76
|
Forcelli PA, Heinrichs SC. Teratogenic effects of maternal antidepressant exposure on neural substrates of drug-seeking behavior in offspring. Addict Biol 2008; 13:52-62. [PMID: 17850417 DOI: 10.1111/j.1369-1600.2007.00078.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
If neurotransmitter balance is upset in the developing nervous system by exposure to antidepressant drugs, structural and functional hedonic phenotypes of offspring may be affected. In order to test this hypothesis, two groups of pregnant Wistar dams were exposed to vehicle or fluoxetine by implantation on gestational day 14 of osmotic minipumps delivering 0 or 10 mg/kg/day fluoxetine for 14 days. The consequences of perinatal fluoxetine exposure on offspring conflict-exploratory behavior were quantified using the elevated plus-maze on postnatal day (PND) 30. Beginning on PND 60, the reinforcing properties of acutely administered cocaine were examined using a place conditioning procedure. Beginning on PND 90, a subset of rats were implanted with jugular catheters and allowed to acquire self-administration of cocaine in an operant environment. In support of the hedonic modulation hypothesis, perinatal fluoxetine produced a significant decline in both nucleus accumbens cell count (-9%) and serotonin transporter-like immunoreactivity in the raphe nucleus (-35%) on PND 120. In the elevated plus-maze, perinatal fluoxetine exposure decreased (-21%) overall activity. In the place conditioning trial, only the fluoxetine-treated group exhibited a significant place preference for the compartment paired previously with cocaine. In a cocaine self-administration extinction trial, there was a statistically significant increase (350%) in extinction response rate among fluoxetine-exposed offspring. These findings suggest that perinatal exposure to fluoxetine perturbs adult serotonergic neurotransmission and produces a positive hedonic shift for conditioned reinforcing effects of cocaine.
Collapse
|
77
|
De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl) 2007; 194:517-25. [PMID: 17619858 DOI: 10.1007/s00213-007-0862-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 06/16/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE Accumulating evidence in humans demonstrated that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson disease (PD). These deficits have been generally attributed to cortical dopamine degeneration. However, more recent evidence suggests that dopamine loss in the striatum is responsible for the visuo-spatial abnormalities in PD. Studies based on animal models of PD did not specifically address this question. OBJECTIVES Thus, the first goal of this study was to analyze the role of dopamine within the dorsal striatum in spatial memory. We tested bilateral 6-OHDA striatal lesioned CD1 mice in an object-place association spatial task. Furthermore, to see whether the effects were selective for spatial information, we measured how the 6-OHDA-lesioned animals responded to a non-spatial change and learned in the one-trial inhibitory avoidance task. RESULTS The results demonstrated that bilateral (approximately 75%) dopamine depletion of the striatum impaired spatial change discrimination. On the contrary, no effect of the lesion was observed on non-spatial novelty detection or on passive avoidance learning. CONCLUSIONS These results confirm that dopamine depletion is accompanied by cognitive deficits and demonstrate that striatal dopamine dysfunction is sufficient to induce spatial information processing deficits.
Collapse
|
78
|
Bezzina G, Cheung THC, Asgari K, Hampson CL, Body S, Bradshaw CM, Szabadi E, Deakin JFW, Anderson IM. Effects of quinolinic acid-induced lesions of the nucleus accumbens core on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl) 2007; 195:71-84. [PMID: 17659381 PMCID: PMC2092416 DOI: 10.1007/s00213-007-0882-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE There is evidence that lesions of the nucleus accumbens core (AcbC) promote preference for smaller earlier reinforcers over larger delayed reinforcers in inter-temporal choice paradigms. It is not known whether this reflects an effect of the lesion on the rate of delay discounting, on sensitivity to reinforcer magnitude, or both. AIM We examined the effect of AcbC lesions on inter-temporal choice using a quantitative method that allows effects on delay discounting to be distinguished from effects on sensitivity to reinforcer size. MATERIALS AND METHODS Sixteen rats received bilateral quinolinic acid-induced lesions of the AcbC; 14 received sham lesions. They were trained under a discrete-trials progressive delay schedule to press two levers (A and B) for a sucrose solution. Responses on A delivered 50 microl of the solution after a delay d(A); responses on B delivered 100 microl after d(B). d(B) increased across blocks of trials, while d(A) was manipulated across phases of the experiment. Indifference delay d(B(50)) (value of d(B) corresponding to 50% choice of B) was estimated in each phase, and linear indifference functions (d(B(50)) vs d(A)) derived. RESULTS d(B(50)) increased linearly with d(A) (r(2) > 0.95 in each group). The intercept of the indifference function was lower in the lesioned than the sham-lesioned group; slope did not differ between groups. The lesioned rats had extensive neuronal loss in the AcbC. CONCLUSIONS The results confirm that lesions of the AcbC promote preference for smaller, earlier reinforcers and suggest that this reflects an effect of the lesion on the rate of delay discounting.
Collapse
|
79
|
Solis O, Limón DI, Flores-Hernández J, Flores G. Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson's disease. Synapse 2007; 61:450-8. [PMID: 17372982 DOI: 10.1002/syn.20381] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have studied the morphological changes of the dendrites of the pyramidal neurons of the prefrontal cortex (PFC) and the medium spiny neurons of the caudate-putamen (CPu) and nucleus accumbens (NAcc) induced by the injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNc). The unilateral 6-OHDA-induced lesion of the SNc was made in Wistar rats to produce the Parkinson model lesion. Two weeks after the injection, the testing of rotational behavior caused by amphetamine injection was done to assess the animals with lesions. Four weeks after the 6-OHDA injection, the morphology of the pyramidal cells of Layer 5 of the PFC and the medium spiny neurons of the CPu and NAcc were quantified by modified Golgi-Cox staining. The results showed that the length of dendrites, the branching, and the density of dendritic spines on the medium spiny neurons of the same side of the caudate-putamen lesion were significantly decreased in rats with the unilateral 6-OHDA-induced lesion of the SNc. The pyramidal neurons of the PFC and medium spiny neurons of the NAcc showed a decrease in the density of dendritic spines without significant changes in dendritic length or arborization. Our data suggest that the SNc lesion with the 6-OHDA, Hemiparkinsonism animal model may lead to altered neuronal plasticity in the CPu, NAcc, and PFC that may have participated in the emergence of the behavioral changes observed in these animals.
Collapse
|
80
|
Glenthoj A, Glenthoj BY, Mackeprang T, Pagsberg AK, Hemmingsen RP, Jernigan TL, Baaré WFC. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug. Psychiatry Res 2007; 154:199-208. [PMID: 17360162 DOI: 10.1016/j.pscychresns.2006.10.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 09/19/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The present study examined basal ganglia volumes in drug-naive first-episode schizophrenic patients before and after treatment with either a specific typical or atypical antipsychotic compound. Sixteen antipsychotic drug-naive and three minimally medicated first-episode schizophrenic patients and 19 matched controls participated. Patients were randomly assigned to treatment with either low doses of the typical antipsychotic drug, zuclopenthixol, or the atypical compound, risperidone. High-resolution magnetic resonance imaging (MRI) scans were obtained in patients before and after 12 weeks of exposure to medication and in controls at baseline. Caudate nucleus, nucleus accumbens, and putamen volumes were measured. Compared with controls, absolute volumes of interest (VOIs) were smaller in patients at baseline and increased after treatment. However, with controls for age, gender and whole brain or intracranial volume, the only significant difference between patients and controls was a Hemisphere x Group interaction for the caudate nucleus at baseline, with controls having larger left than right caudate nuclei and patients having marginally larger right than left caudate volumes. Within patients, the two medication groups did not differ significantly with respect to volume changes after 3 months of low dose treatment in any of the VOIs. Nevertheless, when medication groups were examined separately, a significant volume increase in the putamen was evidenced in the risperidone group. The altered asymmetry in caudate volume in patients suggests intrinsic basal ganglia pathology in schizophrenia, most likely of neurodevelopmental origin.
Collapse
|
81
|
Chandler-Laney PC, Castañeda E, Viana JB, Oswald KD, Maldonado CR, Boggiano MM. A history of human-like dieting alters serotonergic control of feeding and neurochemical balance in a rat model of binge-eating. Int J Eat Disord 2007; 40:136-42. [PMID: 17080436 DOI: 10.1002/eat.20349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This study replicated a model of stress-induced binge-eating in rats with a history of caloric restriction (HCR), tested their response to SSRI (fluoxetine) treatment, and explored changes in brain monoamine levels. METHOD Young female rats with no-HCR/no-Stress, no-HCR/Stress, HCR/no-Stress, and HCR+Stress (binge-eating) were treated with fluoxetine. Post-mortem levels of serotonin, dopamine, and metabolites were assessed from brain regions key to feeding and reward. RESULTS A 3 mg/kg dose of fluoxetine without effect in the no-HCR groups suppressed intake of HCR groups, normalizing the binge-eating of HCR/Stress rats. No differences in monoamines were detected in the hypothalamus or tegmentum but a strong positive relationship between accumbens serotonin and dopamine turnover in no-HCR rats was absent in rats with HCR. CONCLUSION Despite lack of hunger, a history of human-like dieting alters serotonin function in ways suggesting consequences not only to feeding but also control of reward and mood that are dependent on dopamine/serotonin interactions.
Collapse
|
82
|
Bragulat V, Paillère-Martinot ML, Artiges E, Frouin V, Poline JB, Martinot JL. Dopaminergic function in depressed patients with affective flattening or with impulsivity: [18F]fluoro-L-dopa positron emission tomography study with voxel-based analysis. Psychiatry Res 2007; 154:115-24. [PMID: 17306513 DOI: 10.1016/j.pscychresns.2006.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 04/25/2005] [Accepted: 07/08/2006] [Indexed: 11/20/2022]
Abstract
A decreased striatal presynaptic dopaminergic function has been reported in depressed patients with affective flattening and psychomotor retardation, using (18)F-fluorodopa positron emission tomography and regions-of-interest. The present study aimed to investigate regional ;[(18)F]dopa uptake in mesolimbic and mesocortical dopaminergic projections with the hypothesis that there should be a decrease in mesolimbic [(18)F]dopa uptake associated with affective flattening and psychomotor retardation. [(18)F]Dopa-positron emission tomography and anatomical magnetic resonance imaging datasets from 12 screened depressed patients with either marked affective flattening and psychomotor retardation (n=6) or with marked impulsivity (n=6), and from eight healthy subjects, were analyzed using a voxel-based approach. Regional differences in [(18)F]dopa uptake rate constant (K(i)) values between the healthy group and the two depression subgroups were compared using both statistical parametric mapping and cluster-based regions-of-interest. Patients with affective flattening and psychomotor retardation had [(18)F]dopa K(i) decreases in the left caudate, bilateral putamen and nucleus accumbens, left parahippocampus and dorsal brainstem. Impulsive depressives had [(18)F]dopa K(i) decreases in the anterior cingulate and hypothalamus, and an increase in the right parahippocampal gyrus. These findings support distinct regional dysfunctions of monoamines depending on the depressive symptomatology.
Collapse
|
83
|
Wang L, Lee DY, Bailey E, Hartlein JM, Gado MH, Miller MI, Black KJ. Validity of large-deformation high dimensional brain mapping of the basal ganglia in adults with Tourette syndrome. Psychiatry Res 2007; 154:181-90. [PMID: 17289354 PMCID: PMC2859464 DOI: 10.1016/j.pscychresns.2006.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 06/06/2006] [Accepted: 08/30/2006] [Indexed: 11/21/2022]
Abstract
The basal ganglia and thalamus may play a critical role for behavioral inhibition mediated by prefrontal, parietal, temporal, and cingulate cortices. The cortico-basal ganglia-thalamo-cortical loop with projections from frontal cortex to striatum, then to globus pallidus or to substantia nigra pars reticulata, to thalamus and back to cortex, provides the anatomical substrate for this function. In-vivo neuroimaging studies have reported reduced volumes in the thalamus and basal ganglia in individuals with Tourette Syndrome (TS) when compared with healthy controls. However, patterns of neuroanatomical shape that may be associated with these volume differences have not yet been consistently characterized. Tools are being developed at a rapid pace within the emerging field of computational anatomy that allow for the precise analysis of neuroanatomical shape derived from magnetic resonance (MR) images, and give us the ability to characterize subtle abnormalities of brain structures that were previously undetectable. In this study, T1-weighted MR scans were collected in 15 neuroleptic-naïve adults with TS or chronic motor tics and 15 healthy, tic-free adult subjects matched for age, gender and handedness. We demonstrated the validity and reliability of large-deformation high dimensional brain mapping (HDBM-LD) as a tool to characterize the basal ganglia (caudate, globus pallidus and putamen) and thalamus. We found no significant volume or shape differences in any of the structures in this small sample of subjects.
Collapse
|
84
|
Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HWM, Hof PR, Schmitz C. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. ACTA ACUST UNITED AC 2007; 130:678-92. [PMID: 17303593 DOI: 10.1093/brain/awl386] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several studies have pointed to alterations in mean volumes, neuron densities and total neuron numbers in the caudate nucleus (CN), putamen, nucleus accumbens (NA), mediodorsal nucleus of the thalamus (MDNT) and lateral nucleus of the amygdala (LNA) in schizophrenia. However, the results of these studies are conflicting and no clear pattern of alterations has yet been established in these subcortical regions, possibly due to differences in quantitative histological methods used as well as differences in the investigated case series. The present study investigates these subcortical regions in both hemispheres of the same post-mortem brains for volume, neuron density and total neuron number with high-precision design-based stereology. The analysed case series consisted of 13 post-mortem brains from male schizophrenic patients [age range: 22-64 years; mean age 51.5 +/- 3.3 years (mean +/- SEM)] and 13 age-matched male controls (age range: 25-65 years; mean age 51.9 +/- 3.1 years). A general linear model multivariate analysis of variance with diagnosis and hemisphere as fixed factors and illness duration (schizophrenic patients) or age (controls), post-mortem interval and fixation time as covariates showed a number of statistically significant alterations in the brains from schizophrenic patients compared with the controls. There was a reduced mean volume of the putamen [-5.0% on the left side (l) and -4.1% on the right side (r)] and the LNA (l: -12.1%, r: -17.6%), and a reduced mean total neuron number in the CN (l: -10.4%, r: -10.2%), putamen (l: -8.1%, r: -11.6%) and the LNA (l: -15.9%, r: -16.2%). These data show a previously unreported, distinct pattern of alterations in mean total neuron numbers in identified subcortical brain regions in a carefully selected sample of brains from schizophrenic patients. The rigorous quantitative analysis of several regions in brains from schizophrenic patients and matched controls is crucial to provide reliable information on the neuropathology of schizophrenia as well as insights about its pathogenesis.
Collapse
|
85
|
Totterdell S. The anatomy of co-morbid neuropsychiatric disorders based on cortico-limbic synaptic interactions. Neurotox Res 2007; 10:65-85. [PMID: 17062369 DOI: 10.1007/bf03033236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many brain disorders appear to involve dysfunctions of aminergic systems. Alterations in dopamine activity may underpin both schizophrenia and the establishment and maintenance of drug dependence while disruption of serotonergic signalling may be crucial in both depression and schizophrenia. The co-existence of nicotine and alcohol abuse with depression and schizophrenia is well-documented as is the particular vulnerability of adolescents. At the same time, a common group of brain structures is increasingly implicated in neuropathological studies. For example, depression may involve a lack of serotonin signalling, particularly in the prefrontal cortex, while in schizophrenia there is evidence for reduced dopamine signalling in the same brain region, co-existing with hyperactivity in the mesolimbic dopamine pathway. Increased dopamine release from the mesolimbic dopamine pathway is also a common factor of drugs of abuse. Furthermore, the control of motivational behaviour and dopamine release is apparently modified by hippocampal and amygdala activity, both brain regions showing pathological changes in schizophrenia and depression. Our work has focused on the intricate synaptic interactions of aminergic terminals and cortical and subcortical neurons in order to unravel the anatomical basis for these disorders and their treatments. We show convergence of dopamine and cortical inputs onto single neurons in the nucleus accumbens, and between different cortical inputs to individual neurons, providing a basis for the gating mechanisms attributed to these interactions. We have also examined local and extrinsic connections in the prefrontal cortex and the basis for regulation of both cortical neurons and midbrain dopamine neurons by serotonin from the raph é nucleus. Together with data concerning subcellular receptor distributions, this information provides a detailed synaptic framework for interpreting behavioural, pharmacological and physiological data and enhances our understanding of possible circuitry underlying comorbidity of disorders such as schizophrenia and depression with drug abuse, information invaluable in the introduction of enhanced therapies.
Collapse
|
86
|
Zhou FC, Anthony B, Dunn KW, Lindquist WB, Xu ZC, Deng P. Chronic alcohol drinking alters neuronal dendritic spines in the brain reward center nucleus accumbens. Brain Res 2007; 1134:148-61. [PMID: 17198693 PMCID: PMC1857312 DOI: 10.1016/j.brainres.2006.11.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/28/2006] [Accepted: 11/03/2006] [Indexed: 02/04/2023]
Abstract
Alcohol is known to affect glutamate transmission. However, how chronic alcohol affects the synaptic structure mediating glutamate transmission is unknown. Repeated alcohol exposure in a subject with familial alcoholic history often leads to alcohol addiction. The current study adopts alcohol-preferring rats, which are known to develop high drinking. Two-photon microscopy analysis indicates that chronic alcohol of 14 weeks either, under continuous alcohol (C-Alc) or with repeated deprivation (RD-Alc), causes dysmorphology--thickened, beaded, and disoriented dendrites that are reminiscent of reactive astrocytes--in a subpopulation of medium spiny neurons. The density of dendritic spines was found differentially lower in the nucleus accumbens of RD-Alc and C-Alc groups as compared with those of Water groups. Large-sized spines and multiple-headed spines were increased in the RD-Alc group. The NMDA receptor subunit NR1 proteins, as analyzed with Western blot, were upregulated in C-Alc, but not in RD-Alc. The upregulated NMDA receptor subunits of NR1 however, are predominantly a splice variant isoform with truncated exon 21, which is required for membrane-bound trafficking or anchoring into a spine synaptic site. These maladaptations may contribute to the transformation of spines. The changes, in density and head-size of spines and the corresponding NMDA receptors, demonstrated an alteration of microcircuitry for glutamate reception. The current study demonstrates for the first time that chronic alcohol exposure causes structural alteration of dendrites and their spines in the key reward brain region in animals that have a genetic background leading to alcohol addiction.
Collapse
|
87
|
Mamah D, Wang L, Barch D, de Erausquin GA, Gado M, Csernansky JG. Structural analysis of the basal ganglia in schizophrenia. Schizophr Res 2007; 89:59-71. [PMID: 17071057 PMCID: PMC1839817 DOI: 10.1016/j.schres.2006.08.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Increases in the total volume of basal ganglia structures have been reported in schizophrenia. However, patterns of basal ganglia shape change, which can reveal localized changes in substructure volumes, have not been investigated. In this study, the total volume and shape of several basal ganglia structures were compared in subjects with and without schizophrenia. T(1)-weighted magnetic resonance scans were collected in 54 schizophrenia and 70 comparison subjects. High-dimensional (large-deformation) brain mapping was used to assess the shape and volume of several basal ganglia structures. The relationships of shape and volume measures with psychopathology, cognition and motor function were also assessed. Left and right volumes of the caudate and putamen, as well as the right globus pallidus volume, were significantly increased in subjects with schizophrenia as compared to comparison subjects after total brain volume was included as a covariate. Significant differences in shape accompanied these volume changes in the caudate, putamen and globus pallidus, after their total volumes were included as covariates. There were few significant correlations between volume or shape measures and either cognitive function or clinical symptoms, other than a positive correlation between an attention/vigilance cognitive dimension and the volume of the caudate and putamen, and a negative correlation between nucleus accumbens volume and delusions. In conclusion, basal ganglia volumes relative to total brain volume were larger in schizophrenia subjects than healthy comparison subjects. Specific patterns of shape change accompanied these volume differences.
Collapse
|
88
|
Sari Y, Bell RL, Zhou FC. Effects of chronic alcohol and repeated deprivations on dopamine D1 and D2 receptor levels in the extended amygdala of inbred alcohol-preferring rats. Alcohol Clin Exp Res 2006; 30:46-56. [PMID: 16433731 PMCID: PMC4287423 DOI: 10.1111/j.1530-0277.2006.00010.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dopaminergic (DA) activity in the extended amygdala (EA) has been known to play a pivotal role in mediating drug and alcohol addiction. Alterations of DA activity within the EA after chronic exposure to alcohol or substances of abuse are considered a major mechanism for the development of alcoholism and addiction. To date, it is not clear how different patterns of chronic alcohol drinking affect DA receptor levels. Therefore, the current studies investigated the effects of chronic ethanol consumption, with or without deprivations, on D1 and D2 receptor densities within the EA. METHODS Inbred alcohol-preferring (iP) rats were divided into 3 groups with the following treatments: (1) water for 14 weeks; (2) continuous alcohol (C-Alc) for 14 weeks [24-hour concurrent access to 15 and 30% (v/v) ethanol]; or (3) repeatedly deprived of alcohol (RD-Alc) (24-hour concurrent access to 15 and 30% ethanol for 6 weeks, followed by 2 cycles of 2 weeks of deprivation of and 2 weeks of reexposure to ethanol access). At the end of 14 weeks, the rats were killed for autoradiographic labeling of D1 and D2 receptors. RESULTS Compared with the water control group, both the C-Alc and the RD-Alc groups displayed increases in D1 receptor binding density in the anterior region of the Acb core, whereas the RD-Alc group displayed additional increases in D1 receptor binding density in anterior regions of the lateral and intercalated nuclei of the amygdala. Additionally, both C-Alc and RD-Alc rats displayed increases in D2 receptor binding density in anterior regions of the Acb shell and core, whereas RD-Alc rats displayed additional increases in D2 receptor binding density in the dorsal striatum. CONCLUSION The results of this study indicate that 14-week extended alcohol drinking with continuous chronic or repeated deprivations increase binding sites of D1 and D2 receptors in specific regions of the EA with greater sensitivity in the anterior regions. The repeated deprivation has greater effect on altering D1 and D2 receptor binding sites in the Acb, dorsal striatum, and subamygdala regions. The current result indicates that the two drinking paradigms may have common as well as differential mechanisms on alteration of dopamine receptor-binding sites in specific regions of the EA.
Collapse
|
89
|
Brenhouse HC, Montalto S, Stellar JR. Electrolytic lesions of a discrete area within the nucleus accumbens shell attenuate the long-term expression, but not early phase, of sensitization to cocaine. Behav Brain Res 2006; 170:219-23. [PMID: 16580740 DOI: 10.1016/j.bbr.2006.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/13/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Repeated exposure to cocaine leads to behavioral sensitization, which is the augmentation of the locomotor response to a subsequent exposure to the drug. The nucleus accumbens (NAc), a major termination site of dopaminergic neurons, is believed to be involved in behavioral sensitization and studies have demonstrated that the NAc shell can be split into five zones of analysis; the vertex, arch, cone, intermediate and ventrolateral zones [Todtenkopf MS, Stellar JR. Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine. Synapse 2000;38:261-70]. Several reports show cocaine-induced c-fos expression particularly in the intermediate zone after 14, but not 2, drug-free days following repeated cocaine administration, suggesting that this region may be involved in sensitization and particularly in the later phase of expression, versus the earlier phase of sensitization. Bilateral electrolytic lesions of the intermediate zone were made in two groups of rats, which were then repeatedly exposed to cocaine (15 mg/kg, twice/day for 5 days). One group was subsequently given a single cocaine challenge injection (15 mg/kg) after 14 drug-free days, while the other group was challenged after only 2 drug-free days. Two sham surgery groups in which an electrode was lowered but no current was passed served as controls. Results show that lesioned animals as well as sham controls exhibited behavioral sensitization to the drug. However, following a 14-day drug-free period, the lesioned animals showed significant reduction in sensitization, compared to sham controls. Together these findings suggest that the intermediate zone of the NAc shell is indeed involved in the expression phase of behavioral sensitization to cocaine.
Collapse
|
90
|
Moro K, Shiotani A, Watabe K, Takeda Y, Saito K, Mori Y, Ogawa K. Adenoviral gene transfer of BDNF and GDNF synergistically prevent motoneuron loss in the nucleus ambiguus. Brain Res 2006; 1076:1-8. [PMID: 16473328 DOI: 10.1016/j.brainres.2005.12.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 11/04/2005] [Accepted: 12/30/2005] [Indexed: 01/20/2023]
Abstract
We have previously shown that neuroprotective effects of an adenoviral glial cell line-derived neurotrophic factor (GDNF) gene transfer on the lesioned adult rat motoneurons in the nucleus ambiguus. In the present study, we examined neuroprotective effects of adenoviral gene transfer of brain-derived neurotrophic factor (BDNF) or/and GDNF to motoneurons in nucleus ambiguus using an adult rat vagal nerve avulsion model. The animals avulsed and inoculated with adenoviral vectors encoding BDNF (AxCAmBDNFME) or/and GDNF (AxCAhGDNF) showed immunolabeling for BDNF or/and GDNF in the nucleus ambiguus on the treated side, respectively, and expression of virus-induced BDNF or/and GDNF mRNA transcripts in the brainstem tissue that contained the nucleus ambiguus of the treated side. The treatment with AxCAhGDNF or AxCAmBDNFME significantly prevented the loss of vagal motoneurons in comparison to the control; the protective effect of AxCAmBDNFME was greater than that of AxCAhGDNF. The combined treatment with AxCAmBDNFME and AxCAhGDNF acted synergistically and significantly larger number of vagal motoneurons was preserved as compared to either AxCAmBDNFME treatment or AxCAhGDNF treatment. The treatment with AxCAmBDNFME or/and AxCAhGDNF after avulsion also suppressed the activity of nitric oxide synthase in lesioned motoneurons in the nucleus ambiguus. These results indicate that adenovirus-mediated BDNF and GDNF gene transfer may prevent the degeneration of motoneurons in humans after either vagal nerve injury or recurrent laryngeal nerve injury.
Collapse
|
91
|
Spiga S, Puddu MC, Pisano M, Diana M. Morphine withdrawal-induced morphological changes in the nucleus accumbens. Eur J Neurosci 2006; 22:2332-40. [PMID: 16262671 DOI: 10.1111/j.1460-9568.2005.04416.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphine withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment (from 20 to 140 mg/kg of morphine twice a day over 14 days at escalating doses) rats were withdrawn from chronic morphine spontaneously and pharmacologically. In these two distinct conditions we studied the effects of withdrawal on the morphology of MSN of the core and shell of the nucleus accumbens (Nacc). MSN were stained with the Golgi-Cox procedure and analysed by a confocal laser-scanning microscope (CLSM). Our analysis shows that, shell and core MSN differed significantly for perikarya size and spine density, and the various morphine treatments did not affect the perikarya morphometry. Both spontaneous and naloxone-induced withdrawal produced a similar reduction in spine density in MS shell neurons, as compared with MS core neurons. This effect is selectively localized at the level of second order dendritic trunks where afferents converge. By contrast, spine density counts of accumbens MSN from rats chronically treated with morphine, did not reveal any change. Collectively, the results of the present study are twofold: (i) spontaneous and pharmacologically precipitated withdrawal, but not chronic morphine per se, affects spine density of target structures of a reduced mesolimbic dopamine transmission, and (ii) the reduction of spine density in second order dendritic trunks is selectively segregated in the MSN of the shell of the Nacc. In conclusion, morphine withdrawal dramatically alters spine density, selectively in second order dendritic trunks of Nacc shell MSN, thereby further impoverishing the already abated dopamine (DA) transmission. This is in line with recent views suggesting the hypodopaminergic state as a cardinal feature of opioid dependence.
Collapse
|
92
|
Pothuizen HHJ, Jongen-Rêlo AL, Feldon J, Yee BK. Latent inhibition of conditioned taste aversion is not disrupted, but can be enhanced, by selective nucleus accumbens shell lesions in rats. Neuroscience 2005; 137:1119-30. [PMID: 16343780 DOI: 10.1016/j.neuroscience.2005.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/07/2005] [Accepted: 10/14/2005] [Indexed: 11/29/2022]
Abstract
Latent inhibition is a form of negative priming in which repeated non-reinforced pre-exposures to a stimulus retard subsequent learning about the predictive significance of that stimulus. The nucleus accumbens shell and the anatomical projection it receives from the hippocampal formation have been attributed a pivotal role in the control or regulation of latent inhibition expression. A number of studies in rats have demonstrated the efficacy of selective shell lesions to disrupt latent inhibition in different associative learning paradigms, including conditioned active avoidance and conditioned emotional response. Here, we extended the test to the conditioned taste aversion paradigm, in which the effect of direct hippocampal damage on latent inhibition remains controversial. We demonstrated the expected effect of selective shell lesions on latent inhibition of conditioned emotional response and of conditioned active avoidance, before evaluating in a separate cohort of rats the effect of comparable selective lesions on latent inhibition of conditioned taste aversion: a null effect of the lesions was first obtained using parameters known to be sensitive to amphetamine treatment, then an enhancement of latent inhibition was revealed with a modified conditioned taste aversion procedure. Our results show that depending on the associative learning paradigm chosen, shell lesions can disrupt or enhance the expression of latent inhibition; and the pattern is reminiscent of that seen following hippocampal damage.
Collapse
|
93
|
Tamagaki C, Sedvall GC, Jönsson EG, Okugawa G, Hall H, Pauli S, Agartz I. Altered white matter/gray matter proportions in the striatum of patients with schizophrenia: a volumetric MRI study. Am J Psychiatry 2005; 162:2315-21. [PMID: 16330596 DOI: 10.1176/appi.ajp.162.12.2315] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Anatomical structures of the striatum were studied in 58 patients with schizophrenia and 56 healthy comparison subjects of both genders matched for age and handedness. METHOD Magnetic resonance imaging scans were used to measure gray matter, white matter, and CSF volumes of the caudate, putamen, and nucleus accumbens in the left and the right hemispheres. RESULTS White matter/gray matter ratios of the striatal structures were significantly lower in patients than in healthy subjects. In patients, relative white matter volumes in the caudate and nucleus accumbens were reduced, whereas gray matter in the putamen was increased. The total accumbens volume did not differ by diagnosis, but left side accumbens was larger than right in the healthy subjects. The proportion of white matter was greater in women in both the patient and healthy comparison groups. Total caudate and putamen volumes demonstrated no differences due to diagnosis or laterality, but a negative correlation was found in patients between white matter volumes and increasing age. There were no significant correlations among total striatal volumes, white matter/gray matter ratios, age at onset of illness, or illness duration. An estimate of lifetime neuroleptic consumption was positively correlated with right gray matter volume of the putamen in male schizophrenia patients who received typical neuroleptics. CONCLUSIONS The proportion of white matter to gray matter tissue volumes of the caudate, putamen, and nucleus accumbens is altered in medicated chronic schizophrenia patients, but the total volumes are unchanged.
Collapse
|
94
|
Anderson KK, Ballok DA, Prasad N, Szechtman H, Sakic B. Impaired response to amphetamine and neuronal degeneration in the nucleus accumbens of autoimmune MRL-lpr mice. Behav Brain Res 2005; 166:32-8. [PMID: 16183144 PMCID: PMC1634760 DOI: 10.1016/j.bbr.2005.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/12/2005] [Accepted: 07/13/2005] [Indexed: 12/25/2022]
Abstract
Spontaneous development of lupus-like disease in MRL-lpr mice is accompanied by a constellation of behavioral deficits, including blunted responsiveness to sucrose. Although autoimmunity-induced damage of limbic areas is proposed to underlie this deficit, the systemic nature of the disease precludes inference of a causal relationship between CNS damage and functional loss. Based on the stimulatory effects of d-amphetamine sulfate (AMPH) on sucrose intake, the present study pharmacologically probes the functional status of central dopaminergic circuits involved in control of behavioral reward. The response rates were compared between diseased MRL-lpr mice and congenic MRL +/+ controls tested in the sucrose preference paradigm. Neuronal loss was assessed by Fluoro Jade B (FJB) staining of nucleus accumbens and the CA2/CA3 region. While control mice significantly increased intake of sucrose solutions 60 min after administration of AMPH (i.p., 0.5 mg/kg), the intake in drugged MRL-lpr mice was comparable to those given saline injection. Increased FJB staining was detected in the nucleus accumbens and hippocampus of diseased mice, and AMPH treatment neither altered this nor other measures of organ pathology. The results obtained are consistent with previously observed changes in the mesolimbic dopamine system of MRL-lpr mice and suggest that the lesion in the nucleus accumbens and deficits in dopamine release underlie impaired responsiveness to palatable stimulation during the progress of systemic autoimmune disease. As such, they point to a neurotransmitter-specific regional brain damage which may account for depressive behaviors in neuropsychiatric lupus erythematosus.
Collapse
|
95
|
McDonald CG, Dailey VK, Bergstrom HC, Wheeler TL, Eppolito AK, Smith LN, Smith RF. Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neurosci Lett 2005; 385:163-7. [PMID: 15955627 DOI: 10.1016/j.neulet.2005.05.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/26/2005] [Accepted: 05/18/2005] [Indexed: 11/20/2022]
Abstract
The objective of the current study was to examine how periadolescent nicotine exposure affects dendritic morphology of medium spiny neurons from the nucleus accumbens shell. Male Long-Evans hooded rats were chronically administered nicotine or saline for a period extending from postnatal day 22 (p22) to p69. Nicotine and saline administration was via subcutaneously implanted osmotic pumps. At p144, 75 days after conclusion of nicotine administration, brains were processed for Golgi-Cox staining. Medium spiny neurons from the nucleus accumbens shell were digitally reconstructed. It was found that neurons from nicotine-treated animals possessed significantly longer dendrites and a greater number of dendritic segments than control animals. A branch order analysis indicated that differences in dendritic length and segment number were most pronounced in third and fourth order segments. A subsequent behavioral experiment suggests that the observed anatomical changes are associated with enduring psychomotor differences. These findings indicate that periadolescent exposure to nicotine can result in long-lasting structural changes in the nucleus accumbens shell and are consistent with behavioral data suggesting that adolescent nicotine exposure may result in vulnerability to nicotine addiction in adulthood.
Collapse
|
96
|
White NM, Chai SC, Hamdani S. Learning the morphine conditioned cue preference: Cue configuration determines effects of lesions. Pharmacol Biochem Behav 2005; 81:786-96. [PMID: 16009410 DOI: 10.1016/j.pbb.2005.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/01/2005] [Accepted: 06/04/2005] [Indexed: 11/29/2022]
Abstract
The morphine conditioned cue preference was investigated using two different apparatus configurations. In one configuration, with a clear Plexiglas partition separating the drug-paired and unpaired compartments, rats could see the cues in both compartments while in either one. In the other configuration, with an opaque wood partition separating the two compartments, rats could see the cues in only one compartment at a time. The experiment had three phases: a session of pre-exposure to the entire apparatus; four 2-day training trials during each of which rats received pairings of 5 mg/Kg morphine sulphate with one compartment and saline with the other (compartments and order counterbalanced), and a test session in which the undrugged rats moved freely between the compartments while the time spent in each was measured. Four groups of rats were trained using the opaque partition in all three phases. Normal rats and rats with amygdala or nucleus accumbens lesions exhibited preferences for their morphine-paired compartments; rats with fimbria-fornix lesions had no preferences. Four additional groups were trained using the clear partition during pre-exposure, the opaque partition during training and the clear partition during testing. Normal rats and rats with fimbria-fornix lesions exhibited preferences, rats with amygdala or nucleus accumbens lesions had no preferences. This interaction between lesioned structures and the apparatus configuration is accounted for by the idea that different types of learning produced the preference for morphine-paired cues in the two apparatus configurations. Each type was learned in a different memory system and so was impaired by different lesions. These findings contribute to understanding the nature of the learning processes that produce the morphine CCP.
Collapse
|
97
|
Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, Leibenluft E. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. ARCHIVES OF GENERAL PSYCHIATRY 2005; 62:734-41. [PMID: 15997014 DOI: 10.1001/archpsyc.62.7.734] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. OBJECTIVE To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. DESIGN Ongoing study of the pathophysiology of pediatric BPD. SETTING Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. MAIN OUTCOME MEASURES With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. RESULTS Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. CONCLUSIONS Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.
Collapse
|
98
|
Mancardi MM, Fazzini F, Rossi A, Gaggero R. Hashimoto's encephalopathy with selective involvement of the nucleus accumbens: a case report. Neuropediatrics 2005; 36:218-20. [PMID: 15944910 DOI: 10.1055/s-2005-865712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hashimoto's encephalopathy (HE) is an acute or subacute relapsing disorder usually affecting euthyroid patients with evidence of autoimmune thyroiditis. The neurological manifestations are non-specific, with subacute cognitive impairment, movement disorders, generalized seizures, focal neurological symptoms such as stroke-like episodes, or psychiatric disturbances. Autoimmune phenomena are likely to play an etiological role. Magnetic resonance imaging (MRI) findings are usually normal or show non-specific changes. We report the case of an 11-year-old girl with autoimmune thyroiditis who presented acutely with a complex neuropsychiatric disorder in association with MRI evidence of focal involvement of the nucleus accumbens (NA). The NA, a ventral striate nucleus, is part of a complex dopaminergic network. Lesions to the NA result in several psychiatric symptoms, such as attention-deficit hyperactivity disorders. In this patient, we observed alternating phases of stupor and hyperkinetic-anxious behavior, with marked instability. The pathogenetic mechanism and the anatomic and functional correlations are briefly discussed.
Collapse
|
99
|
Flatscher-Bader T, van der Brug M, Hwang JW, Gochee PA, Matsumoto I, Niwa SI, Wilce PA. Alcohol-responsive genes in the frontal cortex and nucleus accumbens of human alcoholics. J Neurochem 2005; 93:359-70. [PMID: 15816859 DOI: 10.1111/j.1471-4159.2004.03021.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.
Collapse
|
100
|
Cassaday HJ, Horsley RR, Norman C. Electrolytic lesions to nucleus accumbens core and shell have dissociable effects on conditioning to discrete and contextual cues in aversive and appetitive procedures respectively. Behav Brain Res 2005; 160:222-35. [PMID: 15863219 DOI: 10.1016/j.bbr.2004.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/30/2004] [Accepted: 12/06/2004] [Indexed: 11/22/2022]
Abstract
The nucleus accumbens (n. acc.) has been implicated in conditioning to both discrete and contextual cues but its precise role is as yet controversial because conflicting patterns of effect have been reported. These inconsistencies may relate to the extent to which the lesions used encroach on different subfields of n. acc. and the use of different task variants. The present study compared the effects of selective lesions of shell and core subfields of nucleus accumbens (n. acc.) across aversive and appetitive trace conditioning variants. In both experiments, an auditory stimulus was contiguous with footshock or food, or presented at a trace interval. A continuous flashing light in each case provided an experimental background stimulus. Conditioning to the cues provided by the experimental chambers was also assessed. Rats with electrolytic lesions to the n. acc. shell and core showed different patterns of effect in aversive (Experiment 1) and appetitive (Experiment 2) variants of this procedure. In Experiment 1, the core lesion reduced the difference between trace and contiguously conditioned groups, in responding to the discrete noise stimulus. However, neither lesion had any detectable effect on contextual conditioning. In Experiment 2, the shell lesion clearly increased contextual conditioning, selectively in the trace conditioned group, but neither lesion had any detectable effect on discrete cue conditioning. Thus, whilst the shell and core lesions produced dissociable effects on discrete cue and contextual conditioning, the conclusions to be drawn depend on the procedural variant in use.
Collapse
|