76
|
Soranzo N, Kelly L, Martinian L, Burley MW, Thom M, Sali A, Kroetz DL, Goldstein DB, Sisodiya SM. Lack of Support for a Role for RLIP76 (RALBP1) in Response to Treatment or Predisposition to Epilepsy. Epilepsia 2007; 48:674-83. [PMID: 17437410 DOI: 10.1111/j.1528-1167.2007.00926.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Multidrug transporters are postulated to contribute to antiepileptic drug (AED) resistance. The transporter best studied is P-glycoprotein, an ATP-Binding Cassette (ABC) transporter superfamily member. RLIP76 is suggested to be an energy-dependent non-ABC transporter, reducing AED blood-brain barrier penetration, with a more important role than P-glycoprotein. Knowledge of which transporters may be critical in drug resistance is important for design of potential therapies. We tested the hypothesis that RLIP76 mediates AED resistance using methods complementary to those in the original report. METHODS Double-labeling fluorescent immunohistochemistry localized RLIP76 expression. Population genetics was used to explore association of variation in the RLIP76-encoding gene with drug-response and epilepsy phenotypes. Comparative protein structure modeling and bioinformatic annotation were used to predict RLIP76 structure and features. RESULTS In normal and epileptogenic brain tissue, immunoreactivity for RLIP76 was cytoplasmic, with colocalization with a neuronal, but not an endothelial, marker. Genotyping of six tagging SNPs, representing common genetic variation in RLIP76, in patients with epilepsy responsive (n = 262) or resistant (n = 107) to AEDs showed no association with phenotype at any level. RLIP76 genotypic and haplotypic frequencies in 783 patients with epilepsy and 359 healthy controls showed no association with epilepsy susceptibility. RLIP76 is not predicted to have transmembrane localization or ATPase activity. CONCLUSIONS No support for RLIP76 itself in directly mediating resistance to AEDs nor in increasing susceptibility to epilepsy was found. More evidence is required before either a role for RLIP76 in drug resistance can be accepted or focus directed away from other transporters, such as P-glycoprotein.
Collapse
|
77
|
Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 2007; 82:197-203. [PMID: 17361129 DOI: 10.1038/sj.clpt.6100122] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolism of the antimalarial drug amodiaquine (AQ) into its primary metabolite, N-desethylamodiaquine, is mediated by CYP2C8. We studied the frequency of CYP2C8 variants in 275 malaria-infected patients in Burkina Faso, the metabolism of AQ by CYP2C8 variants, and the impact of other drugs on AQ metabolism. The allele frequencies of CYP2C8*2 and CYP2C8*3 were 0.155 and 0.003, respectively. No evidence was seen for influence of CYP2C8 genotype on AQ efficacy or toxicity, but sample size limited these assessments. The variant most common in Africans, CYP2C8(*)2, showed defective metabolism of AQ (threefold higher K(m) and sixfold lower intrinsic clearance), and CYP2C8(*)3 had markedly decreased activity. Considering drugs likely to be coadministered with AQ, the antiretroviral drugs efavirenz, saquinavir, lopinavir, and tipranavir were potent CYP2C8 inhibitors at clinically relevant concentrations. Variable CYP2C8 activity owing to genetic variation and drug interactions may have important clinical implications for the efficacy and toxicity of AQ.
Collapse
|
78
|
Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA, Hayes DF, Klein T, Krauss RM, Kroetz DL, McLeod HL, Nguyen AT, Ratain MJ, Relling MV, Reus V, Roden DM, Schaefer CA, Shuldiner AR, Skaar T, Tantisira K, Tyndale RF, Wang L, Weinshilboum RM, Weiss ST, Zineh I. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 81:328-45. [PMID: 17339863 PMCID: PMC5006950 DOI: 10.1038/sj.clpt.6100087] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The NIH Pharmacogenetics Research Network (PGRN) is a collaborative group of investigators with a wide range of research interests, but all attempting to correlate drug response with genetic variation. Several research groups concentrate on drugs used to treat specific medical disorders (asthma, depression, cardiovascular disease, addiction of nicotine, and cancer), whereas others are focused on specific groups of proteins that interact with drugs (membrane transporters and phase II drug-metabolizing enzymes). The diverse scientific information is stored and annotated in a publicly accessible knowledge base, the Pharmacogenetics and Pharmacogenomics Knowledge base (PharmGKB). This report highlights selected achievements and scientific approaches as well as hypotheses about future directions of each of the groups within the PGRN. Seven major topics are included: informatics (PharmGKB), cardiovascular, pulmonary, addiction, cancer, transport, and metabolism.
Collapse
|
79
|
Abstract
In 1976, Juliano and Ling(1) reported expression of a 170 kDa protein in colchicine-resistant Chinese hamster ovary (CHO) cells that was absent in drug-sensitive cells. Because this protein altered cellular permeability to colchicine, the authors named it P-glycoprotein (P-gp).(1) P-gp overexpression was described in tumor samples and leukemic cells.(2) High homology with bacterial transporters suggested that P-gp was an efflux transporter, modulating intracellular xenobiotic concentrations.(3) In 1986, the gene encoding P-gp was discovered and designated MDR1 (HUGO name ABCB1).(4) Immunohistochemical studies demonstrated P-gp expression in tissues with secretory or excretory functions (liver, kidney, and gastrointestinal tract) and at blood-tissue barrier sites, such as the blood-brain barrier.(5) This pattern of expression indicated that P-gp may influence xenobiotic response and toxicity, either through pharmacokinetic or pharmacodynamic effects.(6)
Collapse
|
80
|
de Jong FA, Scott-Horton TJ, Kroetz DL, McLeod HL, Friberg LE, Mathijssen RH, Verweij J, Marsh S, Sparreboom A. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin Pharmacol Ther 2007; 81:42-9. [PMID: 17185998 DOI: 10.1038/sj.clpt.6100019] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interindividual pharmacokinetic variability of the anticancer agent irinotecan is high. Life-threatening diarrhea is observed in up to 25% of patients receiving irinotecan and has been related with irinotecan pharmacokinetics and UGT1A1 genotype status. Here, we explore the association of ABCC2 (MRP2) polymorphisms and haplotypes with irinotecan disposition and diarrhea. A cohort of 167 Caucasian cancer patients who were previously assessed for irinotecan pharmacokinetics (90-min infusion given every 21 days), toxicity, and UGT1A1*28 genotype were genotyped for polymorphisms in ABCC2 using Pyrosequencing. Fifteen ABCC2 haplotypes were identified in the studied patients. The haplotype ABCC2*2 was associated with lower irinotecan clearance (28.3 versus 31.6 l/h; P=0.020). In patients who did not carry a UGT1A1*28 allele, a significant reduction of severe diarrhea was noted in patients with the ABCC2*2 haplotype (10 versus 44%; odds ratio, 0.15; 95% confidence interval, 0.04-0.61; P=0.005). This effect was not observed in patients with at least one UGT1A1*28 allele (32 versus 20%; odds ratio, 1.87; 95% confidence interval, 0.49-7.05; P=0.354). This study suggests that the presence of the ABCC2*2 haplotype is associated with less irinotecan-related diarrhea, maybe as a consequence of reduced hepatobiliary secretion of irinotecan. As the association was seen in patients not genetically predisposed at risk for diarrhea due to UGT1A1*28, confirmatory studies of the relationships of ABCC2 genotypes and irinotecan disposition and toxicity are warranted.
Collapse
|
81
|
Ng VY, Morisseau C, Falck JR, Hammock BD, Kroetz DL. Inhibition of smooth muscle proliferation by urea-based alkanoic acids via peroxisome proliferator-activated receptor alpha-dependent repression of cyclin D1. Arterioscler Thromb Vasc Biol 2006; 26:2462-8. [PMID: 16917105 PMCID: PMC1904341 DOI: 10.1161/01.atv.0000242013.29441.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) and the role of PPARalpha in smooth muscle cell proliferation. METHODS AND RESULTS Alkanoic acids transactivated PPARalpha, induced binding of PPARalpha to its response element, and significantly induced the expression of PPARalpha-responsive genes, showing their function as PPARalpha agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor-induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARalpha expression, it was determined that PPARalpha was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. CONCLUSIONS These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARalpha. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation.
Collapse
|
82
|
Kroetz DL. Role for drug transporters beyond tumor resistance: hepatic functional imaging and genotyping of multidrug resistance transporters for the prediction of irinotecan toxicity. J Clin Oncol 2006; 24:4225-7. [PMID: 16895999 DOI: 10.1200/jco.2006.07.2355] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
83
|
Komoto C, Nakamura T, Sakaeda T, Kroetz DL, Yamada T, Omatsu H, Koyama T, Okamura N, Miki I, Tamura T, Aoyama N, Kasuga M, Okumura K. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab Pharmacokinet 2006; 21:126-32. [PMID: 16702732 DOI: 10.2133/dmpk.21.126] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genotype frequencies of MDR1 T-129C, C1236T, G2677A,T and C3435T SNPs were compared in 154 healthy Japanese and 100 healthy Caucasians to provide basic information on the inter-ethnic differences of pharmacotherapeutic outcome. The variants were found at allelic frequencies of 5.5%, 65.6%, 16.6%, 40.6% and 40.6%, for T-129C, C1236T, G2677A, G2677T and C3435T, respectively, in Japanese, and at 5.1%, 45.9%, 3.6%, 46.4% and 56.6%, respectively, in Caucasians, with a statistically significant difference for C1236T, G2677A,T and C3435T (p<0.001). G2677A was about 5-fold more frequent in Japanese than Caucasians. These genotype frequencies were also investigated in 95 Japanese patients with colorectal cancer (CRC) and esophageal squamous cell carcinoma (ESCC), but no significant difference was detected, when compared with healthy Japanese subjects. The haplotype frequency reached a total of about 85% in Japanese with the following 4 major haplotypes; T(-129)-T1236-T2677-T3435 (36.1%), T(-129)-T1236-G2677-C3435 (22.5%), T(-129)-C1236-G2677-C3435 (14.2%) and T(-129)-C1236-A2677-C3435 (13.3%). The second and fourth haplotypes were hardly inferred in Caucasian, whereas T(-129)-C1236-G2677-T3435 (12.8%) was found to be Caucasian-specific. There was a tendency for higher frequencies of the T(-129)/C-(129)-C1236-A2677-C3435 haplotype in Japanese CRC patients and T(-129)-T1236-T2677-T3435 haplotype in Japanese ESCC patients, compared with that in healthy Japanese subjects.
Collapse
|
84
|
Xu F, Ng VY, Kroetz DL, de Montellano PRO. CYP4 isoform specificity in the omega-hydroxylation of phytanic acid, a potential route to elimination of the causative agent of Refsum's disease. J Pharmacol Exp Ther 2006; 318:835-9. [PMID: 16707724 DOI: 10.1124/jpet.106.104976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The saturated C20 isoprenoid phytanic acid is physiologically derived from phytol released in the degradation of chlorophyll. The presence of a C-3 methyl group in this substrate blocks normal beta-oxidation, so phytanic acid degradation primarily occurs by initial peroxisomal alpha-oxidation to shift the register of the methyl group. However, individuals with Refsum's disease are genetically deficient in the required phytanoyl-CoA alpha-hydroxylase and suffer from neurological pathologies caused by the accumulation of phytanic acid. Recent work has shown that phytanic acid can also be catabolized by a pathway initiated by omega-hydroxylation of the hydrocarbon chain, followed by oxidation of the alcohol to the acid and conventional beta-oxidation. However, the enzymes responsible for the omega-hydroxylation of phytanic acid have not been identified. In this study, we have determined the activities of all of the rat and human CYP4A enzymes and two of the rat CYP4F enzymes, with respect to the omega-hydroxylation of phytanic acid. Furthermore, we have shown that the ability to omega-hydroxylate phytanic acid is elevated in microsomes from rats pretreated with clofibrate. The results support a possible role for CYP4 enzyme elevation in the elimination of phytanic acid in Refsum's disease patients.
Collapse
|
85
|
Badagnani I, Sorani M, Edwards RH, Brown C, Castro RA, Huang CC, Stryke D, Kawamoto M, Johns SJ, Carlson EJ, Taylor T, Chan W, De La Cruz M, Ferrin TE, Burchard EG, Herskowitz I, Kroetz DL, Giacomini KM. PharmGKB submission update: VI. PMT submissions of genetic variations in neurotransmitter transporters (SLC6, SLC17, and SLC18) to the PharmGKB network. Pharmacol Rev 2006; 58:5-6. [PMID: 16507879 DOI: 10.1124/pr.58.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
86
|
Nguyen TD, Gow JM, Chinn LW, Kelly L, Jeong H, Huang CC, Stryke D, Kawamoto M, Johns SJ, Carlson E, Taylor T, Ferrin TE, Sali A, Giacomini KM, Kroetz DL. PharmGKB Submission Update: IV. PMT Submissions of Genetic Variations in ATP-Binding Cassette Transporters to the PharmGKB Network. Pharmacol Rev 2006; 58:1-2. [PMID: 16507877 DOI: 10.1124/pr.58.1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
87
|
Shu Y, Urban TJ, Leabman MK, Fujita T, Erdman AR, Lagpacan LL, Brown C, Castro RA, Huang CC, Stryke D, Kawamoto M, Johns SJ, Taylor TR, Chan W, De La Cruz M, Carlson EJ, Ferrin TE, Brett CM, Burchard EG, Herskowitz I, Kroetz DL, Giacomini KM. PharmGKB Submission Update: V. PMT Submissions of Genetic Variation in SLC22 Family Transporters. Pharmacol Rev 2006; 58:3-4. [PMID: 16507878 DOI: 10.1124/pr.58.1.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
88
|
Yu Z, Ng VY, Su P, Engler MM, Engler MB, Huang Y, Lin E, Kroetz DL. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid. J Pharmacol Exp Ther 2006; 317:732-8. [PMID: 16421287 DOI: 10.1124/jpet.105.098558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet.
Collapse
|
89
|
Andersson T, Flockhart DA, Goldstein DB, Huang SM, Kroetz DL, Milos PM, Ratain MJ, Thummel K. Drug-metabolizing enzymes: Evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther 2005; 78:559-81. [PMID: 16338273 DOI: 10.1016/j.clpt.2005.08.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/12/2005] [Indexed: 11/15/2022]
|
90
|
Wang D, Johnson AD, Papp AC, Kroetz DL, Sadée W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15:693-704. [PMID: 16141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVES ABCB1 (multidrug resistance 1 polypeptide, MDR1, Pgp) is a multispecific efflux transporter of drugs and xenobiotics. Among numerous polymorphisms in human ABCB1, the synonymous SNP 3435C > T has been associated with decreased mRNA and protein levels, via unknown mechanisms. METHODS To search for cis-acting polymorphism affecting transcription or mRNA processing, we used 3435C > T as a marker single nucleotide polymorphism (SNP), for measuring differences in allelic mRNA expression. Ratios of allelic abundance in genomic DNA and mRNA (after conversion to cDNA) were measured quantitatively with a primer extension assay, in human liver samples. RESULTS mRNA expression of the 3435C allele was significantly higher than that of the 3435T allele (3435C/3435T ratios ranging from 1.06-1.61). Cotransfection of equal amounts of ABCB1 expression plasmids containing 3435C or 3435T also revealed higher 3435C mRNA expression. Increasing 3435C/3435T ratios after cessation of transcription indicated that the 3435C > T substitution decreases mRNA stability. 3435C > T is in strong linkage disequilibrium with two other coding SNPs (1236C > T and 2677G > T) forming two abundant haplotypes (ABCB1*1 and ABCB1*13). Transfection of all possible combinations of these three SNPs demonstrated that only 3435T is associated with lower mRNA levels. Calculations of mRNA folding, using Mfold, suggested an effect on mRNA secondary structure. CONCLUSIONS the abundant 3435C > T SNP appears to be a main factor in allelic variation of ABCB1 mRNA expression in the liver, by changing mRNA stability.
Collapse
|
91
|
Seubert JM, Xu F, Graves JP, Collins JB, Sieber SO, Paules RS, Kroetz DL, Zeldin DC. Differential renal gene expression in prehypertensive and hypertensive spontaneously hypertensive rats. Am J Physiol Renal Physiol 2005; 289:F552-61. [PMID: 15798089 DOI: 10.1152/ajprenal.00354.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of hypertension stems from both environmental and genetic factors wherein the kidney plays a central role. Spontaneously hypertensive rats (SHR) and the nonhypertensive Wistar-Kyoto (WKY) controls are widely used as a model for studying hypertension. The present study examined the renal gene expression profiles between SHR and WKY at a prehypertensive stage (3 wk of age) and hypertensive stage (9 wk of age). Additionally, age-related changes in gene expression patterns were examined from 3 to 9 wk in both WKY and SHR. Five to six individual kidney samples of the same experimental group were pooled together, and quadruplicate hybridizations were performed using the National Institute of Environmental Health Sciences Rat version 2.0 Chip, which contains ∼6,700 genes. Twenty two genes were found to be differentially expressed between SHR and WKY at 3 wk of age, and 104 genes were differentially expressed at 9 wk of age. Soluble epoxide hydrolase ( Ephx2) was found to be significantly upregulated in SHR at both time points and was the predominant outlier. Conversely, elastase 1 ( Ela1) was found to be the predominant gene downregulated in SHR at both time points. Analysis of profiles at 3 vs. 9 wk of age identified 508 differentially expressed genes in WKY rats. In contrast, only 211 genes were found to be differentially expressed during this time period in SHR. The altered gene expression patterns observed in the age-related analysis suggested significant differences in the vascular extracellular matrix system between SHR and WKY kidney. Together, our data highlight the complexity of hypertension and the numerous genes involved in and affected by this condition.
Collapse
|
92
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
|
93
|
Pauli-Magnus C, Kroetz DL. Functional Implications of Genetic Polymorphisms in the Multidrug Resistance Gene MDR1 (ABCB1). Pharm Res 2004; 21:904-13. [PMID: 15212152 DOI: 10.1023/b:pham.0000029276.21063.0b] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The multidrug resistance (MDR1) gene product P-glycoprotein is a membrane protein that functions as an ATP-dependent efflux pump, transporting exogenous and endogenous substrates from the inside of cells to the outside. Physiological expression of P-glycoprotein in tissues with excretory or protective function is a major determinant of drug disposition and provides a cellular defense mechanism against potentially harmful compounds. Therefore, P-glycoprotein has significant impact on therapeutic efficacy and toxicity as it plays a key role in absorption of oral medications from the intestinal tract, excretion into bile and urine, and distribution into protected tissues such as the brain and testes. There is increasing interest in the possible role of genetic variation in MDR1 in drug therapy. Numerous genetic polymorphisms in MDR1 have been described, some of which have been shown to determine P-glycoprotein expression levels and substrate transport. Furthermore, some of these polymorphisms have an impact on pharmacokinetic and pharmacodynamic profiles of drug substrates and directly influence outcome and prognosis of certain diseases. This review will focus on the impact of genetic variation in MDR1 on expression and function of P-glycoprotein and the implications of this variation for drug therapy and disease risk.
Collapse
|
94
|
Yu Z, Davis BB, Morisseau C, Hammock BD, Olson JL, Kroetz DL, Weiss RH. Vascular localization of soluble epoxide hydrolase in the human kidney. Am J Physiol Renal Physiol 2003; 286:F720-6. [PMID: 14665429 DOI: 10.1152/ajprenal.00165.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epoxyeicosatrienoic acids are cytochrome P-450 metabolites of arachidonic acid with multiple biological functions, including the regulation of vascular tone, renal tubular transport, cellular proliferation, and inflammation. Epoxyeicosatrienoic acids are converted by soluble epoxide hydrolase into the corresponding dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acid hydration is regarded as one mechanism whereby their biological effects are eliminated. Previous animal studies indicate that soluble epoxide hydrolase plays an important role in the regulation of renal eicosanoid levels and systemic blood pressure. To begin to elucidate the mechanism of these effects, we determined the cellular localization of soluble epoxide hydrolase in human kidney by examining biopsies taken from patients with a variety of non-end-stage renal diseases, as well as those without known renal disease. Immunohistochemical staining of acetone-fixed kidney biopsy samples revealed that soluble epoxide hydrolase was preferentially expressed in the renal vasculature with relatively low levels in the surrounding tubules. Expression of soluble epoxide hydrolase was evident in renal arteries of varying diameter and was localized mostly in the smooth muscle layers of the arterial wall. Western blot analysis and functional assays confirmed the expression of soluble epoxide hydrolase in the human kidney. There were no obvious differences in soluble epoxide hydrolase expression between normal and diseased human kidney tissue in the samples examined. Our results indicate that soluble epoxide hydrolase is present in the human kidney, being preferentially expressed in the renal vasculature, and support an essential role for this enzyme in renal hemodynamic regulation and its potential utility as a target for therapeutic intervention.
Collapse
|
95
|
Xu F, Falck JR, Ortiz de Montellano PR, Kroetz DL. Catalytic Activity and Isoform-Specific Inhibition of Rat Cytochrome P450 4F Enzymes. J Pharmacol Exp Ther 2003; 308:887-95. [PMID: 14634044 DOI: 10.1124/jpet.103.059626] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arachidonic acid is omega-hydroxylated to 20-hydroxyeicosatetraenoic acid (20-HETE), which has effects on vasoactivity and renal tubular transport and has been implicated in the regulation of blood pressure. Cytochrome p450 (p450) 4A isoforms are generally considered the major arachidonic acid omega-hydroxylases; however, little is known about the role of rat CYP4F isoforms in 20-HETE formation. The rat CYP4F isoforms, CYP4F1, CYP4F4, CYP4F5, and CYP4F6, were heterologously expressed in Escherichia coli, and their substrate specificity in fatty acid metabolism was characterized. Substrate-binding assays indicated that leukotriene B(4) (LTB(4)) and arachidonic acid bound CYP4F1 and CYP4F4 in a type-I manner with a K(s) of 25 to 59 microM, and lauric acid bound CYP4F4 poorly. Reconstituted CYP4F1 and CYP4F4 catalyzed the omega-hydroxylation of LTB(4) with a K(m) of 24 and 31 microM, respectively, and CYP4F5 had minor activity in LTB(4) metabolism. Importantly, CYP4F1 and CYP4F4 catalyzed the omega-hydroxylation of arachidonic acid with an apparent k(cat) of 9 and 11 min(-1), respectively. Lauric acid was a poor substrate for all of the CYP4F isoforms, and CYP4F6 had no detectable fatty acid omega-hydroxylase activity. The p450 omega-hydroxylase inhibitors 17-octadecynoic acid, 10-undecynyl sulfate, and N-methylsulfonyl-12,12-dibromododec-11-enamide showed isoform-specific inhibition of CYP4F1- and CYP4F4-catalyzed omega-hydroxylation of arachidonic acid and potency differences between the CYP4A and CYP4F isoforms. These data support a significant role for CYP4F1 and CYP4F4 in the formation of 20-HETE and identify p450 inhibitors that can be used to understand the relative contribution of the CYP4A and CYP4F isoforms to renal 20-HETE formation.
Collapse
|
96
|
Pauli-Magnus C, Feiner J, Brett C, Lin E, Kroetz DL. No effect of MDR1 C3435T variant on loperamide disposition and central nervous system effects. Clin Pharmacol Ther 2003; 74:487-98. [PMID: 14586389 DOI: 10.1016/s0009-9236(03)00234-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The MDR1 gene encodes the efflux transporter P-glycoprotein, which is highly expressed in the small intestine and in the blood-brain barrier. A major function of P-glycoprotein is to limit the absorption and central nervous system exposure of numerous xenobiotics. A genetic polymorphism in the MDR1 gene (C3435T) has been associated with changes in the intestinal expression level and function of P-glycoprotein. The aim of this study was to investigate the effect of this polymorphism on disposition and brain entry of the P-glycoprotein substrate loperamide. METHODS Healthy white volunteers were genotyped for the MDR1 C3435T polymorphism, and a 16-mg oral dose of loperamide was administered to 8 subjects with the 3435TT genotype and 8 subjects with the 3435CC genotype. Plasma levels of loperamide were determined by liquid chromatography-tandem mass spectrometry. Loperamide-induced respiratory depression was detected as the ventilatory response to carbon dioxide and was used as a measure of central nervous system side effects. RESULTS We found no significant difference in loperamide pharmacokinetics between individuals homozygous for the C and the T alleles in position 3435 of MDR1, as follows: peak plasma drug concentration, 3164 +/- 1053 pg/mL and 3021 +/- 984 pg/mL; area under the concentration-time curve from 0 to 8 hours, 14414 +/- 4756 pg. h/mL and 14923 +/- 6466 pg. h/mL; and time to peak plasma drug concentration, 3.9 +/- 1.4 hours and 3.9 +/- 2.6 hours for the MDR1 3435CC and 3435TT genotypes, respectively (P >.05, for all parameters). Hypercapnic ventilatory response changed only minimally after ingestion of loperamide (the coefficient of variation during the 0- to 8-hour period was 21% +/- 14% for the sample population), and there was no MDR1 3435 genotype-related effect on respiratory response. Carriers of the 2 major MDR1 haplotypes, MDR1*1 and MDR1*13, did not differ in their response to loperamide. CONCLUSION There was no association between the MDR1 C3435T variation and plasma levels or central nervous system effects of the P-glycoprotein substrate loperamide in a white study population. The MDR1 haplotype structure was quite variable and supports the use of haplotypes instead of single nucleotide polymorphisms in determining clinical consequences of genetic variation.
Collapse
|
97
|
Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Carlson EJ, Herskowitz I, Giacomini KM, Clark AG. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. PHARMACOGENETICS 2003; 13:481-94. [PMID: 12893986 DOI: 10.1097/00008571-200308000-00006] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES There is increasing evidence that polymorphism of the ABCB1 (MDR1) gene contributes to interindividual variability in bioavailability and tissue distribution of P-glycoprotein substrates. The aim of the present study was to (1) identify and describe novel variants in the ABCB1 gene, (2) understand the extent of variation in ABCB1 at the population level, (3) analyze how variation in ABCB1 is structured in haplotypes, and (4) functionally characterize the effect of the most common amino acid change in P-glycoprotein. METHODS AND RESULTS Forty-eight variant sites, including 30 novel variants and 13 coding for amino acid changes, were identified in a collection of 247 ethnically diverse DNA samples. These variants comprised 64 statistically inferred haplotypes, 33 of which accounted for 92% of chromosomes analyzed. The two most common haplotypes, ABCB1*1 and ABCB1*13, differed at six sites (three intronic, two synonymous, and one non-synonymous) and were present in 36% of all chromosomes. Significant population substructure was detected at both the nucleotide and haplotype level. Linkage disequilibrium was significant across the entire ABCB1 gene, especially between the variant sites found in ABCB1*13, and recombination was inferred. The Ala893Ser change found in the common ABCB1*13 haplotype did not affect P-glycoprotein function. CONCLUSION This study represents a comprehensive analysis of ABCB1 nucleotide diversity and haplotype structure in different populations and illustrates the importance of haplotype considerations in characterizing the functional consequences of ABCB1 polymorphisms.
Collapse
|
98
|
Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, de la Cruz M, Johns SJ, Stryke D, Kawamoto M, Urban TJ, Kroetz DL, Ferrin TE, Clark AG, Risch N, Herskowitz I, Giacomini KM. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci U S A 2003; 100:5896-901. [PMID: 12719533 PMCID: PMC156298 DOI: 10.1073/pnas.0730857100] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane transporters maintain cellular and organismal homeostasis by importing nutrients and exporting toxic compounds. Transporters also play a crucial role in drug response, serving as drug targets and setting drug levels. As part of a pharmacogenetics project, we screened exons and flanking intronic regions for variation in a set of 24 membrane transporter genes (96 kb; 57% coding) in 247 DNA samples from ethnically diverse populations. We identified 680 single nucleotide polymorphisms (SNPs), of which 175 were synonymous and 155 caused amino acid changes, and 29 small insertions and deletions. Amino acid diversity (pi(NS)) in transmembrane domains (TMDs) was significantly lower than in loop domains, suggesting that TMDs have special functional constraints. This difference was especially striking in the ATP-binding cassette superfamily and did not parallel evolutionary conservation: there was little variation in the TMDs, even in evolutionarily unconserved residues. We used allele frequency distribution to evaluate different scoring systems (Grantham, blosum62, SIFT, and evolutionarily conservedevolutionarily unconserved) for their ability to predict which SNPs affect function. Our underlying assumption was that alleles that are functionally deleterious will be selected against and thus under represented at high frequencies and over represented at low frequencies. We found that evolutionary conservation of orthologous sequences, as assessed by evolutionarily conservedevolutionarily unconserved and SIFT, was the best predictor of allele frequency distribution and hence of function. European Americans had an excess of high frequency alleles in comparison to African Americans, consistent with a historic bottleneck. In addition, African Americans exhibited a much higher frequency of population specific medium-frequency alleles than did European Americans.
Collapse
|
99
|
Xu F, Straub WO, Pak W, Su P, Maier KG, Yu M, Roman RJ, Ortiz De Montellano PR, Kroetz DL. Antihypertensive effect of mechanism-based inhibition of renal arachidonic acid omega-hydroxylase activity. Am J Physiol Regul Integr Comp Physiol 2002; 283:R710-20. [PMID: 12185006 DOI: 10.1152/ajpregu.00522.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation. A single dose of 10-SUYS caused an acute reduction in mean arterial blood pressure in 8-wk-old spontaneously hypertensive rats. The decrease in mean arterial pressure was maximal 6 h after 10-SUYS treatment (17.9 +/- 3.2 mmHg; P < 0.05), and blood pressure returned to baseline levels within 24 h after treatment. Treatment with 10-SUYS was associated with a decrease in urinary 20-HETE formation in vivo and attenuation of the vasoconstrictor response of renal interlobar arteries to ANG II in vitro. These results provide further evidence that 20-HETE plays an important role in the regulation of blood pressure in the spontaneously hypertensive rat.
Collapse
|
100
|
Pauli-Magnus C, Kroetz DL. MDR1 reference sequence and reference function. Clin Pharmacol Ther 2002; 72:100-1. [PMID: 12152008 DOI: 10.1067/mcp.2002.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|