76
|
Petersen OH, Michalak M, Verkhratsky A. Calcium signalling: Past, present and future. Cell Calcium 2005; 38:161-9. [PMID: 16076488 DOI: 10.1016/j.ceca.2005.06.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ is a universal second messenger controlling a wide variety of cellular reactions and adaptive responses. The initial appreciation of Ca2+ as a universal signalling molecule was based on the work of Sydney Ringer and Lewis Heilbrunn. More recent developments in this field were critically influenced by the invention of the patch clamp technique and the generation of fluorescent Ca2+ indicators. Currently the molecular Ca2+ signalling mechanisms are being worked out and we are beginning to assemble a reasonably complete picture of overall Ca2+ homeostasis. Furthermore, investigations of organellar Ca2+ homeostasis have added complexity to our understanding of Ca2+ signalling. The future of the Ca2+ signalling field lies with detailed investigations of the integrative function in vivo and clarification of the pathology associated with malfunctions of Ca2+ signalling cascades.
Collapse
|
77
|
Yang Y, Chen M, Loux TJ, Georgeson KE, Harmon CM. Molecular mechanism of the intracellular segments of the melanocortin-4 receptor for NDP-MSH signaling. Biochemistry 2005; 44:6971-9. [PMID: 15865442 DOI: 10.1021/bi047521+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of the human melanocortin-4 receptor (hMC4R) have been previously identified to be the most common cause of monogenic human obesity. Specifically, mutations of the intracellular C terminus and the third intracellular loop of hMC4R have been reported to play an important role in human obesity. However, the molecular basis of these hMC4R intracellular segments in receptor function remains unclear. In this study, we utilized deletions and mutations of specific portions of the hMC4R to determine the molecular mechanism of both the C terminus and the third intracellular loop in receptor signaling. Our results indicate that deletions of the distal 25 (the entire C terminus), 22, 18, 17, 16, and 15 amino acids of the C terminus result in the complete loss of both [Nle(4)-d-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) binding and NDP-MSH-mediated cAMP production. Deletion of the distal 14 amino acids of the C terminus significantly decreases both NDP-MSH binding affinity and potency, but deletion of the distal 13 amino acids of the C terminus does not affect NDP-MSH activity. Further analysis revealed that the proximal 12 amino acids of the C terminus are not only important for receptor signaling but also important for ligand binding. Our results also indicate that the third intracellular loop of the hMC4R is important for receptor signaling but not ligand binding. In summary, our findings suggest that the proximal region of the melanocortin-4 receptor (MC4R) C terminus is crucial not only for receptor signaling but also for ligand binding, while the third intracellular loop is important mainly for receptor signaling.
Collapse
|
78
|
Dhonukshe P, Mathur J, Hülskamp M, Gadella TWJ. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 2005; 3:11. [PMID: 15831100 PMCID: PMC1087477 DOI: 10.1186/1741-7007-3-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/14/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key event in plant morphogenesis is the establishment of a division plane. A plant-specific microtubular preprophase band (PPB) accurately predicts the line of cell division, whereas the phragmoplast, another plant-specific array, executes cell division by maintaining this predicted line. Although establishment of these specific arrays apparently involves intracellular repolarization events that focus cellular resources to a division site, it still remains unclear how microtubules position the cell division planes. Here we study GFP-AtEB1 decorated microtubule plus-ends to dissect events at the division plane. RESULTS Early mitotic events included guided growth of endoplasmic microtubules (EMTs) towards the PPB site and their coincident localization with endocytic vesicles. Consequently, an endosomal belt lay in close proximity to the microtubular PPB at its maturation and was maintained during spindle formation. During cytokinesis, EMTs radiated from the former spindle poles in a geometrical conformation correlating with cell-plate navigation and tilt-correction. Naphthylphtalamic acid (NPA), an inhibitor of polar auxin efflux, caused abnormal PPBs and shifted division planes. CONCLUSION Our observations reveal a spatio-temporal link between microtubules and intracellular polarization essential for localized endocytosis and precise establishment of the division plane in plants. Additionally, they implicate the growth regulator, auxin, in this important cellular event.
Collapse
|
79
|
Askenasy N, Navon G. Measurements of intracellular volumes by 59Co and 2H/1H NMR and their physiological applications. NMR IN BIOMEDICINE 2005; 18:104-110. [PMID: 15770623 DOI: 10.1002/nbm.908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Determination of the intracellular water volumes using NMR spectroscopy was performed using the NMR-visible nuclei: 59Co and 2H or 1H. Accurate measurement of intracellular water in cell suspensions and perfused organs is an important physiological parameter in the context of electrolyte homeostasis and energy metabolism, in particular when these parameters are monitored by non-invasive NMR spectroscopy. Furthermore, repeated or continuous monitoring of intracellular water provided significant insights into the physiology of cardiac muscle and sarcolemmal membrane permeability and integrity.
Collapse
|
80
|
Liao Z, Popel AS, Brownell WE, Spector AA. Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:2147-57. [PMID: 15898656 DOI: 10.1121/1.1863732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.
Collapse
|
81
|
Gordienko DV, Zholos AV. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005; 36:367-86. [PMID: 15451621 DOI: 10.1016/j.ceca.2004.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/11/2004] [Accepted: 02/14/2004] [Indexed: 11/26/2022]
Abstract
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).
Collapse
|
82
|
Pfefferbaum A, Sullivan EV. Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology 2005; 30:423-32. [PMID: 15562292 DOI: 10.1038/sj.npp.1300623] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Magnetic resonance diffusion tensor imaging (DTI) has revealed the disruption of brain white matter microstructure in normal aging and alcoholism undetectable with conventional structural MR imaging. The metrics of DTI can be useful in establishing the nature of the observed microstructural aberrations. Abnormally low fractional anisotropy (FA), a measure of diffusion orientation and coherence, may result from increased intracellular or extracellular fluid, which would be reflected in complementary high apparent diffusion coefficients (bulk mean diffusivity) and low FA, or from disorganization of fiber structure, which would be reflected in low FA but with a lack of the inverse FA and diffusivity relationship. To test these competing possibilities, we examined 15 alcoholic men and 31 control men with DTI to quantify diffusivity in the genu and splenium of the corpus callosum and centrum semiovale. In addition to the previously observed FA deficits in all the three brain regions, the alcoholics had abnormally high white matter diffusivity values in the genu and centrum. Further, inverse correlations between FA and diffusivity were significant in the genu (r=-0.52, p<0.05) and centrum (r=-0.92, p=0.0001). Multiple regression analyses examining diffusivity and age as predictors of FA identified diffusivity as a significant unique contributor to FA in both regions. These results suggest that decreased orientational coherence of brain white matter in alcoholism is attributable, at least in part, to the accumulation of intracellular and extracellular fluid in excess of that occurring in aging, and that the differential influence of these fluid compartments can vary across brain regions.
Collapse
|
83
|
Woodrow G, Oldroyd B, Wright A, Coward WA, Truscott JG. The effect of normalization of ECW volume as a marker of hydration in peritoneal dialysis patients and controls. Perit Dial Int 2005; 25 Suppl 3:S49-51. [PMID: 16048256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES We measured extraceLlular water (ECW) and intracellular water (ICW) volumes in peritoneal dialysis (PD) patients and controls to determine the effect of ICW variation on ECW/ICW ratio and to compare alternative ratios of ECW to height, height2, weight, and body surface area (BSA). PATIENTS AND METHODS We measured body water compartments by deuterium oxide and bromide dilution in 29 PD patients (14 M, 15 F) and 31 controls (15 M, 16 F). RESULTS ECW was similar in PD patients (17.58 +/- 3.58 L) and controls (17.20 +/- 2.97 L), p = NS. ICW was nonsignificantly lowerin PD patients (17.58 +/- 4.88 L) than in controls (19.71 +/- 5.08 L), p = NS. ECW/ICW was greaterin PD patients (1.06 +/- 0.32) than in controls (0.92 +/- 0.25), p = 0.057, and was inversely correlated with ICW in PD patients (r = -0.733, p < 0.0001) and controls (r = -0.721, p < 0.0001). In contrast, ECW/height, ECW/height2, ECW/weight, and ECW/BSA were similar for the two groups. CONCLUSIONS ECW/ICW is affected by changes in ICW as well as by ECW varying with hydration. ECW/ICW ratio leads to the spurious impression of overhydration in subjects with smaller ICW volumes. ECW/ICW does not reflect hydration alone and other methods of expressing ECW as a measure of hydration need further evaluation.
Collapse
|
84
|
Boulos A, Rolain JM, Mallet MN, Raoult D. Molecular evaluation of antibiotic susceptibility of Tropheryma whipplei in axenic medium. J Antimicrob Chemother 2005; 55:178-81. [PMID: 15650004 DOI: 10.1093/jac/dkh524] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES AND METHODS Whipple's disease is a rare multisystem chronic infection, involving the intestinal tract as well as various other organs. Tropheryma whipplei is a slow-growing facultative intracellular bacterium that remains poorly understood. In vitro antibiotic susceptibility testing has previously been assessed in cells using a real-time quantitative PCR assay. In this study, we have evaluated the antibiotic susceptibility of three strains of T. whipplei grown in axenic medium using the same assay. RESULTS The active compounds in axenic medium were doxycycline, macrolide compounds, penicillin G, streptomycin, rifampicin, chloramphenicol, thiamphenicol, teicoplanin, vancomycin, amoxicillin, gentamicin, aztreonam, levofloxacin and ceftriaxone, with MICs in the range 0.06-1 mg/L. Cefalothin was less active, with MICs in the range 2-4 mg/L. We found that co-trimoxazole was active with MICs in the range 0.5-1 mg/L, and sulfamethoxazole alone was active with MICs in the range 0.5-1 mg/L. MICs of trimethoprim varied from 64-128 mg/L. CONCLUSIONS Co-trimoxazole was effective in vitro, but this activity was due to sulfamethoxazole alone. These results were in accordance with the fact that T. whipplei does not contain the encoding gene for dihydrofolate reductase, the target for trimethoprim.
Collapse
|
85
|
Toescu EC. Hypoxia sensing and pathways of cytosolic Ca2+ increases. Cell Calcium 2005; 36:187-99. [PMID: 15261475 DOI: 10.1016/j.ceca.2004.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Oxygen-sensing and reactivity to changes in the concentration of oxygen is a fundamental property of cellular physiology. This central role is determined, mainly, by, to the fact that oxygen represents the final acceptor of electrons, derived from the normal cellular metabolism, at the end of the mitochondrial respiratory chain. Despite significant advances in molecular characterization of various oxygen-sensitive processes, the nature of the oxygen-sensor molecules and the mechanisms that link sensors to effects remains unclear. One such controversy is about the role and nature of reactive oxygen species (ROS) changes during hypoxia. Irrespective of the mechanisms of oxygen sensing, one of the constant early responses to hypoxia in almost all cell types is an increase in intracellular Ca2+ ([Ca2+]i). In many instances, this increase is mediated by the activation of various plasma membrane Ca2+ conductances. Some of these channels have specific Ca2+ permeability (e.g. voltage-operated Ca2+ channels), whereas others have non-specific cation conductances and are activated by a variety of ligands (ligand-operated channels). In the last decade, a large superfamily of channels with significant Ca2+ permeability has been progressively identified and characterised: the TRP channels. Through their properties, some groups of the TRP channels provide a link to the other hypoxia-activated mechanism of [Ca2+]i increase: the release of Ca2+ from intracellular Ca2+ stores. Since the [Ca2+]i signals, depending on their localization and intensity, are important regulators of the subsequent cellular responses to hypoxia, a deeper understanding of the mechanisms through which hypoxia regulate the activity of these pathways that increase intracellular Ca2+ could point the way towards the development of new therapeutic approaches to reduce or suppress the pathological effects of cellular hypoxia, such as those seen in stroke or myocardial ischemia.
Collapse
|
86
|
Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RCO, Bonder C, James WG, Robbins SM, Kubes P. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2005; 173:7070-7. [PMID: 15557205 DOI: 10.4049/jimmunol.173.11.7070] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental factors strongly influence the development of autoimmune diseases, including multiple sclerosis. Despite this clear association, the mechanisms through which environment mediates its effects on disease are poorly understood. Pertussis toxin (PTX) functions as a surrogate for environmental factors to induce animal models of autoimmunity, such as experimental autoimmune encephalomyelitis. Although very little is known about the molecular mechanisms behind its function in disease development, PTX has been hypothesized to facilitate immune cell entry to the CNS by increasing permeability across the blood-brain barrier. Using intravital microscopy of the murine cerebromicrovasculature, we demonstrate that PTX alone induces the recruitment of leukocytes and of active T cells to the CNS. P-selectin expression was induced by PTX, and leukocyte/endothelial interactions could be blocked with a P-selectin-blocking Ab. P-selectin blockade also prevented PTX-induced increase in permeability across the blood-brain barrier. Therefore, permeability is a secondary result of recruitment, rather than the primary mechanism by which PTX induces disease. Most importantly, we show that PTX induces intracellular signals through TLR4, a receptor intimately associated with innate immune mechanisms. We demonstrate that PTX-induced leukocyte recruitment is dependent on TLR4 and give evidence that the disease-inducing mechanisms initiated by PTX are also at least partly dependent on TLR4. We propose that this innate immune pathway is a novel mechanism through which environment can initiate autoimmune disease of the CNS.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/immunology
- Brain/blood supply
- Brain/immunology
- Brain/pathology
- Capillary Permeability/immunology
- Cell Movement/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Immunity, Innate/genetics
- Injections, Intravenous
- Intracellular Fluid/immunology
- Intracellular Fluid/physiology
- Leukocytes/immunology
- Leukocytes/pathology
- Lipopolysaccharide Receptors/genetics
- Lipopolysaccharide Receptors/physiology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- P-Selectin/biosynthesis
- P-Selectin/genetics
- P-Selectin/physiology
- Pertussis Toxin/administration & dosage
- Pertussis Toxin/immunology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Toll-Like Receptor 4
Collapse
|
87
|
Dong XH, Komiyama Y, Nishimura N, Masuda M, Takahashi H. Nanomolar level of ouabain increases intracellular calcium to produce nitric oxide in rat aortic endothelial cells. Clin Exp Pharmacol Physiol 2005; 31:276-83. [PMID: 15191398 DOI: 10.1111/j.1440-1681.2004.03995.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Changes in [Ca(2+)](i) across the cell membrane and/or the sarcoplasmic reticulum regulate endothelial nitric oxide (NO) synthase activity. In the present study, we investigated the effect of ouabain, a specific inhibitor of Na(+)/K(+)-ATPase, on NO release and [Ca(2+)](i) movements in cultured rat aortic endothelial cells (RAEC) by monitoring NO production continuously using an NO-specific real-time sensor and by measuring the change in [Ca(2+)](i) using a fluorescence microscopic imaging technique with high-speed wavelength switching. The t((1/2)) (half-time of the decline of [Ca(2+)](i) to basal levels after stimulation with 10 micro mol/L bradykinin) was used as an index of [Ca(2+)](i) extrusion. A very low concentration of ouabain (10 nmol/L) did not increase the peak of NO production, but decreased the decay of NO release and, accordingly, increased integral NO production by the maximal dose-response concentration induced by bradykinin. The same dose of ouabain affected [Ca(2+)](i) movements across the cell membrane and/or sarcoplasmic reticulum induced by bradykinin with a time-course similar to that of NO release. Moreover, the t((1/2)) was significantly increased. Pretreatment of RAEC with Na(+)-free solution, an inhibitor of the Na(+)/Ca(2+) exchanger, and nickel chloride hexahydrate prevented the effects induced by bradykinin and ouabain. These observations using real-time recording indicate that a small amount of ouabain contributes to the bradykinin-stimulated increase of NO production through inhibition of plasma membrane Na(+)/K(+)-ATPase activity and an increase in intracellular Na(+) concentrations. The membrane was then depolarized, leading to a decline in the bradykinin-stimulated increase in [Ca(2+)](i) by forward mode Na(+)/Ca(2+) exchange to prolong the Ca(2+) signal time. From these results, we suggest that nanomolar levels of ouabain modulate [Ca(2+)](i) movements and NO production in RAEC.
Collapse
|
88
|
Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. Ca2+-Dependent Induction of Intracellular Ca2+ Oscillation in Hippocampal Astrocytes During Metabotropic Glutamate Receptor Activation. J Pharmacol Sci 2005; 97:212-8. [PMID: 15684567 DOI: 10.1254/jphs.fp0040722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have investigated whether the intracellular calcium concentration ([Ca(2+)](i)) oscillations induced in astrocytes using the metabotropic glutamate-receptor agonist, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) are Ca(2+)-dependent, using three different Ca(2+) indicators with different affinities for Ca(2+). When rat hippocampal cells in culture were loaded with fura-2 (K(d): 145 nM), two-thirds of the cells showed obvious oscillatory increase in [Ca (2+)](i) during t-ACPD-administration. Those cells were identified as astrocytes by immuno-histochemistry in our previous paper. In cells loaded with fura-2FF (K(d): 25,000 nM), a similar percentage of t-ACPD-responsive cells showed oscillatory [Ca(2+)](i) changes. However, in cells loaded with quin-2 (K(d): 60 nM), t-ACPD induced no oscillatory responses, but some cells showed a small transient increase in the [Ca(2+)](i). The same small transient [Ca(2+)](i) increase was seen in cells loaded with both fura-2FF and BAPTA, a Ca(2+) chelator (K(d): 135 nM). These findings indicate the involvement of [Ca(2+)](i)-dependent regulatory mechanisms in the induction of the t-ACPD-induced oscillatory change in the [Ca(2+)](i) in astrocytes.
Collapse
|
89
|
Zhao X, MacBride MM, Peterson BR, Pfaff DW, Vasudevan N. Calcium flux in neuroblastoma cells is a coupling mechanism between non-genomic and genomic modes of estrogens. Neuroendocrinology 2005; 81:174-82. [PMID: 16020926 DOI: 10.1159/000087000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/19/2005] [Indexed: 11/19/2022]
Abstract
Estrogens have been demonstrated to rapidly modulate calcium levels in a variety of cell types. However, the significance of estrogen-mediated calcium flux in neuronal cells is largely unknown. The relative importance of intra- and extracellular sources of calcium in estrogenic effects on neurons is also not well understood. Previously, we have demonstrated that membrane-limited estrogens, such as E-BSA given before an administration of a 2-hour pulse of 17beta-estradiol (E2), can potentiate the transcription mediated by E2 from a consensus estrogen response element (ERE)-driven reporter gene. Inhibitors to signal transduction cascades given along with E-BSA or E2 demonstrated that calcium flux is important for E-BSA-mediated potentiation of transcription in a transiently transfected neuroblastoma cell line. In this report, we have used inhibitors to different voltage-gated calcium channels (VGCCs) and to intracellular store receptors along with E-BSA in the first pulse or with E2 in the second pulse to investigate the relative importance of these channels to estrogen-mediated transcription. Neither L- nor P-type VGCCs seem to play a role in estrogen action in these cells; while N-type VGCCs are important in both the non-genomic and genomic modes of estrogen action. Specific inhibitors also showed that the ryanodine receptor and the inositol trisphosphate receptor are important to E-BSA-mediated transcriptional potentiation. This report provides evidence that while intracellular stores of calcium are required to couple non-genomic actions of estrogen initiated at the membrane to transcription in the nucleus, extracellular sources of calcium are also important in both non-genomic and genomic actions of estrogens.
Collapse
|
90
|
Fernandes VMV, Romano-Silva MA, Gomes DA, Prado MAM, Santos TM, Gomez MV. Dopamine release evoked by beta scorpion toxin, tityus gamma, in prefrontal cortical slices is mediated by intracellular calcium stores. Cell Mol Neurobiol 2004; 24:757-67. [PMID: 15672678 DOI: 10.1007/s10571-004-6917-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. We have investigated the effect of tityus gamma (TiTX gamma) scorpion toxin on the release of [3H]dopamine in rat brain prefrontal cortical slices. The stimulatory effect of TiTX gamma on the release of [3H]dopamine was dose/time-dependent with an EC50 of 0.01 microM. 2. Tetrodotoxin blocked the TiTX gamma-induced release of [3H]dopamine, indicating the dependency for Na+ channels. 3. EGTA had no effect on the TiTX gamma-induced release of [3H]dopamine, indicating the process is independent of extracellular calcium. Release of [3H]dopamine evoked by TiTX gamma was inhibited by 57% by BAPTA, a chelator of intracellular calcium. 4. Xestospongin and 2-APB, putative blockers of IP3-sensitive release of intracellular calcium stores, caused an equal and significant inhibition of 24% of the TiTX gamma-induced release of [3H]dopamine, while the slight inhibition evoked by dantrolene, a putative blocker of ryanodine-sensitive calcium store was not significant. 5. Nomifensine and ascorbic acid, blockers of dopamine transporter (DAT), caused an inhibition of 27 and 29%, respectively, on the toxin-induced release of [3H]dopamine suggesting that most of the TiTX gamma-induced release of dopamine is not due to the reversal of Na+ gradient. 6. In conclusion the majority of the TiTX gamma-induced release of [3H]dopamine is exocytotic and mobilizes calcium from the intracellular IP3-sensitive calcium stores.
Collapse
|
91
|
Lee YS. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line. Arch Pharm Res 2004; 27:1245-52. [PMID: 15646799 DOI: 10.1007/bf02975889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.
Collapse
|
92
|
Mollinedo F, Gajate C, Martín-Santamaría S, Gago F. ET-18-OCH3 (Edelfosine): A Selective Antitumour Lipid Targeting Apoptosis Through Intracellular Activation of Fas / CD95 Death Receptor. Curr Med Chem 2004; 11:3163-84. [PMID: 15579006 DOI: 10.2174/0929867043363703] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthetic ether-linked analogues of phosphatidylcholine and lysophosphatidylcholine, collectively named as antitumour lipids (ATLs), were initially synthesized in the late 60s, but have attracted a renewed interest since the finding that the ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3- phosphocholine (ET-18-OCH3, edelfosine), a synthetic analogue of 2-lysophosphatidylcholine considered the ATL prototype, induces a selective apoptotic response in tumour cells, sparing normal cells. Unlike most chemotherapeutic agents currently used, ET-18-OCH3 does not interact with DNA, but act at the cell membrane, and thereby its effects seem to be independent of the proliferative state of target cells. Each part of the molecular structure of ET-18-OCH3 is important for its optimal proapoptotic activity. Recent progress has unveiled the molecular mechanism underlying the apoptotic action of ET-18-OCH3, involving membrane rafts and Fas / CD95 death receptor, and has led to the proposal of a two-step model for the ET-18-OCH3 selective action on cancer cells, namely: a) ET-18-OCH3 uptake into the tumour cell, but not in normal cells; b) intracellular activation of Fas / CD95 through its translocation and capping into membrane rafts. ET-18-OCH3 constitutes the first antitumour drug acting through the intracellular activation of the Fas / CD95 death receptor. Computational docking studies have allowed us to propose a molecular model for the putative interaction of ET-18-OCH3 with the intracellular Fas/CD95 death domain. This novel mechanism of action represents a new way to target tumour cells in cancer chemotherapy and can be of interest as a new framework in designing novel and more selective proapoptotic antitumour drugs.
Collapse
|
93
|
Pereira S, Zhang H, Takai T, Lowell CA. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. THE JOURNAL OF IMMUNOLOGY 2004; 173:5757-65. [PMID: 15494528 DOI: 10.4049/jimmunol.173.9.5757] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ig-like receptor family member, PIR-B, has been shown to play an inhibitory role in receptor signaling within B cells, mast cells, and dendritic cells. As it has been implicated in integrin-mediated responses, we investigated the effect of loss of the PIR-B protein on integrin-mediated signaling in primary murine myeloid cells. The pir-b-/- neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when plated on surfaces coated with either extracellular matrix proteins or cellular adhesion molecules in the presence or absence of the soluble inflammatory agonist TNF-alpha. The pir-b-/- and wild-type cells responded equivalently when stimulated with TNF-alpha in suspension, indicating that the hyperresponsive phenotype of the pir-b-/- cells during adhesion was due to enhanced integrin signaling. Both wild-type and pir-b-/- neutrophils expressed similar levels of integrin subunits. Primary bone marrow-derived macrophages from pir-b-/- mice were also hyperadhesive and spread more rapidly than wild-type cells following plating on surfaces that cross-linked cellular beta2 integrins. Biochemical analysis of macrophages from pir-b-/- mice revealed enhanced phosphorylation and activation of proteins involved in integrin signaling. These observations point to a nonredundant role for PIR-B in the regulation of leukocyte integrin signaling.
Collapse
|
94
|
Jo EJ, Lee HY, Lee YN, Kim JI, Kang HK, Park DW, Baek SH, Kwak JY, Bae YS. Group IB Secretory Phospholipase A2 Stimulates CXC Chemokine Ligand 8 Production via ERK and NF-κB in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 173:6433-9. [PMID: 15528384 DOI: 10.4049/jimmunol.173.10.6433] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the level of group IB secretory phospholipase A(2) (sPLA(2)-IB) has been reported to be up-regulated during inflammatory response, the role of sPLA(2)-IB on the regulation of inflammation and immune responses has not been fully elucidated. In this study, we found that sPLA(2)-IB stimulates the expression and secretion of CXCL8 without affecting other proinflammatory cytokines, such as IL-1beta or TNF alpha in human neutrophils. The induction of CXCL8 secretion by sPLA(2)-IB occurs at both the transcription and translational levels and correlates with activation of NF-kappaB. Moreover, the NF-kappaB inhibitors pyrrolidinedithiocarbamate, dexamethasone, or sulfasalazine were found to prevent CXCL8 production by sPLA(2)-IB in human neutrophils. In addition, the signaling events induced by sPLA(2)-IB included activation of the MAPK ERK and an increase in intracellular Ca(2+), which are both required for CXCL8 production. The exogenous addition of sPLA(2)-IB did not induce arachidonic acid release from human neutrophils, and the inactivation of sPLA(2)-IB by EGTA did not affect CXCL8 production by sPLA(2)-IB in human neutrophils. Taken together, we suggest that sPLA(2)-IB plays a role in the modulation of inflammatory and immune responses via the sPLA(2) receptor, by inducing CXCL8 in human neutrophils.
Collapse
|
95
|
Ju C, Oh YJ, Han BH, Kim HS, Kim HC, Kim WK. Intracellular pH-dependent peroxynitrite-evoked synergistic death of glucose-deprived astrocytes. Free Radic Biol Med 2004; 37:1160-9. [PMID: 15451056 DOI: 10.1016/j.freeradbiomed.2004.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 06/22/2004] [Accepted: 07/08/2004] [Indexed: 11/24/2022]
Abstract
Previously, we reported that glucose-deprived astrocytes were highly vulnerable to peroxynitrite (ONOO-). Here we demonstrate that the increased vulnerability caused by glucose deprivation and ONOO- depends on intracellular pH. The ONOO- releasing reagent 3-morpholinosydnonimine (SIN-1) markedly induced the release of lactate dehydrogenase (LDH, the marker of cytotoxicity) in glucose-deprived astrocytes. Morphological studies and caspase activity assay showed that astrocytes treated together with glucose deprivation and ONOO- died mostly in a necrotic mode. Alkalinization of pH from 7.4 to 7.8 increased LDH release, whereas acidification from pH 7.4 to 7.0 decreased it. However, intracellular pH (pHi), not extracellular pH (pHe), appeared to play a critical role in the synergistic death. Thus, without a change in pHe (7.4) cytosolic acidification by a weak acid salt, sodium acetate, and a Na+/H+ antiporter inhibitor, amiloride, reduced LDH release. In contrast, a weak base, NH4Cl, and a Na+/H+ antiporter stimulator, monensin, increased pHi and greatly enhanced LDH release. The augmented death was found to be due, in part, to the preceding decrease in the level of reduced glutathione, the ONOO- scavenger, and collapse of the mitochondrial transmembrane potential at alkaline pH.
Collapse
|
96
|
Idzko M, Panther E, Stratz C, Müller T, Bayer H, Zissel G, Dürk T, Sorichter S, Di Virgilio F, Geissler M, Fiebich B, Herouy Y, Elsner P, Norgauer J, Ferrari D. The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. THE JOURNAL OF IMMUNOLOGY 2004; 172:6011-9. [PMID: 15128784 DOI: 10.4049/jimmunol.172.10.6011] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT), commonly known as serotonin, is stored at peripheral sites in mast cells and released from this peripheral source upon IgE cross-linking. In this study, we investigated the expression of serotoninergic receptors (5-HTR), the signaling pathway, and biological activity of 5-HT on human dendritic cells (DC), showing that immature and mature DC expressed mRNA for different serotoninergic receptors. Thereby, the mRNA of 5-HTR(1B), 5-HTR(1E), 5-HTR(2A), 5-HTR(2B), one splicing variant of the 5-HTR(3), 5-HTR(4), and 5-HTR(7) receptors were detected. Immature DC preferentially expressed mRNA for the heptahelical 5-HTR(1B), 5-HTR(1E), and 5-HTR(2B) receptors, while mature DC mostly expressed 5-HTR(4) and 5-HTR(7). The mRNA expression level of the ligand-gated cation channel 5-HTR(3) and the heptahelical 5-HTR(2A) did not significantly change during maturation. Isotype-selective receptor agonists allowed us to show that 5-HT stimulated 5-HTR(3)-dependent Ca(2+) influx in immature and mature DC. Moreover, we revealed that 5-HTR(1) and 5-HTR(2) receptor stimulation induced intracellular Ca(2+) mobilization via G(i/o) proteins in immature, but not mature, DC. Activation of 5-HTR(4) and 5-HTR(7) induced cAMP elevation in mature DC. Functional studies indicated that activation of 5-HTR(4) and 5-HTR(7) enhanced the release of the cytokines IL-1beta and IL-8, while reducing the secretion of IL-12 and TNF-alpha in mature DC. In summary, our study shows that 5-HT stimulated, in a maturation-dependent manner, different signaling pathways in DC. These data point to a role for 5-HT in regulating the immune response at peripheral sites.
Collapse
|
97
|
Stocks JM, Patterson MJ, Hyde DE, Jenkins AB, Mittleman KD, Taylor NAS. Effects of immersion water temperature on whole-body fluid distribution in humans. ACTA ACUST UNITED AC 2004; 182:3-10. [PMID: 15329051 DOI: 10.1111/j.1365-201x.2004.01302.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. METHODS Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. RESULTS Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P < 0.05], along with a significant haemodilution in the control state (P < 0.05). Plasma atrial natriuretic peptide concentration increased from 18.0 +/- 1.6 to 58.7 +/- 15.1 ng L(-1) (P < 0.05) during cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. CONCLUSION These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.
Collapse
|
98
|
Lai ZF, Chen YZ, Nishi K. Modulation of intracellular Cl- homeostasis by lectin-stimulation in Jurkat T lymphocytes. Eur J Pharmacol 2004; 482:1-8. [PMID: 14659998 DOI: 10.1016/s0014-2999(03)02076-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated changes in intracellular Cl(-) concentration ([Cl(-)](i)) during lectin-induced activation and proliferation in human Jurkat T lymphocytes. [Cl(-)](i) was measured using Cl(-) fluorescence dye (N-(6-methoyquinolyl) acetoxy-acetyl-ester, MQAE) methods. Lectins, phytohemagglutinin and concanavalin A, dose-dependently increased [Cl(-)](i) and triggered intracellular Cl(-) oscillation in human Jurkat T lymphocytes. However, some mitochondria metabolism inhibitors, such as m-chlorocarbonylcyanide phenylhydrazone (CCP) and 2,4-dinitrophenol, increased [Cl(-)](i) without triggering any Cl(-) oscillation. Furthermore, both lectins and metabolism inhibitors-induced elevation in [Cl(-)](i) were blocked by removal of extracellular Cl(-) from perfusion solution or by application of anthracene-9-carboxylate, a blocker of Cl(-) channels. Since an extracellular Cl(-)-free condition and application of 9-AC also inhibited PHA-induced proliferation, we suggested that elevation of [Cl(-)](i) via activation of Cl(-) channels and increase in incidence of Cl(-) oscillation would play an important role in modulation of Jurkat T cell activation and proliferation.
Collapse
|
99
|
Anderson T, Hu B, Pittman Q, Kiss ZHT. Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. J Physiol 2004; 559:301-13. [PMID: 15218068 PMCID: PMC1665080 DOI: 10.1113/jphysiol.2004.064998] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 06/23/2004] [Indexed: 11/08/2022] Open
Abstract
High-frequency deep brain stimulation (DBS) in the thalamus alleviates most kinds of tremor, yet its mechanism of action is unknown. Studies in subthalamic nucleus and other brain sites have emphasized non-synaptic factors. To explore the mechanism underlying thalamic DBS, we simulated DBS in vitro by applying high-frequency (125 Hz) electrical stimulation directly into the sensorimotor thalamus of adult rat brain slices. Intracellular recordings revealed two distinct types of membrane responses, both of which were initiated with a depolarization and rapid spike firing. However, type 1 responses repolarized quickly and returned to quiescent baseline during simulated DBS whereas type 2 responses maintained the level of membrane depolarization, with or without spike firing. Individual thalamic neurones exhibited either type 1 or type 2 response but not both. In all neurones tested, simulated DBS-evoked membrane depolarization was reversibly eliminated by tetrodotoxin, glutamate receptor antagonists, and the Ca(2+) channel antagonist Cd(2+). Simulated DBS also increased the excitability of thalamic cells in the presence of glutamate receptor blockade, although this non-synaptic effect induced no spontaneous firing such as that found in subthalamic nucleus neurones. Our data suggest that high-frequency stimulation when applied in the ventral thalamus can rapidly disrupt local synaptic function and neuronal firing thereby leading to a 'functional deafferentation' and/or 'functional inactivation'. These mechanisms, driven primarily by synaptic activation, help to explain the paradox that lesions, muscimol and DBS in thalamus all effectively stop tremor.
Collapse
|
100
|
Houtman JCD, Higashimoto Y, Dimasi N, Cho S, Yamaguchi H, Bowden B, Regan C, Malchiodi EL, Mariuzza R, Schuck P, Appella E, Samelson LE. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry 2004; 43:4170-8. [PMID: 15065860 DOI: 10.1021/bi0357311] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of multiprotein complexes at receptors and adapter proteins is crucial for the activation of intracellular signaling pathways. In this study, we used multiple biochemical and biophysical methods to examine the binding properties of several SH2 and SH3 domain-containing signaling proteins as they interact with the adapter protein linker for activation of T-cells (LAT) to form multiprotein complexes. We observed that the binding specificity of these proteins for various LAT tyrosines appears to be constrained both by the affinity of binding and by cooperative protein-protein interactions. These studies provide quantitative information on how different binding parameters can determine in vivo binding site specificity observed for multiprotein signaling complexes.
Collapse
|