1
|
Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proc Natl Acad Sci U S A 2016; 113:1008-13. [PMID: 26755597 DOI: 10.1073/pnas.1513062113] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
101 |
2
|
Variable impact of late- Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc Natl Acad Sci U S A 2015; 113:856-61. [PMID: 26504219 DOI: 10.1073/pnas.1505295112] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
84 |
3
|
Bai WN, Wang WT, Zhang DY. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. THE NEW PHYTOLOGIST 2016; 209:1757-72. [PMID: 26499508 DOI: 10.1111/nph.13711] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 05/16/2023]
Abstract
East Asia has been hypothesized to be subdivided into two distinct northern and southern areas, separated by a band of dry climate that was far more severe in the early Tertiary but still exists today. However, this biogeographic hypothesis has rarely been tested using a molecular phylogeographic approach. We genotyped 70 populations throughout the distributional range of Asian butternuts (Juglans section Cardiocaryon) using eight chloroplast DNA regions, one single-copy nuclear gene, and 17 nuclear microsatellite loci, supplemented with paleodistribution modeling of the major genetic clades. The genetic data consistently identified two clades, one northern, comprising Juglans mandshurica and Juglans ailantifolia, and one southern, comprising Juglans cathayensis. The two clades diverged through climate-induced vicariance of an ancestral northern range during the mid-Miocene and remained mostly separate thereafter, with geographical isolation of the Japanese Islands and refugial isolation or secondary contacts in the late Pleistocene producing further subdivision within the northern clade. But beyond all that, we also discovered a role of environmental adaptation in maintaining and/or reinforcing the north-south divergence. Asian butternuts offer a strong case for the existence of a biogeographic divide between the northern and southern parts of East Asia during the Neogene and into the Pleistocene.
Collapse
|
|
9 |
64 |
4
|
Wei L, Li Q, Chen Y, Zhang J, Mi Y, Dong F, Lei C, Guo Z. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydr Polym 2018; 206:493-503. [PMID: 30553350 DOI: 10.1016/j.carbpol.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
In this paper, a series of 6-O-imidazole-based quaternary ammonium chitosan derivatives via 6-O-chloroacetyl chitosan (CAClC) were successfully designed and synthesized. Detailed structural characterization was carried out by means of FT-IR and 1H NMR spectroscopy, and elemental analysis. Furthermore, the antioxidant property against hydroxyl radicals, superoxide radicals, and DPPH radicals was evaluated in vitro. 2-(N,N,N-trimethyl)-6-O-(2-aminobenzimidazole)acetyl chitosan chloride (2NPhMC) and 2-(N,N,N-trimethyl)-6-O-(1-butylimidazole)acetyl chitosan chloride (NBMC) showed more than 90% scavenging indices at 1.6 mg/mL. Besides, the antifungal activity against Botrytis cinerea and Gibberella zeae was estimated using in vitro MIC and hypha measurements. Most of the quaternized chitosan derivatives especially with the long length alkyl chain and primary amino group showed an inhibitory index of > 85% at 1.0 mg/mL against Botrytis cinerea. Besides, the cytotoxicity of chitosan and all the quaternized chitosan derivatives was evaluated in vitro on HaCaT cells and all the quaternized chitosan derivatives bearing 6-O-imidazole exhibited low cytotoxicity. These results suggested that chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts may be used as good biomaterials.
Collapse
|
Journal Article |
7 |
50 |
5
|
de Lafontaine G, Napier JD, Petit RJ, Hu FS. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 2018; 99:1530-1546. [PMID: 29729183 DOI: 10.1002/ecy.2382] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) Science 292:673 argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001) Science 292:673.
Collapse
|
Review |
7 |
45 |
6
|
Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change. Proc Natl Acad Sci U S A 2015; 112:9656-61. [PMID: 26170294 DOI: 10.1073/pnas.1424315112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities--particularly the spread of nonnative annual grasslands--has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
44 |
7
|
Pärtel M, Öpik M, Moora M, Tedersoo L, Szava-Kovats R, Rosendahl S, Rillig MC, Lekberg Y, Kreft H, Helgason T, Eriksson O, Davison J, de Bello F, Caruso T, Zobel M. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2017; 216:227-238. [PMID: 28722181 DOI: 10.1111/nph.14695] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance.
Collapse
|
|
8 |
42 |
8
|
Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima. Proc Natl Acad Sci U S A 2014; 111:16790-5. [PMID: 25385612 DOI: 10.1073/pnas.1403053111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
39 |
9
|
Schorr G, Holstein N, Pearman PB, Guisan A, Kadereit JW. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula. Ecol Evol 2012; 2:1260-77. [PMID: 22833799 PMCID: PMC3402199 DOI: 10.1002/ece3.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022] Open
Abstract
The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.
Collapse
|
Journal Article |
13 |
36 |
10
|
Fariña RA, Tambusso PS, Varela L, Czerwonogora A, Di Giacomo M, Musso M, Bracco R, Gascue A. Arroyo del Vizcaíno, Uruguay: a fossil-rich 30-ka-old megafaunal locality with cut-marked bones. Proc Biol Sci 2013; 281:20132211. [PMID: 24258717 DOI: 10.1098/rspb.2013.2211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human-megafauna interaction in the Americas has great scientific and ethical interest because of its implications on Pleistocene extinction. The Arroyo del Vizcaíno site near Sauce, Uruguay has already yielded over 1000 bones belonging to at least 27 individuals, mostly of the giant sloth Lestodon. The assemblage shows some taphonomic features suggestive of human presence, such as a mortality profile dominated by prime adults and little evidence of major fluvial transport. In addition, several bones present deep, asymmetrical, microstriated, sharp and shouldered marks similar to those produced by human stone tools. A few possible lithic elements have also been collected, one of which has the shape of a scraper and micropolish consistent with usage on dry hide. However, the radiocarbon age of the site is unexpectedly old (between 27 and 30 thousand years ago), and thus may be important for understanding the timing of the peopling of America.
Collapse
|
Journal Article |
12 |
35 |
11
|
Hope AG, Malaney JL, Bell KC, Salazar-Miralles F, Chavez AS, Barber BR, Cook JA. Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Mol Phylogenet Evol 2016; 100:170-182. [PMID: 27083861 DOI: 10.1016/j.ympev.2016.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/27/2022]
Abstract
Integration of molecular methods, ecological modeling, and statistical hypothesis testing are increasing our understanding of differentiation within species and phylogenetic relationships among species by revealing environmental connections to evolutionary processes. Within mammals, novel diversity is being discovered and characterized as more complete geographic sampling is coupled with newer multi-disciplinary approaches. North American red squirrels exemplify a forest obligate genus whose species are monitored as indicators of forest ecosystem condition, yet phylogenetic relationships reflecting evolutionary history within this genus remain tentative. Through testing of competing systematic and niche-based divergence hypotheses, we recognize three species, Tamiasciurus douglasii, T. hudsonicus, and T. fremonti. Our data provide evidence of regional differences in evolutionary dynamics and continental gradients of complexity that are important both for future management and for investigating multiple pathways that can lead to the formation of new species.
Collapse
|
Journal Article |
9 |
34 |
12
|
Comes HP. The Mediterranean region - a hotspot for plant biogeographic research. THE NEW PHYTOLOGIST 2004; 164:11-14. [PMID: 33873489 DOI: 10.1111/j.1469-8137.2004.01194.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
|
21 |
30 |
13
|
Maguire KC, Nieto-Lugilde D, Blois JL, Fitzpatrick MC, Williams JW, Ferrier S, Lorenz DJ. Controlled comparison of species- and community-level models across novel climates and communities. Proc Biol Sci 2016; 283:20152817. [PMID: 26962143 PMCID: PMC4810853 DOI: 10.1098/rspb.2015.2817] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/12/2022] Open
Abstract
Species distribution models (SDMs) assume species exist in isolation and do not influence one another's distributions, thus potentially limiting their ability to predict biodiversity patterns. Community-level models (CLMs) capitalize on species co-occurrences to fit shared environmental responses of species and communities, and therefore may result in more robust and transferable models. Here, we conduct a controlled comparison of five paired SDMs and CLMs across changing climates, using palaeoclimatic simulations and fossil-pollen records of eastern North America for the past 21 000 years. Both SDMs and CLMs performed poorly when projected to time periods that are temporally distant and climatically dissimilar from those in which they were fit; however, CLMs generally outperformed SDMs in these instances, especially when models were fit with sparse calibration datasets. Additionally, CLMs did not over-fit training data, unlike SDMs. The expected emergence of novel climates presents a major forecasting challenge for all models, but CLMs may better rise to this challenge by borrowing information from co-occurring taxa.
Collapse
|
research-article |
9 |
28 |
14
|
Fitzpatrick MC, Blois JL, Williams JW, Nieto-Lugilde D, Maguire KC, Lorenz DJ. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability. GLOBAL CHANGE BIOLOGY 2018; 24:3575-3586. [PMID: 29569799 DOI: 10.1111/gcb.14138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/09/2018] [Indexed: 05/12/2023]
Abstract
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information.
Collapse
|
|
7 |
27 |
15
|
Yu H, Zhang Y, Liu L, Qi W, Li S, Hu Z. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock. Ecol Evol 2015; 5:5781-91. [PMID: 26811753 PMCID: PMC4717335 DOI: 10.1002/ece3.1840] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
Himalayan hemlock (Tsuga dumosa) experienced a recolonization event during the Quaternary period; however, the specific dispersal routes are remain unknown. Recently, the least cost path (LCP) calculation coupled with population genetic data and species distribution models has been applied to reveal the landscape connectivity. In this study, we utilized the categorical LCP method, combining species distribution of three periods (the last interglacial, the last glacial maximum, and the current period) and locality with shared chloroplast, mitochondrial, and nuclear haplotypes, to identify the possible dispersal routes of T. dumosa in the late Quaternary. Then, both a coalescent estimate of migration rates among regional groups and establishment of genetic divergence pattern were conducted. After those analyses, we found that the species generally migrated along the southern slope of Himalaya across time periods and genomic makers, and higher degree of dispersal was in the present and mtDNA haplotype. Furthermore, the direction of range shifts and strong level of gene flow also imply the existence of Himalayan dispersal path, and low area of genetic divergence pattern suggests that there are not any obvious barriers against the dispersal pathway. Above all, we inferred that a dispersal route along the Himalaya Mountains could exist, which is an important supplement for the evolutionary history of T. dumosa. Finally, we believed that this integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of species in the Tibetan Plateau.
Collapse
|
Journal Article |
10 |
27 |
16
|
Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc Natl Acad Sci U S A 2018; 115:11174-11179. [PMID: 30297412 DOI: 10.1073/pnas.1801357115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence for Quaternary climate change in East Africa has been derived from outcrops on land and lake cores and from marine dust, leaf wax, and pollen records. These data have previously been used to evaluate the impact of climate change on hominin evolution, but correlations have proved to be difficult, given poor data continuity and the great distances between marine cores and terrestrial basins where fossil evidence is located. Here, we present continental coring evidence for progressive aridification since about 575 thousand years before present (ka), based on Lake Magadi (Kenya) sediments. This long-term drying trend was interrupted by many wet-dry cycles, with the greatest variability developing during times of high eccentricity-modulated precession. Intense aridification apparent in the Magadi record took place between 525 and 400 ka, with relatively persistent arid conditions after 350 ka and through to the present. Arid conditions in the Magadi Basin coincide with the Mid-Brunhes Event and overlap with mammalian extinctions in the South Kenya Rift between 500 and 400 ka. The 525 to 400 ka arid phase developed in the South Kenya Rift between the period when the last Acheulean tools are reported (at about 500 ka) and before the appearance of Middle Stone Age artifacts (by about 320 ka). Our data suggest that increasing Middle- to Late-Pleistocene aridification and environmental variability may have been drivers in the physical and cultural evolution of Homo sapiens in East Africa.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
27 |
17
|
Abstract
During the Holocene (11,600 y ago to present), northern peatlands accumulated significant C stocks over millennia. However, virtually nothing is known about peatlands that are no longer in the landscape, including ones formed prior to the Holocene: Where were they, when did they form, and why did they disappear? We used records of peatlands buried by mineral sediments for a reconstruction of peat-forming wetlands for the past 130,000 y. Northern peatlands expanded across high latitudes during warm periods and were buried during periods of glacial advance in northern latitudes. Thus, peat accumulation and burial represent a key long-term C storage mechanism in the Earth system. Glacial−interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
Collapse
|
|
6 |
27 |
18
|
Krojerová-Prokešová J, Barančeková M, Koubek P. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe). J Hered 2015; 106:375-85. [PMID: 25918430 DOI: 10.1093/jhered/esv018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Due to a restriction of the distributional range of European red deer (Cervus elaphus L.) during the Quaternary and subsequent recolonization of Europe from different refugia, a clear phylogeographical pattern in genetic structure has been revealed using mitochondrial DNA markers. In Central Europe, 2 distinct, eastern and western, lineages of European red deer are present; however, admixture between them has not yet been studied in detail. We used mitochondrial DNA (control region and cytochrome b gene) sequences and 22 microsatellite loci from 522 individuals to investigate the genetic diversity of red deer in what might be expected to be an intermediate zone. We discovered a high number of unique mtDNA haplotypes belonging to each lineage and high levels of genetic diversity (cyt b H = 0.867, D-loop H = 0.914). The same structuring of red deer populations was also revealed by microsatellite analysis, with results from both analyses thus suggesting a suture zone between the 2 lineages. Despite the fact that postglacial recolonization of Central Europe by red deer occurred more than 10000 years ago, the degree of admixture between the 2 lineages is relatively small, with only 10.8% admixed individuals detected. Direct translocations of animals by humans have slightly blurred the pattern in this region; however, this blurring was more apparent when using maternally inherited markers than nuclear markers.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
19
|
Gutiérrez-García TA, Vázquez-Domínguez E, Arroyo-Cabrales J, Kuch M, Enk J, King C, Poinar HN. Ancient DNA and the tropics: a rodent's tale. Biol Lett 2015; 10:rsbl.2014.0224. [PMID: 24899682 DOI: 10.1098/rsbl.2014.0224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
20 |
20
|
Wagner F, Ott T, Zimmer C, Reichhart V, Vogt R, Oberprieler C. 'At the crossroads towards polyploidy': genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). THE NEW PHYTOLOGIST 2019; 223:2039-2053. [PMID: 30851196 DOI: 10.1111/nph.15784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
Polyploidy plays a paramount role in phytodiversity, but the causes of this evolutionary pathway require further study. Here, we use phylogenetic methods to examine possible polyploidy-promoting factors by comparing diploid representatives of the comprehensive European polyploid complex Leucanthemum with members of its strictly diploid North African counterpart Rhodanthemum. We investigate genetic divergence and gene flow among all diploid lineages of both genera to evaluate the role of genomic differentiation and hybridization for polyploid speciation. To test whether hybridization in Leucanthemum has been triggered by the geological conditions during its diversification, we additionally generate a time-calibrated phylogeny of 46 species of the subtribe Leucantheminae. Leucanthemum shows a significantly higher genetic divergence and hybridization signal among diploid lineages compared with Rhodanthemum, in spite of a similar crown age and diversification pattern during the Quaternary. Our study demonstrates the importance of genetic differentiation among diploid progenitors and their concurrent affinity for natural hybridization for the formation of a polyploid complex. Furthermore, the role of climate-induced range overlaps on hybridization and polyploid speciation during the Quaternary is discussed.
Collapse
|
|
6 |
20 |
21
|
Ordonez A. Realized climatic niche of North American plant taxa lagged behind climate during the end of the Pleistocene. AMERICAN JOURNAL OF BOTANY 2013; 100:1255-1265. [PMID: 23825136 DOI: 10.3732/ajb.1300043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Predicting species responses to climate change has become a dynamic field in global change research. A crucial question in this debate is whether-or-not species have been and will be able to respond quickly enough to keep up with changing climatic conditions. METHODS Focusing on fossil pollen records and paleoclimatic simulations, this work assesses the change in realized climatic niches (climatic temporal trajectories) of 20 plant taxa over the last 16000 yr, and whether this tracking has been the same for different climatic niche dimensions. KEY RESULTS Climatic factors showed a consistent trend toward warmer temperatures and higher precipitation. Although the response types varied across taxa, species' realized climatic niches lagged in response to changes in climatic conditions. Temperature niches responded to late Pleistocene (16000-11000 yr ago) climate change, but did so at slower rates than changes in climatic conditions during the same period. In contrast, precipitation niches were relatively stable from 16000 to 11000 yr ago, but still lagged behind changes in climatic conditions. Changes in temperature and precipitation niches eventually stabilized during the Holocene (11000-1000 yr ago). CONCLUSIONS These results underscore how the climatic niche realized at any one moment represents a subset of the climate conditions in which a taxon can persist, particularly during times of fast climatic change. Variability in the rates of temporal trajectories across evaluated climatic variables showed taxa specific responses to changes in climatic conditions over time and emphasizes the need to incorporate variation, intensity, and duration of lag effects in assessments of the possible effects of climatic change.
Collapse
|
|
12 |
19 |
22
|
Sosa V, Ornelas JF, Ramírez-Barahona S, Gándara E. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica. PeerJ 2016; 4:e2696. [PMID: 27896030 PMCID: PMC5119233 DOI: 10.7717/peerj.2696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
Collapse
|
Journal Article |
9 |
18 |
23
|
Kowalewski M, Wittmer JM, Dexter TA, Amorosi A, Scarponi D. Differential responses of marine communities to natural and anthropogenic changes. Proc Biol Sci 2015; 282:20142990. [PMID: 25673689 DOI: 10.1098/rspb.2014.2990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100,000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
18 |
24
|
Blanco-Pastor JL, Vargas P. Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: low differentiation and range expansion versus geographical speciation in Linaria. Mol Ecol 2013; 22:5651-68. [PMID: 24134639 DOI: 10.1111/mec.12518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
The evolutionary patterns of the Mediterranean flora during the Quaternary have been relatively well documented based on phylogenetic and biogeographic analyses, but few studies have addressed the evolutionary traits that determined diversification and range expansion success during this period. We analysed previously published and newly generated sequences of three plastid noncoding regions (rpl32-trnL(UAG) , trnS-trnG and trnL-trnF), the nuclear ribosomal internal transcribed spacer (ITS) and a low-copy nuclear gene intron (AGT1) of Linaria sect. Supinae, a group of angiosperms that diversified in the Quaternary. The origin and recent colonization dynamics of closely related lineages were inferred by biogeographic reconstruction and phylogeographic analyses, while breeding system experiments coupled with ecological and morphological data were used to test association with range expansion and diversification. A combination of traits, including selfing, short lifespan and the ability to tolerate a wide variety of substrates, were key factors underlying range expansion after long-distance dispersal throughout the Mediterranean basin. By contrast, self-incompatibility may have promoted higher diversification rates in narrow ranges of the Iberian Peninsula. We argue that a few traits contributed to the adoption of two contrasting strategies that may have been predominant in the evolution of Mediterranean angiosperms.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
17 |
25
|
Yewdall NA, Peskin AV, Hampton MB, Goldstone DC, Pearce FG, Gerrard JA. Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochem Biophys Res Commun 2018; 497:558-563. [PMID: 29438714 DOI: 10.1016/j.bbrc.2018.02.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
Peroxiredoxins are abundant peroxidase enzymes that are key regulators of the cellular redox environment. A major subgroup of these proteins, the typical 2-Cys peroxiredoxins, can switch between dimers and decameric or dodecameric rings, during the catalytic cycle. The necessity of this change in quaternary structure for function as a peroxidase is not fully understood. In order to explore this, human peroxiredoxin 3 (Prx3) protein was engineered to form both obligate dimers (S75E Prx3) and stabilised dodecameric rings (S78C Prx3), uncoupling structural transformations from the catalytic cycle. The obligate dimer, S75E Prx3, retained catalytic activity towards hydrogen peroxide, albeit significantly lower than the wildtype and S78C proteins, suggesting an evolutionary advantage of having higher order self-assemblies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
16 |