76
|
Ramsey DJ, Sunness JS, Malviya P, Applegate C, Hager GD, Handa JT. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration. Retina 2014; 34:1296-1307. [PMID: 24398699 DOI: 10.1097/iae.0000000000000069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). METHODS The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. RESULTS The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. CONCLUSION The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.
Collapse
|
77
|
Wang L, Cano M, Handa JT. p62 provides dual cytoprotection against oxidative stress in the retinal pigment epithelium. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1248-58. [PMID: 24667411 PMCID: PMC4019388 DOI: 10.1016/j.bbamcr.2014.03.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.
Collapse
|
78
|
Chen C, Cano M, Wang JJ, Li J, Huang C, Yu Q, Herbert TP, Handa JT, Zhang SX. Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells. Antioxid Redox Signal 2014; 20:2091-106. [PMID: 24053669 PMCID: PMC3995121 DOI: 10.1089/ars.2013.5240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIMS Age-related macular degeneration (AMD), a major cause of legal blindness in the elderly, is associated with genetic and environmental risk factors, such as cigarette smoking. Recent evidence shows that cigarette smoke (CS) that contains high levels of potent oxidants preferably targets retinal pigment epithelium (RPE) leading to oxidative damage and apoptosis; however, the mechanisms are poorly understood. The present study aimed to investigate the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in CS-related RPE apoptosis. RESULTS ER stress and proapoptotic gene C/EBP homologous protein (CHOP) were induced in the RPE/choroid complex from mice exposed to CS for 2 weeks and in human RPE cells treated with hydroquinone, a potent oxidant found at high concentrations in CS. Suppressing ER stress or inhibiting CHOP activation by pharmacological chaperones or genetic approaches attenuated hydroquinone-induced RPE cell apoptosis. In contrast to enhanced CHOP activation, protein level of active X-box binding protein 1 (XBP1), a major regulator of the adaptive UPR, was reduced in hydroquinone-treated cells. Conditional knockout of XBP1 gene in the RPE resulted in caspase-12 activation, increased CHOP expression, and decreased antiapoptotic gene Bcl-2. Furthermore, XBP1-deficient RPE cells are more sensitive to oxidative damage induced by hydroquinone or NaIO3, a CS-unrelated chemical oxidant. Conversely, overexpressing XBP1 protected RPE cells and attenuated oxidative stress-induced RPE apoptosis. INNOVATION AND CONCLUSION These findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells. Thus, the modulation of the UPR signaling may provide a promising target for the treatment of AMD.
Collapse
|
79
|
Wang L, Kondo N, Cano M, Ebrahimi K, Yoshida T, Barnett BP, Biswal S, Handa JT. Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radic Biol Med 2014; 70:155-66. [PMID: 24440594 PMCID: PMC4006310 DOI: 10.1016/j.freeradbiomed.2014.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/31/2013] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
Abstract
Whereas cigarette smoking (CS) and dysregulated complement are thought to play central roles in age-related macular degeneration (AMD), their exact roles are unknown. The aim of this study was to determine if CS activates complement and if the antioxidant transcription factor Nrf2 modulates this response. In AMD specimens, Nrf2 immunolabeling was strong in the cytoplasm, with scattered nuclear labeling of macular retinal pigmented epithelial (RPE) cells that appeared normal, but was decreased and without nuclear labeling in dysmorphic cells overlying drusen, a hallmark AMD lesion. Cigarette smoke extract (CSE) induced Nrf2 nuclear translocation in RPE cells with increased antioxidant and complement gene expression. Whereas CFH protein was not altered by CSE, the cell membrane regulator proteins CD46, CD55, and CD59 were decreased, and C3a and C3b, but not iC3b, were increased compared to controls. C5b-9 was increased by CSE, but at sublytic levels, only after addition of normal human serum. Nrf2 knockdown enhanced the increase in C3a and C3b from CSE, but not iC3b, C5a, or C5b-9. CSE also increased IL-1b expression and secretion after C3a generation and was reduced by a C3aR antagonist. In contrast, the Nrf2 activator CDDO-Im restored complement gene expression in RPE cells exposed to CSE. We provide evidence of altered Nrf2 in human AMD and that CSE induces a proinflammatory environment specifically by generating C3a and C3b, and Nrf2 deficiency magnifies this specific complement response.
Collapse
|
80
|
Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 2014; 69:1-14. [PMID: 24434119 PMCID: PMC3960355 DOI: 10.1016/j.freeradbiomed.2014.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.
Collapse
|
81
|
Cruz-Guilloty F, Saeed AM, Duffort S, Cano M, Ebrahimi KB, Ballmick A, Tan Y, Wang H, Laird JM, Salomon RG, Handa JT, Perez VL. T cells and macrophages responding to oxidative damage cooperate in pathogenesis of a mouse model of age-related macular degeneration. PLoS One 2014; 9:e88201. [PMID: 24586307 PMCID: PMC3929609 DOI: 10.1371/journal.pone.0088201] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/05/2014] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major disease affecting central vision, but the pathogenic mechanisms are not fully understood. Using a mouse model, we examined the relationship of two factors implicated in AMD development: oxidative stress and the immune system. Carboxyethylpyrrole (CEP) is a lipid peroxidation product associated with AMD in humans and AMD-like pathology in mice. Previously, we demonstrated that CEP immunization leads to retinal infiltration of pro-inflammatory M1 macrophages before overt retinal degeneration. Here, we provide direct and indirect mechanisms for the effect of CEP on macrophages, and show for the first time that antigen-specific T cells play a leading role in AMD pathogenesis. In vitro, CEP directly induced M1 macrophage polarization and production of M1-related factors by retinal pigment epithelial (RPE) cells. In vivo, CEP eye injections in mice induced acute pro-inflammatory gene expression in the retina and human AMD eyes showed distinctively diffuse CEP immunolabeling within RPE cells. Importantly, interferon-gamma (IFN-γ) and interleukin-17 (IL-17)-producing CEP-specific T cells were identified ex vivo after CEP immunization and promoted M1 polarization in co-culture experiments. Finally, T cell immunosuppressive therapy inhibited CEP-mediated pathology. These data indicate that T cells and M1 macrophages activated by oxidative damage cooperate in AMD pathogenesis.
Collapse
|
82
|
Valapala M, Wilson C, Hose S, Bhutto IA, Grebe R, Dong A, Greenbaum S, Gu L, Sengupta S, Cano M, Hackett S, Xu G, Lutty GA, Dong L, Sergeev Y, Handa JT, Campochiaro P, Wawrousek E, Zigler JS, Sinha D. Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy 2014; 10:480-96. [PMID: 24468901 PMCID: PMC4077886 DOI: 10.4161/auto.27292] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In phagocytic cells, including the retinal pigment epithelium (RPE), acidic compartments of the endolysosomal system are regulators of both phagocytosis and autophagy, thereby helping to maintain cellular homeostasis. The acidification of the endolysosomal system is modulated by a proton pump, the V-ATPase, but the mechanisms that direct the activity of the V-ATPase remain elusive. We found that in RPE cells, CRYBA1/βA3/A1-crystallin, a lens protein also expressed in RPE, is localized to lysosomes, where it regulates endolysosomal acidification by modulating the V-ATPase, thereby controlling both phagocytosis and autophagy. We demonstrated that CRYBA1 coimmunoprecipitates with the ATP6V0A1/V0-ATPase a1 subunit. Interestingly, in mice when Cryba1 (the gene encoding both the βA3- and βA1-crystallin forms) is knocked out specifically in RPE, V-ATPase activity is decreased and lysosomal pH is elevated, while cathepsin D (CTSD) activity is decreased. Fundus photographs of these Cryba1 conditional knockout (cKO) mice showed scattered lesions by 4 months of age that increased in older mice, with accumulation of lipid-droplets as determined by immunohistochemistry. Transmission electron microscopy (TEM) of cryba1 cKO mice revealed vacuole-like structures with partially degraded cellular organelles, undigested photoreceptor outer segments and accumulation of autophagosomes. Further, following autophagy induction both in vivo and in vitro, phospho-AKT and phospho-RPTOR/Raptor decrease, while pMTOR increases in RPE cells, inhibiting autophagy and AKT-MTORC1 signaling. Impaired lysosomal clearance in the RPE of the cryba1 cKO mice also resulted in abnormalities in retinal function that increased with age, as demonstrated by electroretinography. Our findings suggest that loss of CRYBA1 causes lysosomal dysregulation leading to the impairment of both autophagy and phagocytosis.
Collapse
|
83
|
Ebrahimi KB, Fijalkowski N, Cano M, Handa JT. Oxidized Low-Density-Lipoprotein-Induced Injury in Retinal Pigment Epithelium Alters Expression of the Membrane Complement Regulatory Factors CD46 and CD59 through Exosomal and Apoptotic Bleb Release. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:259-65. [DOI: 10.1007/978-1-4614-3209-8_33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
84
|
Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, Du Y, Kern TS, Thimmulappa R, Barber AJ, Biswal S, Duh EJ. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 2014; 57:204-13. [PMID: 24186494 PMCID: PMC4039644 DOI: 10.1007/s00125-013-3093-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/07/2013] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR. METHODS Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints. RESULTS NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood-retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes. CONCLUSIONS/INTERPRETATION These results indicate that NRF2 is an important protective factor regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.
Collapse
|
85
|
Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res 2013; 119:111-4. [PMID: 24216314 DOI: 10.1016/j.exer.2013.10.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022]
Abstract
Age-related macular degeneration (AMD) represents the leading cause of blindness in the elderly, yet no definitive therapy exists for early, dry disease. Several lines of evidence have implicated oxidative stress-induced damage to the retinal pigment epithelium (RPE) in the pathogenesis of AMD, suggesting that the aging RPE may exhibit increased susceptibility to cell damage induced by exogenous stressors. The transcription factor Nrf2 serves as the master regulator of a highly coordinated antioxidant response in virtually all cell types. We compared Nrf2 signaling in the RPE of young (2 months) and old (15 months) mice under unstressed and stressed (sodium iodate) conditions. The aging RPE expressed higher levels of the Nrf2 target genes NQO1, GCLM, and HO1 compared with the RPE of younger mice under unstressed conditions, suggesting an age-related increase in basal oxidative stress. Moreover, the RPE of older mice demonstrated impaired induction of the protective Nrf2 pathway following oxidative stress induced with sodium iodate. The RPE of old mice exposed to sodium iodate also exhibited higher levels of superoxide anion and malondialdehyde than young mice, suggesting inadequate protection against oxidative damage. Induction of Nrf2 signaling in response to sodium iodate was partially restored in the RPE of aging mice with genetic rescue, using conditional knockdown of the Nrf2 negative regulator Keap1 (Tam-Cre; Keap1loxP) compared to Keap1loxP mice. These data indicate that the aging RPE is vulnerable to oxidative damage due to impaired Nrf2 signaling, and that Nrf2 signaling is a promising target for novel pharmacologic or genetic therapeutic strategies.
Collapse
|
86
|
Cutler N, Balicki M, Finkelstein M, Wang J, Gehlbach P, McGready J, Iordachita I, Taylor R, Handa JT. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Invest Ophthalmol Vis Sci 2013; 54:1316-24. [PMID: 23329663 DOI: 10.1167/iovs.12-11136] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the extent that auditory force feedback (AFF) substitution improves performance during a simulated ophthalmic peeling procedure. METHODS A 25-gauge force-sensing microforceps was linked to two AFF modes. The "alarm" AFF mode sounded when the force reached 9 mN. The "warning" AFF mode made beeps with a frequency proportional to the generated force. Participants with different surgical experience levels were asked to peel a series of bandage strips off a platform as quickly as possible without exceeding 9 mN of force. In study arm A, participants peeled with alarm and warning AFF modes, the order randomized within the experience level. In study arm B, participants first peeled without AFF, then alarm or warning AFF (order randomized within the experience level), and finally without AFF. RESULTS Of the 28 "surgeon" participants, AFF improved membrane peeling performance, reducing average force generated (P < 0.01), SD of forces (P < 0.05), and force × time above 9 mN (P < 0.01). Short training periods with AFF improved subsequent peeling performance when AFF was turned off, with reductions in average force, SD of force, maximum force, time spent above 9 mN, and force × time above 9 mN (all P < 0.001). Except for maximum force, peeling with AFF reduced all force parameters (P < 0.05) more than peeling without AFF after completing a training session. CONCLUSIONS AFF enables the surgeon to reduce the forces generated with improved precision during phantom membrane peeling, regardless of surgical experience. New force-sensing surgical tools combined with AFF offer the potential to enhance surgical training and improve surgical performance.
Collapse
|
87
|
Barnett BP, Handa JT. Retinal microenvironment imbalance in dry age-related macular degeneration: a mini-review. Gerontology 2013; 59:297-306. [PMID: 23406680 DOI: 10.1159/000346169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. To prevent what will certainly be a tremendous health and economic burden, effective therapeutics for AMD are urgently needed. To develop these agents in a timely fashion, the molecular pathways that cause disease progression must be elucidated. OBJECTIVE To briefly describe the clinical features of AMD, and review the current understanding of the molecular basis of AMD. METHODS A literature review. RESULTS The discussion will primarily focus on the interplay of oxidative stress and complement dysregulation and the resulting chronic proinflammatory state thought to be central in AMD pathogenesis. CONCLUSIONS Oxidative stress and complement dysregulation play a substantive role in the development of AMD.
Collapse
|
88
|
Ebrahimi KB, Fijalkowski N, Cano M, Handa JT. Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. J Pathol 2013; 229:729-42. [PMID: 23097248 DOI: 10.1002/path.4128] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 01/29/2023]
Abstract
Dysregulated complement is thought to play a central role in age-related macular degeneration (AMD) pathogenesis, but the specific mechanisms have yet to be determined. In maculae of AMD specimens, we found that the complement regulatory protein, CD59, was increased in regions of uninvolved retinal pigmented epithelium (RPE) of early AMD, but decreased in the RPE overlying drusen and in geographic atrophy, an advanced form of AMD. While CD46 immunostaining was basolaterally distributed in the RPE of unaffected controls, it was decreased in diseased areas of early AMD samples. Since oxidized low-density lipoproteins (oxLDL) collect in drusen of AMD and are a known complement trigger, we treated ARPE-19 cells with oxLDL and found that cellular CD46 and CD59 proteins were decreased by 2.9- and nine-fold (p < 0.01), respectively. OxLDLs increased complement factor B mRNA and Bb protein, but not factor D, I or H. OxLDLs increased C3b, but not C3a, C5 or C5b-9. C5b-9 was increased by 27% (p < 0.01) when the medium was supplemented with human serum, which was sufficient to induce poly(ADP-ribose) polymerase cleavage, a marker of apoptosis. The decreased levels of CD46 and CD59 were in part explained by their release in exosomal and apoptotic membranous particles. In addition, CD59 was partially degraded through activation of IRE1α. Collectively, these results suggest that a combination of impaired complement regulators results in inadequately controlled complement by the RPE in AMD that induces RPE damage.
Collapse
|
89
|
Ibrahim MA, Do DV, Sepah YJ, Shah SM, Van Anden E, Hafiz G, Donahue JK, Rivers R, Balkissoon J, Handa JT, Campochiaro PA, Nguyen QD. Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate. BMC Pharmacol Toxicol 2013; 14:7. [PMID: 23316779 PMCID: PMC3552984 DOI: 10.1186/2050-6511-14-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 01/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background This study was designed to assess the safety, tolerability, and efficacy of intravenous infusion of CA4P in patients with neovascular age-related macular degeneration (AMD). Methods Prospective, interventional, dose-escalation clinical trial. Eight patients with neovascular AMD refractory to at least 2 sessions of photodynamic therapy received CA4P at a dose of 27 or 36 mg/m2 as weekly intravenous infusion for 4 consecutive weeks. Safety was monitored by vital signs, ocular and physical examinations, electrocardiogram, routine laboratory tests, and collection of adverse events. Efficacy was assessed using retinal fluorescein angiography, optical coherence tomography, and best corrected visual acuity (BCVA). Results The most common adverse events were elevated blood pressure (46.7%), QTc prolongation (23.3%), elevated temperature (13.3%), and headache (10%), followed by nausea and eye injection (6.7%). There were no adverse events that were considered severe in intensity and none resulted in discontinuation of treatment. There was reduction of the excess foveal thickness by 24.15% at end of treatment period and by 43.75% at end of the two-month follow-up (p = 0.674 and 0.161, respectively). BCVA remained stable throughout the treatment and follow-up periods. Conclusions The safety profile of intravenous CA4P was consistent with that reported in oncology trials of CA4P and with the class effects of vascular disruptive agents; however, the frequency of adverse events was different. There are evidences to suggest potential efficacy of CA4P in neovascular AMD. However, the level of systemic safety and efficacy indicates that systemic CA4P may not be suitable as an alternative monotherapy to current standard-of-care therapy. Trial registration ClinicalTrials.gov NCT01570790.
Collapse
|
90
|
Asnaghi L, Handa JT, Merbs SL, Harbour JW, Eberhart CG. A role for Jag2 in promoting uveal melanoma dissemination and growth. Invest Ophthalmol Vis Sci 2013; 54:295-306. [PMID: 23211831 DOI: 10.1167/iovs.12-10209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Controlling the spread of uveal melanoma is key to improving survival of patients with this common intraocular malignancy. The Notch ligand Jag2 has been shown to be upregulated in primary tumors that metastasize, and we therefore investigated its role in promoting invasion and clonogenic growth of uveal melanoma cells. METHODS mRNA and protein expression of Notch pathway components were measured using qPCR and Western blot in uveal melanoma cell lines. Expression of Jag2 ligand was upregulated using Jag2-GFP-MSCV constructs or downregulated by sh-Jag2 in the uveal melanoma cell lines Mel285, Mel290, 92.1, and OMM1, and the effects on growth and invasion were assessed. RESULTS Jag2 was introduced into Mel285 and Mel290 cells, which have low baseline levels of both this ligand and Notch activity. Overall growth of the Jag2-expressing cultures increased somewhat, and a significant 3-fold increase in clonogenic growth in soft agar was also noted. Introduction of Jag2 increased motility in both wound-healing and transwell invasion assays. We also observed a significant increase in Jag2 and Hes1 mRNA in invasive OMM1 cells that had passed through a Matrigel-coated filter in the transwell assay when compared with noninvading cells. Loss-of-function studies performed in 92.1 and OMM1 lines using Jag2 shRNAs showed that downregulation of the ligand significantly suppressed cellular growth, invasion, and migration. CONCLUSIONS Our data suggest that Jag2 may play an important role in promoting Notch activity, growth, and metastasis in uveal melanoma.
Collapse
|
91
|
Wells TS, Yang S, Maclachlan RA, Handa JT, Gehlbach P, Riviere C. Comparison of Baseline Tremor Under Various Microsurgical Conditions. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2013:1482-1487. [PMID: 24752457 DOI: 10.1109/smc.2013.256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents the characterization and comparison of physiological tremor for pointing tasks in multiple environments, as a baseline for performance evaluation of microsurgical robotics. Previous studies have examined the characteristics of physiological tremor under laboratory settings as well as different operating conditions. However, different test methods make the comparison of results across trials and conditions difficult. Two vitroretinal microsurgeons were evaluated while performing a pointing task with no entry-point constraint, constrained by an artificial eye model, and constrained by a rabbit eye in vivo. For the three respective conditions the 3D RMS positioning error was 144 μm, 258 μm, and 285 μm, and maximum 3D error was 349 μm, 647 μm, and 696 μm. A spectral analysis was also performed, confirming a distinct peak near in the 6-12 Hz frequency range, characteristic of hand tremor during tasks in all three environments.
Collapse
|
92
|
Sunshine JC, Sunshine SB, Bhutto I, Handa JT, Green JJ. Poly(β-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS One 2012; 7:e37543. [PMID: 22629417 PMCID: PMC3357345 DOI: 10.1371/journal.pone.0037543] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023] Open
Abstract
A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases.
Collapse
|
93
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
|
94
|
Weikel KA, Fitzgerald P, Shang F, Caceres MA, Bian Q, Handa JT, Stitt AW, Taylor A. Natural history of age-related retinal lesions that precede AMD in mice fed high or low glycemic index diets. Invest Ophthalmol Vis Sci 2012; 53:622-32. [PMID: 22205601 DOI: 10.1167/iovs.11-8545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. METHODS Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. RESULTS Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. CONCLUSIONS Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery.
Collapse
|
95
|
Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 2012; 11:1-13. [PMID: 21967227 DOI: 10.1111/j.1474-9726.2011.00752.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions. However, mice that consumed the lower vs. higher GI diet had significantly reduced frequency (P < 0.02) and severity (P < 0.05) of hallmark age-related retinal lesions such as basal deposits. Consuming higher GI diets was associated with > 3 fold higher accumulation of advanced glycation end products (AGEs) in retina, lens, liver, and brain in the age-matched mice, suggesting that higher GI diets induce systemic glycative stress that is etiologic for lesions. Data from live cell and cell-free systems show that the ubiquitin-proteasome system (UPS) and lysosome/autophagy pathway [lysosomal proteolytic system (LPS)] are involved in the degradation of AGEs. Glycatively modified substrates were degraded significantly slower than unmodified substrates by the UPS. Compounding the detriments of glycative stress, AGE modification of ubiquitin and ubiquitin-conjugating enzymes impaired UPS activities. Furthermore, ubiquitin conjugates and AGEs accumulate and are found in lysosomes when cells are glycatively stressed or the UPS or LPS/autophagy are inhibited, indicating that the UPS and LPS interact with one another to degrade AGEs. Together, these data explain why AGEs accumulate as glycative stress increases.
Collapse
|
96
|
Chen CJ, McCoy AN, Brahmer J, Handa JT. Emerging treatments for choroidal metastases. Surv Ophthalmol 2012; 56:511-21. [PMID: 22117885 DOI: 10.1016/j.survophthal.2011.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 11/17/2022]
Abstract
It has been over a century since Perls described the first case of choroidal metastasis. For the next six decades only 230 cases were described in the literature. Today, however, ocular metastasis is recognized as the most common intraocular malignancy. Thanks to recent advances in treatment options for metastatic disease, patients are living longer, and choroidal metastases will become an increasingly important issue for oncologists and ophthalmologists alike. We summarize the current knowledge of choroidal metastases and examine their emerging systemic and local therapies. Targeted therapies for metastatic lung, breast, and colon cancer--the most common causes of choroidal metastases--are reviewed in detail with the goal of identifying the most effective treatment strategies.
Collapse
|
97
|
Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HPN, Charbel Issa P, Cano M, Brandstätter H, Tsimikas S, Skerka C, Superti-Furga G, Handa JT, Zipfel PF, Witztum JL, Binder CJ. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 2011; 478:76-81. [PMID: 21979047 DOI: 10.1038/nature10449] [Citation(s) in RCA: 607] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/12/2011] [Indexed: 11/09/2022]
Abstract
Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy for AMD and other chronic inflammatory diseases.
Collapse
|
98
|
Wei Y, Gong J, Yoshida T, Eberhart CG, Xu Z, Kombairaju P, Sporn MB, Handa JT, Duh EJ. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Radic Biol Med 2011; 51:216-24. [PMID: 21545836 PMCID: PMC3997112 DOI: 10.1016/j.freeradbiomed.2011.04.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 01/11/2023]
Abstract
Retinal ischemia-reperfusion (I/R) involves an extensive increase in reactive oxygen species as well as proinflammatory changes that result in significant histopathologic damage, including neuronal and vascular degeneration. Nrf2 has a well-known cytoprotective role in many tissues, but its protective function in the retina is unclear. We investigated the possible role of Nrf2 as a protective mechanism in retinal ischemia-reperfusion injury using Nrf2(-/-) mice. I/R resulted in an increase in retinal levels of superoxide and proinflammatory mediators, as well as leukocyte infiltration of the retina and vitreous, in Nrf2(+/+) mice. These effects were greatly accentuated in Nrf2(-/-) mice. With regard to histopathologic damage, Nrf2(-/-) mice exhibited loss of cells in the ganglion cell layer and markedly accentuated retinal capillary degeneration, as compared to wild-type. Treatment with the Nrf2 activator CDDO-Me increased antioxidant gene expression and normalized I/R-induced superoxide in the retina in wild-type but not Nrf2(-/-) mice. CDDO-Me treatment abrogated retinal capillary degeneration induced by I/R in wild-type but not Nrf2(-/-) mice. These studies indicate that Nrf2 is an important cytoprotective mechanism in the retina in response to ischemia-reperfusion injury and suggest that pharmacologic induction of Nrf2 could be a new therapeutic strategy for retinal ischemia-reperfusion and other retinal diseases.
Collapse
|
99
|
Becker BC, Voros S, Lobes LA, Handa JT, Hager GD, Riviere CN. Retinal vessel cannulation with an image-guided handheld robot. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:5420-3. [PMID: 21096274 DOI: 10.1109/iembs.2010.5626493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cannulation of small retinal vessels is often prohibitively difficult for surgeons, since physiological tremor often exceeds the narrow diameter of the vessel (40-120 microm). Using an active handheld micromanipulator, we introduce an image-guided robotic system that reduces tremor and provides smooth, scaled motion during the procedure. The micromanipulator assists the surgeon during the approach, puncture, and injection stages of the procedure by tracking the pipette and anatomy viewed under the microscope. In experiments performed ex vivo by an experienced retinal surgeon on 40-60 microm vessels in porcine eyes, the success rate was 29% (2/7) without the aid of the system and 63% (5/8) with the aid of the system.
Collapse
|
100
|
Zigler JS, Zhang C, Grebe R, Sehrawat G, Hackler L, Adhya S, Hose S, McLeod DS, Bhutto I, Barbour W, Parthasarathy G, Zack DJ, Sergeev Y, Lutty GA, Handa JT, Sinha D. Mutation in the βA3/A1-crystallin gene impairs phagosome degradation in the retinal pigmented epithelium of the rat. J Cell Sci 2011; 124:523-31. [PMID: 21266465 DOI: 10.1242/jcs.078790] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis of the shed outer segment discs of photoreceptors is a major function of the retinal pigmented epithelium (RPE). We demonstrate for the first time that βA3/A1-crystallin, a major structural protein of the ocular lens, is expressed in RPE cells. Further, by utilizing the Nuc1 rat, in which the βA3/A1-crystallin gene is mutated, we show that this protein is required by RPE cells for proper degradation of outer segment discs that have been internalized in phagosomes. We also demonstrate that in wild-type RPE, βA3/A1-crystallin is localized to the lysosomes. However, in the Nuc1 RPE, βA3/A1-crystallin fails to translocate to the lysosomes, perhaps because misfolding of the mutant protein masks sorting signals required for proper trafficking. The digestion of phagocytized outer segments requires a high level of lysosomal enzyme activity, and cathepsin D, the major enzyme responsible for proteolysis of the outer segments, is decreased in mutant RPE cells. Interestingly, our results also indicate a defect in the autophagy process in the Nuc1 RPE, which is probably also linked to impaired lysosomal function, because phagocytosis and autophagy might share common mechanisms in degradation of their targets. βA3/A1-crystallin is a novel lysosomal protein in RPE, essential for degradation of phagocytosed material.
Collapse
|