanists, but very little is known about the reproductive system. Floral visitors to M. yamamotoi were observed in southern Japan. Pollination experiments were conducted to determine the plant's self-compatibility and pollen limitation, as well as the contribution of diurnal and nocturnal visitors to fruit set and outcrossing. Mitrastemon yamamotoi is mainly pollinated by social wasps, but previously unnoticed pollinators (i.e. crickets and cockroaches) are also important, based on visitation frequency and pollen loads. Results of the pollination experiments suggest that nocturnal visitors, such as crickets and cockroaches, contribute to geitonogamous pollination, whereas diurnal visitors, such as social wasps, facilitate outcrossing. The unexpected pollinator assemblage of M. yamamotoi might be influenced by multiple factors, including the highly modified flowers that are produced close to the ground in dark understorey environments, the species' winter-flowering habit and the location of the study site (i.e. near the northern limit of the species' range). Considering that M. yamamotoi occurs widely in subtropical and tropical forests in Asia, additional studies are needed to assess pollinator assemblages of M. yamamotoi at other locations.
Collapse
|
75
|
Kulkarni A, Extavour CG. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results Probl Cell Differ 2019; 68:183-216. [PMID: 31598857 DOI: 10.1007/978-3-030-23459-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.
Collapse
|