76
|
Wasowicz P, Pauwels M, Pasierbinski A, Przedpelska-Wasowicz EM, Babst-Kostecka AA, Saumitou-Laprade P, Rostanski A. Phylogeography of Arabidopsis halleri (Brassicaceae) in mountain regions of Central Europe inferred from cpDNA variation and ecological niche modelling. PeerJ 2016; 4:e1645. [PMID: 26835186 PMCID: PMC4734066 DOI: 10.7717/peerj.1645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate phylogeographical patterns present within A. halleri in Central Europe. 1,281 accessions sampled from 52 populations within the investigated area were used in the study of genetic variation based on chloroplast DNA. Over 500 high-quality species occurrence records were used in ecological niche modelling experiments. We evidenced the presence of a clear phylogeographic structure within A. halleri in Central Europe. Our results showed that two genetically different groups of populations are present in western and eastern part of the Carpathians. The hypothesis of the existence of a glacial refugium in the Western Carpathians adn the Bohemian Forest cannot be rejected from our data. It seems, however, that the evidence collected during the present study is not conclusive. The area of Sudetes was colonised after LGM probably by migrants from the Bohemian Forest.
Collapse
|
77
|
Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proc Natl Acad Sci U S A 2016; 113:1008-13. [PMID: 26755597 DOI: 10.1073/pnas.1513062113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.
Collapse
|
78
|
Yu H, Zhang Y, Liu L, Qi W, Li S, Hu Z. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock. Ecol Evol 2015; 5:5781-91. [PMID: 26811753 PMCID: PMC4717335 DOI: 10.1002/ece3.1840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
Himalayan hemlock (Tsuga dumosa) experienced a recolonization event during the Quaternary period; however, the specific dispersal routes are remain unknown. Recently, the least cost path (LCP) calculation coupled with population genetic data and species distribution models has been applied to reveal the landscape connectivity. In this study, we utilized the categorical LCP method, combining species distribution of three periods (the last interglacial, the last glacial maximum, and the current period) and locality with shared chloroplast, mitochondrial, and nuclear haplotypes, to identify the possible dispersal routes of T. dumosa in the late Quaternary. Then, both a coalescent estimate of migration rates among regional groups and establishment of genetic divergence pattern were conducted. After those analyses, we found that the species generally migrated along the southern slope of Himalaya across time periods and genomic makers, and higher degree of dispersal was in the present and mtDNA haplotype. Furthermore, the direction of range shifts and strong level of gene flow also imply the existence of Himalayan dispersal path, and low area of genetic divergence pattern suggests that there are not any obvious barriers against the dispersal pathway. Above all, we inferred that a dispersal route along the Himalaya Mountains could exist, which is an important supplement for the evolutionary history of T. dumosa. Finally, we believed that this integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of species in the Tibetan Plateau.
Collapse
|
79
|
Kowalewski M, Wittmer JM, Dexter TA, Amorosi A, Scarponi D. Differential responses of marine communities to natural and anthropogenic changes. Proc Biol Sci 2015; 282:20142990. [PMID: 25673689 DOI: 10.1098/rspb.2014.2990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100,000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes.
Collapse
|
80
|
Variable impact of late- Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc Natl Acad Sci U S A 2015; 113:856-61. [PMID: 26504219 DOI: 10.1073/pnas.1505295112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.
Collapse
|
81
|
Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change. Proc Natl Acad Sci U S A 2015; 112:9656-61. [PMID: 26170294 DOI: 10.1073/pnas.1424315112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities--particularly the spread of nonnative annual grasslands--has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management.
Collapse
|
82
|
Kleckova I, Cesanek M, Fric Z, Pellissier L. Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts. Mol Phylogenet Evol 2015; 92:255-65. [PMID: 26166775 DOI: 10.1016/j.ympev.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/30/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Both geographical and ecological speciation interact during the evolution of a clade, but the relative contribution of these processes is rarely assessed for cold-dwelling biota. Here, we investigate the role of biogeography and the evolution of ecological traits on the diversification of the Holarctic arcto-alpine butterfly genus Oeneis (Lepidoptera: Satyrinae). We reconstructed the molecular phylogeny of the genus based on one mitochondrial (COI) and three nuclear (GAPDH, RpS5, wingless) genes. We inferred the biogeographical scenario and the ancestral state reconstructions of climatic and habitat requirements. Within the genus, we detected five main species groups corresponding to the taxonomic division and further paraphyletic position of Neominois (syn. n.). Next, we transferred O. aktashi from the hora to the polixenes species group on the bases of molecular relationships. We found that the genus originated in the dry grasslands of the mountains of Central Asia and dispersed over the Beringian Land Bridges to North America several times independently. Holarctic mountains, in particular the Asian Altai Mts. and Sayan Mts., host the oldest lineages and most of the species diversity. Arctic species are more recent, with Pliocene or Pleistocene origin. We detected a strong phylogenetic signal for the climatic niche, where one lineage diversified towards colder conditions. Altogether, our results indicate that both dispersal across geographical areas and occupation of distinct climatic niches promoted the diversification of the Oeneis genus.
Collapse
|
83
|
Gill JL, Blois JL, Benito B, Dobrowski S, Hunter ML, McGuire JL. A 2.5-million-year perspective on coarse-filter strategies for conserving nature's stage. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:640-648. [PMID: 25924205 DOI: 10.1111/cobi.12504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Climate change will require novel conservation strategies. One such tactic is a coarse-filter approach that focuses on conserving nature's stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long-term goals of conservation and the short-term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse-filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near-time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse-filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long-term consequences for geodiversity and thus biodiversity.
Collapse
|
84
|
Krojerová-Prokešová J, Barančeková M, Koubek P. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe). J Hered 2015; 106:375-85. [PMID: 25918430 DOI: 10.1093/jhered/esv018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Due to a restriction of the distributional range of European red deer (Cervus elaphus L.) during the Quaternary and subsequent recolonization of Europe from different refugia, a clear phylogeographical pattern in genetic structure has been revealed using mitochondrial DNA markers. In Central Europe, 2 distinct, eastern and western, lineages of European red deer are present; however, admixture between them has not yet been studied in detail. We used mitochondrial DNA (control region and cytochrome b gene) sequences and 22 microsatellite loci from 522 individuals to investigate the genetic diversity of red deer in what might be expected to be an intermediate zone. We discovered a high number of unique mtDNA haplotypes belonging to each lineage and high levels of genetic diversity (cyt b H = 0.867, D-loop H = 0.914). The same structuring of red deer populations was also revealed by microsatellite analysis, with results from both analyses thus suggesting a suture zone between the 2 lineages. Despite the fact that postglacial recolonization of Central Europe by red deer occurred more than 10000 years ago, the degree of admixture between the 2 lineages is relatively small, with only 10.8% admixed individuals detected. Direct translocations of animals by humans have slightly blurred the pattern in this region; however, this blurring was more apparent when using maternally inherited markers than nuclear markers.
Collapse
|
85
|
Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. J Hum Evol 2015; 82:1-14. [PMID: 25805041 DOI: 10.1016/j.jhevol.2014.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 06/12/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
Abstract
Paleoanthropologists have long argued that environmental pressures played a key role in human evolution. However, our understanding of how these pressures mediated the behavioral and biological diversity of early modern humans and their migration patterns within and out of Africa is limited by a lack of archaeological evidence associated with detailed paleoenvironmental data. Here, we present the first stable isotopic data from paleosols and fauna associated with Middle Stone Age (MSA) sites in East Africa. Late Pleistocene (∼100-45 ka, thousands of years ago) sediments on Rusinga and Mfangano Islands in eastern Lake Victoria (Kenya) preserve a taxonomically diverse, non-analog faunal community associated with MSA artifacts. We analyzed the stable carbon and oxygen isotope composition of paleosol carbonate and organic matter and fossil mammalian tooth enamel, including the first analyses for several extinct bovids such as Rusingoryx atopocranion, Damaliscus hypsodon, and an unnamed impala species. Both paleosol carbonate and organic matter data suggest that local habitats associated with human activities were primarily riverine woodland ecosystems. However, mammalian tooth enamel data indicate that most large-bodied mammals consumed a predominantly C4 diet, suggesting an extensive C4 grassland surrounding these riverine woodlands in the region at the time. These data are consistent with other lines of paleoenvironmental evidence that imply a substantially reduced Lake Victoria at this time, and demonstrate that C4 grasslands were significantly expanded into equatorial Africa compared with their present distribution, which could have facilitated dispersal of human populations and other biotic communities. Our results indicate that early populations of Homo sapiens from the Lake Victoria region exploited locally wooded and well-watered habitats within a larger grassland ecosystem.
Collapse
|
86
|
Gutiérrez-García TA, Vázquez-Domínguez E, Arroyo-Cabrales J, Kuch M, Enk J, King C, Poinar HN. Ancient DNA and the tropics: a rodent's tale. Biol Lett 2015; 10:rsbl.2014.0224. [PMID: 24899682 DOI: 10.1098/rsbl.2014.0224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene.
Collapse
|
87
|
Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima. Proc Natl Acad Sci U S A 2014; 111:16790-5. [PMID: 25385612 DOI: 10.1073/pnas.1403053111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present.
Collapse
|
88
|
DeChaine EG, Wendling BM, Forester BR. Integrating environmental, molecular, and morphological data to unravel an ice-age radiation of arctic-alpine Campanula in western North America. Ecol Evol 2014; 4:3940-59. [PMID: 25505522 PMCID: PMC4242577 DOI: 10.1002/ece3.1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023] Open
Abstract
Many arctic-alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The Cordilleran Campanula L. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic-alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differentiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid-Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic-alpine plants and the rise of numerous endemic taxa across the region.
Collapse
|
89
|
Yuan S, Huang M, Wang XS, Ji LQ, Zhang YL. Centers of endemism and diversity patterns for typhlocybine leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) in China. INSECT SCIENCE 2014; 21:523-536. [PMID: 23956226 DOI: 10.1111/1744-7917.12040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
This study identifies 'centers of endemism' for typhlocybine leafhoppers in China, revealing diversity patterns and congruence of patterns between total species richness and endemism. Distribution patterns of 774 Typhlocybinae (607 described and 167 undescribed species) were mapped on a 1.5° × 1.5° latitude/longitude grid. Total species richness, endemic species richness and weighted endemism richness were calculated for each grid cell. Grid cells within the top 5% highest values of weighted endemism richness were considered as 'centers of endemism'. Diversity patterns by latitude and altitude were obtained through calculating the gradient richness. A congruence of diversity patterns between total species richness and endemism was confirmed using correlation analysis. To investigate the bioclimatic factors (19 variables) contributing to the congruence between total species richness and endemism, we compared the factor's difference between non-endemic and endemic species using the Kruskal-Wallis test. Eleven centers of endemism, roughly delineated by mountain ranges, were identified in central and southern China, including the south Yunnan, Hengduan Mountains, Qinling Mountains, Hainan Island, Taiwan Island and six mountain areas located in western Sichuan, northwest Fujian, southeast Guizhou, southeast Hunan, central and western Guangdong, and north Zhejiang. Total species richness and endemic species richness decreased with increased latitude and had a consistent unimodal response to altitude. The proportions of endemism decreased with increased latitude and increased with rising altitude. Diversity patterns between total species richness and endemism were highly consistent, and 'Precipitation of Coldest Period' and 'Temperature of Coldest Period' may contribute to the congruence of pattern. Migration ability may play a role in the relationship of endemism and species richness; climate, environment factors and important geologic isolation events can also play crucial effects on relationships under special conditions.
Collapse
|
90
|
Hembrow SC, Taffs KH, Atahan P, Parr J, Zawadzki A, Heijnis H. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:774-784. [PMID: 24076501 DOI: 10.1016/j.scitotenv.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Climate change is impacting global surface water resources, increasing the need for a deeper understanding of the interaction between climate and biological diversity. This is particularly the case in the Southern Hemisphere sub-tropics, where little information exists on the aquatic biota response to climate variations. Palaeolimnological techniques, in particular the use of diatoms, are well established and can significantly contribute to the understanding of climatic variability and the impacts that change in climate have on aquatic ecosystems. A sediment core from Lake McKenzie, Fraser Island (Australia), was used to investigate interactions between climate influences and aquatic ecosystems. This study utilises a combination of proxies including biological (diatom), geochemical and chronological techniques to investigate long-term aquatic changes within the perched-dune lake. A combination of (210)Pb and AMS (14)C dates showed that the retrieved sediment represented a history of ca. 37,000 cal.yBP. The sedimentation rate in Lake McKenzie is very low, ranging on average from 0.11 mm to 0.26 mm per year. A sediment hiatus was observed between ca. 18,300 and 14,000 cal.yBP suggesting a period of dry conditions at the site. The diatom record shows little variability over the period of record, with benthic, freshwater acidic tolerant species dominating. Relative abundance of planktonic species and geochemical results indicates a period of increased water depth and lake productivity in the early Holocene and a gradual decrease in effective precipitation throughout the Holocene. Results from this study not only support earlier work conducted on Fraser Island using pollen reconstructions but also demonstrate that diatom community diversity has been relatively consistent throughout the Holocene and late Pleistocene with only minor cyclical fluctuation evident. This record is consistent with the few other aquatic palaeoecological records from the Southern Hemisphere sub-tropics.
Collapse
|
91
|
Mellett CL, Hodgson DM, Plater AJ, Mauz B, Selby I, Lang A. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2013; 203:79-96. [PMID: 24748702 PMCID: PMC3990419 DOI: 10.1016/j.geomorph.2013.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 06/03/2023]
Abstract
The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period.
Collapse
|
92
|
Fariña RA, Tambusso PS, Varela L, Czerwonogora A, Di Giacomo M, Musso M, Bracco R, Gascue A. Arroyo del Vizcaíno, Uruguay: a fossil-rich 30-ka-old megafaunal locality with cut-marked bones. Proc Biol Sci 2013; 281:20132211. [PMID: 24258717 DOI: 10.1098/rspb.2013.2211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human-megafauna interaction in the Americas has great scientific and ethical interest because of its implications on Pleistocene extinction. The Arroyo del Vizcaíno site near Sauce, Uruguay has already yielded over 1000 bones belonging to at least 27 individuals, mostly of the giant sloth Lestodon. The assemblage shows some taphonomic features suggestive of human presence, such as a mortality profile dominated by prime adults and little evidence of major fluvial transport. In addition, several bones present deep, asymmetrical, microstriated, sharp and shouldered marks similar to those produced by human stone tools. A few possible lithic elements have also been collected, one of which has the shape of a scraper and micropolish consistent with usage on dry hide. However, the radiocarbon age of the site is unexpectedly old (between 27 and 30 thousand years ago), and thus may be important for understanding the timing of the peopling of America.
Collapse
|
93
|
Bodare S, Stocks M, Yang JC, Lascoux M. Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola). Ecol Evol 2013; 3:3320-33. [PMID: 24223271 PMCID: PMC3797480 DOI: 10.1002/ece3.698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/08/2022] Open
Abstract
Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long-term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false-positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin.
Collapse
|
94
|
Blanco-Pastor JL, Vargas P. Autecological traits determined two evolutionary strategies in Mediterranean plants during the Quaternary: low differentiation and range expansion versus geographical speciation in Linaria. Mol Ecol 2013; 22:5651-68. [PMID: 24134639 DOI: 10.1111/mec.12518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
The evolutionary patterns of the Mediterranean flora during the Quaternary have been relatively well documented based on phylogenetic and biogeographic analyses, but few studies have addressed the evolutionary traits that determined diversification and range expansion success during this period. We analysed previously published and newly generated sequences of three plastid noncoding regions (rpl32-trnL(UAG) , trnS-trnG and trnL-trnF), the nuclear ribosomal internal transcribed spacer (ITS) and a low-copy nuclear gene intron (AGT1) of Linaria sect. Supinae, a group of angiosperms that diversified in the Quaternary. The origin and recent colonization dynamics of closely related lineages were inferred by biogeographic reconstruction and phylogeographic analyses, while breeding system experiments coupled with ecological and morphological data were used to test association with range expansion and diversification. A combination of traits, including selfing, short lifespan and the ability to tolerate a wide variety of substrates, were key factors underlying range expansion after long-distance dispersal throughout the Mediterranean basin. By contrast, self-incompatibility may have promoted higher diversification rates in narrow ranges of the Iberian Peninsula. We argue that a few traits contributed to the adoption of two contrasting strategies that may have been predominant in the evolution of Mediterranean angiosperms.
Collapse
|
95
|
Williams JW, Blois JL, Gill JL, Gonzales LM, Grimm EC, Ordonez A, Shuman B, Veloz SD. Model systems for a no-analog future: species associations and climates during the last deglaciation. Ann N Y Acad Sci 2013; 1297:29-43. [PMID: 23981247 DOI: 10.1111/nyas.12226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As the earth system moves to a novel state, model systems (experimental, observational, paleoecological) are needed to assess and improve the predictive accuracy of ecological models under environments with no contemporary analog. In recent years, we have intensively studied the no-analog plant associations and climates in eastern North America during the last deglaciation to better constrain their spatiotemporal distribution, test hypotheses about climatic and megaherbivory controls, and assess the accuracy of species- and community-level models. The formation of no-analog plant associations was asynchronous, beginning first in the south-central United States; at sites in the north-central United States, it is linked to declining megafaunal abundances. Insolation and temperature were more seasonal than present, creating climates currently nonexistent in North America, and shifting species-climate relationships for some taxa. These shifts pose a common challenge to empirical paleoclimatic reconstructions, species distribution models (SDMs), and conservation-optimization models based on SDMs. Steps forward include combining recent and paleoecological data to more fully describe species' fundamental niches, employing community-level models to model shifts in species interactions under no-analog climates, and assimilating paleoecological data with mechanistic ecosystem models. Accurately modeling species interactions under novel environments remains a fundamental challenge for all forms of ecological models.
Collapse
|
96
|
Ordonez A. Realized climatic niche of North American plant taxa lagged behind climate during the end of the Pleistocene. AMERICAN JOURNAL OF BOTANY 2013; 100:1255-1265. [PMID: 23825136 DOI: 10.3732/ajb.1300043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Predicting species responses to climate change has become a dynamic field in global change research. A crucial question in this debate is whether-or-not species have been and will be able to respond quickly enough to keep up with changing climatic conditions. METHODS Focusing on fossil pollen records and paleoclimatic simulations, this work assesses the change in realized climatic niches (climatic temporal trajectories) of 20 plant taxa over the last 16000 yr, and whether this tracking has been the same for different climatic niche dimensions. KEY RESULTS Climatic factors showed a consistent trend toward warmer temperatures and higher precipitation. Although the response types varied across taxa, species' realized climatic niches lagged in response to changes in climatic conditions. Temperature niches responded to late Pleistocene (16000-11000 yr ago) climate change, but did so at slower rates than changes in climatic conditions during the same period. In contrast, precipitation niches were relatively stable from 16000 to 11000 yr ago, but still lagged behind changes in climatic conditions. Changes in temperature and precipitation niches eventually stabilized during the Holocene (11000-1000 yr ago). CONCLUSIONS These results underscore how the climatic niche realized at any one moment represents a subset of the climate conditions in which a taxon can persist, particularly during times of fast climatic change. Variability in the rates of temporal trajectories across evaluated climatic variables showed taxa specific responses to changes in climatic conditions over time and emphasizes the need to incorporate variation, intensity, and duration of lag effects in assessments of the possible effects of climatic change.
Collapse
|
97
|
Nelson DM, Verschuren D, Urban MA, Hu FS. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. GLOBAL CHANGE BIOLOGY 2012; 18:3160-3170. [PMID: 28741834 DOI: 10.1111/j.1365-2486.2012.02766.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/29/2012] [Indexed: 06/07/2023]
Abstract
Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire-mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate-vegetation-fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal-inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial-scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel-limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean-annual temperature (~22 °C) allowed productive C4 grasses with high water-use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry-season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000-6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation-driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass-dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry-savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire-mediated ecosystem processes.
Collapse
|
98
|
Schorr G, Holstein N, Pearman PB, Guisan A, Kadereit JW. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula. Ecol Evol 2012; 2:1260-77. [PMID: 22833799 PMCID: PMC3402199 DOI: 10.1002/ece3.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022] Open
Abstract
The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.
Collapse
|
99
|
Comes HP. The Mediterranean region - a hotspot for plant biogeographic research. THE NEW PHYTOLOGIST 2004; 164:11-14. [PMID: 33873489 DOI: 10.1111/j.1469-8137.2004.01194.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|