76
|
Wang Y, Rajgopal A, Goldman ID, Zhao R. Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function. Am J Physiol Cell Physiol 2004; 288:C65-71. [PMID: 15385270 DOI: 10.1152/ajpcell.00307.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal folate transport has been well characterized, and rat small intestinal epithelial (IEC-6) cells have been used as a model system for the study of this process on the cellular level. The major intestinal folate transport activity has a low-pH optimum, and the current paradigm is that this process is mediated by the reduced folate carrier (RFC), despite the fact that this carrier has a neutral pH optimum in leukemia cells. The current study addressed the question of whether constitutive low-pH folate transport activity in IEC-6 cells is mediated by RFC. Two independent IEC-6 sublines, IEC-6/A4 and IEC-6/PT1, were generated by chemical mutagenesis followed by selective pressure with antifolates. In IEC-6/A4 cells, a premature stop resulted in truncation of RFC at Gln(420). A green fluorescent protein (GFP) fusion with the truncated protein was not stable. In IEC-6/PT1 cells, Ser(135) was deleted, and this alteration resulted in the failure of localization of the GFP fusion protein in the plasma membrane. In both cell lines, methotrexate (MTX) influx at neutral pH was markedly decreased compared with wild-type IEC-6 cells, but MTX influx at pH 5.5 was not depressed. Transient transfection of the GFP-mutated RFC constructs into RFC-null HeLa cells confirmed their lack of transport function. These results indicate that in IEC-6 cells, folate transport at neutral pH is mediated predominantly by RFC; however, the folate transport activity at pH 5.5 is RFC independent. Hence, constitutive folate transport activity with a low-pH optimum in this intestinal cell model is mediated by a process entirely distinct from that of RFC.
Collapse
|
77
|
Wolf J, Stranzl T, Filipits M, Pohl G, Pirker R, Leeb B, Smolen JS. Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis 2004; 64:564-8. [PMID: 15345497 PMCID: PMC1755459 DOI: 10.1136/ard.2003.014985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Methotrexate is transported into the cell by the reduced folate carrier (RFC) and out of the cell by members of the multidrug resistance protein family (MRP). Transport proteins may affect the therapeutic efficacy of this drug in patients with rheumatoid arthritis. OBJECTIVE To investigate the potential benefit of the presence of RFC and the absence of functional MRP for the efficacy of methotrexate treatment. METHODS The study involved 163 patients (116 female, 47 male; mean age 59.5 years) on methotrexate (mean weekly dose 12.2 mg). RFC was determined using reverse transcriptase polymerase chain reaction, and MRP function by flow cytometry, using a calcein acetoxymethylesther/probenecid assay. Clinical response to methotrexate was evaluated by the EULAR response criteria and the ACR 20% improvement criteria. The clinical data were obtained at the beginning of methotrexate treatment and at the time of blood sampling during ongoing therapy. Patients were divided into four groups according to the presence (+) or absence (-) of RFC and functional (f) MRP. RESULTS fMRP+/RFC+ and fMRP-/RFC- patients more often had good EULAR response rates (60%, p = 0.014, and 53%, p = 0.035, respectively) in comparison with the fMRP-/RFC+ group (29%); fMRP+/RFC- patients had a low frequency of good disease activity responses. CONCLUSIONS Absence of fMRP plus presence of RFC did not prove to be related to beneficial effects of methotrexate, but the lack or the presence of both fMRP and RFC led to a significantly better therapeutic outcome. Determination of these markers may predict responsiveness to methotrexate.
Collapse
|
78
|
Witt TL, Stapels SE, Matherly LH. Restoration of transport activity by co-expression of human reduced folate carrier half-molecules in transport-impaired K562 cells: localization of a substrate binding domain to transmembrane domains 7-12. J Biol Chem 2004; 279:46755-63. [PMID: 15337749 DOI: 10.1074/jbc.m408696200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduced folates such as 5-methyl tetrahydrofolate and classical antifolates such as methotrexate are actively transported into mammalian cells by the reduced folate carrier (RFC). RFC is characterized by 12 stretches of mostly hydrophobic, alpha-helix-promoting amino acids, internally oriented N and C termini, and a large central linker connecting transmembrane domains (TMDs) 1-6 and 7-12. Previous studies showed that deletion of the majority of the central loop domain between TMDs 6 and 7 abolished transport, but this segment could be replaced with mostly non-homologous sequence from the SLC19A2 thiamine transporter to restore transport function. In this report, we expressed RFC from separate TMD1-6 and TMD7-12 RFC half-molecule constructs, each with a unique epitope tag, in RFC-null K562 cells to restore transport activity. Restored transport exhibited characteristic transport kinetics for methotrexate, a capacity for trans-stimulation by pretreatment with leucovorin, and inhibition by N-hydroxysuccinimide methotrexate, a documented affinity inhibitor of RFC. The TMD1-6 half-molecule migrated on SDS gels as a 38-58 kDa glycosylated species and was converted to 27 kDa by N-glycosidase F or tunicamycin treatments. The 40 kDa TMD7-12 half-molecule was unaffected by these treatments. Using transfected cells expressing both TMDs 1-6 and TMDs 7-12 as separate polypeptides, the TMD7-12 half-molecule was covalently radiolabeled with N-hydroxysuccinimide [(3)H]methotrexate. No radioactivity was incorporated into the TMD1-6 half-molecule. Digestion with endoproteinase GluC decreased the size of the radiolabeled 40 kDa TMD7-12 polypeptide to approximately 20 kDa. Our results demonstrate that a functional RFC can be reconstituted with RFC half-molecules and localize a critical substrate binding domain to within TMDs 7-12.
Collapse
|
79
|
Ferreri AJM, Dell'Oro S, Capello D, Ponzoni M, Iuzzolino P, Rossi D, Pasini F, Ambrosetti A, Orvieto E, Ferrarese F, Arrigoni G, Foppoli M, Reni M, Gaidano G. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. Br J Haematol 2004; 126:657-64. [PMID: 15327516 DOI: 10.1111/j.1365-2141.2004.05109.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the prevalence and prognostic role of CpG island methylation of the reduced folate carrier (RFC) gene promoter region in primary central nervous system lymphoma (PCNSL) in immunocompetent patients. Genomic DNA from 40 PCNSL was used for methylation-specific polymerase chain reaction and bisulphite genomic sequencing of the RFC promoter region. Human immunodeficiency virus-negative systemic diffuse large B-cell lymphomas (DLBCL) were used as controls (n = 50). The impact on outcome of RFC promoter methylation was assessed in 37 PCNSL patients treated with high-dose methotrexate (HD-MTX)-based chemotherapy +/- radiotherapy. RFC promoter methylation occurred in 12 of 40 (30%) PCNSL and in four of 50 (8%) DLBCL (P = 0.01). Of 37 PCNSL treated with HD-MTX-based chemotherapy, methylation occurred in nine cases (24%, M-PCNSL), while 28 cases (76%, U-PCNSL) were negative. Three M-PCNSL (33%) and 15 U-PCNSL (54%) achieved complete remission (CR) after primary chemotherapy. Logistic regression confirmed the independent association between CR rate and International Extranodal Lymphoma Study Group score (P = 0.03), RFC promoter methylation (P = 0.07) and use of cytarabine (P = 0.08). The 3-year failure-free survival (FFS) and overall survival for M-PCNSL and U-PCNSL was 0% vs. 31 +/- 9% (P = 0.34) and 0% vs. 31 +/- 9% (P = 0.35) respectively. This is the first study to assess the methylation status of the RFC promoter in human tumour samples. RFC methylation is more common in PCNSL compared with systemic DLBCL, and is associated with a lower CR rate to HD-MTX-based chemotherapy. If confirmed in prospective trials on PCNSL treated with HD-MTX alone, these data may suggest the necessity for alternative strategies in M-PCNSL considering the increased risk of MTX resistance by tumour cells.
Collapse
|
80
|
Kneuer C, Honscha W. The H(+)-dependent reduced folate carrier 1 of humans and the sodium-dependent methotrexate carrier-1 of the rat are orthologs. FEBS Lett 2004; 566:83-6. [PMID: 15147873 DOI: 10.1016/j.febslet.2004.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/12/2004] [Accepted: 04/05/2004] [Indexed: 11/17/2022]
Abstract
Previously, two different carrier systems for uptake of reduced folates and the antifolate methotrexate (Mtx) were described: the pH-dependent folate sensitive reduced folate carrier 1 (RFC1) from human, hamster and mouse and a sodium-dependent and folate insensitive Mtx carrier-1 (MTX-1) from rat. It was found that all critical residues of the homologous amino acid sequence were identical. RFC1- as well as MTX-1-mediated uptake of a marker substrate into suitable human and rat cell lines increased with proton concentration, was sodium-dependent at neutral pH, and inhibited by folate at acidic pH. It is concluded that RFC1 and MTX-1 are orthologs.
Collapse
|
81
|
Zhao R, Hanscom M, Chattopadhyay S, Goldman ID. Selective Preservation of Pemetrexed Pharmacological Activity in HeLa Cells Lacking the Reduced Folate Carrier. Cancer Res 2004; 64:3313-9. [PMID: 15126375 DOI: 10.1158/0008-5472.can-03-3953] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A methotrexate (MTX)-resistant HeLa subline (R5), developed in this laboratory, with impaired transport due to a genomic deletion of the reduced folate carrier (RFC) was only 2-fold resistant to pemetrexed (PMX), but 200- and 400-fold resistant to raltitrexed (ZD1694) and N(alpha)-(-4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-1-ornithine (PT523), respectively, compared with parental HeLa cells when grown with 2 microM folic acid. When folic acid was replaced with the more physiological 25 nM 5-formyltetrahydrofolate, R5 cells were 2-fold collaterally sensitive to PMX but still 40- and 200-fold resistant to ZD1694 and PT523, respectively. Sensitivity to PT523 and PMX could be completely restored, and sensitivity to ZD1694 nearly restored, by transfection of RFC cDNA into R5 cells, indicating that the defect in drug transport was the only, or major, factor in resistance. The preserved PMX activity in R5 cells could not be related to the very low expression of folate receptors. Rather, retained PMX activity in R5 cells was associated with residual transport by another process that exhibits good affinity for PMX (Kt = 12 microM) with much lower affinities for ZD1694, MTX, and PT523 (Kis of approximately 90, 100, and 250 microM, respectively). PMX transported by this route was rapidly converted to higher polyglutamates and, when grown with 25 nM 5-formyl-tetrahydrofolate, the rate of formation of these derivatives and their net accumulation in R5 cells was comparable to that of wild-type cells. These data suggest that selective preservation of PMX pharmacological activity in RFC-null R5 cells is due, in part, to partial preservation of transport by secondary process with a higher affinity for PMX than the other antifolates evaluated.
Collapse
|
82
|
Cao W, Matherly LH. Analysis of the membrane topology for transmembrane domains 7-12 of the human reduced folate carrier by scanning cysteine accessibility methods. Biochem J 2004; 378:201-6. [PMID: 14602046 PMCID: PMC1223934 DOI: 10.1042/bj20031288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/04/2003] [Accepted: 11/06/2003] [Indexed: 01/16/2023]
Abstract
The hRFC (human reduced folate carrier) is the major membrane transporter for both reduced folates and antifolates in human tissues and tumours. The primary amino acid sequence of hRFC predicts a membrane topology involving 12 TMDs (transmembrane domains) with cytosolic oriented N- and C-termini, and a large internal loop connecting TMDs 6 and 7. Previous studies using haemagglutinin epitope insertion and scanning glycosylation mutagenesis methods verified portions of the predicted topology model, including TMDs 1-8 and the N- and C-termini of hRFC. However, the topology structure for TMDs 9-12 remains controversial. To further determine the membrane topology of the hRFC protein, single cysteine residues were introduced into the predicted extracellular or cytoplasmic loops of a fully functional cysteine-less hRFC expressed in transport impaired MtxRIIOua(R)2-4 Chinese hamster ovary cells. The membrane orientations of the substituted cysteines were determined by treatments with the thiol reagents 3-(N-maleimidylpropionyl)-biocytin (biotin maleimide) and 4-acetamido-4'maleimidylstilbene-2,2'-disulphonic acid (stilbenedisulphonate maleimide; SM) or N-ethylmaleimide, combined with the cell-permeabilizing reagent SLO (streptolysin O). We found that cysteine residues placed in the predicted extracellular loops between TMDs 7 and 8 (position 301), 9 and 10 (360), and 11 and 12 (429) could be biotinylated with 200 microM biotin maleimide, and labelling could be blocked with SM. However, biotinylation of cysteines placed in the predicted intracellular loops between TMDs 8 and 9 (position 332) and TMDs 10 and 11 (position 388) was only detected after cell permeabilization with SLO and was abolished by pre-treatment with N -ethylmaleimide. These results strongly support a 12-TMD topology structure for the hRFC protein.
Collapse
|
83
|
Nabokina SM, Ma TY, Said HM. Mechanism and regulation of folate uptake by human pancreatic epithelial MIA PaCa-2 cells. Am J Physiol Cell Physiol 2004; 287:C142-8. [PMID: 14998787 DOI: 10.1152/ajpcell.00011.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After the liver, the pancreas contains the second highest level of folate among human tissues, and folate deficiency adversely affects its physiological function. Despite that, nothing is currently known about the cellular mechanisms involved in folate uptake by cells of this important exocrine organ or about folate uptake regulation. We have begun to address these issues, and in this report we present the results of our findings on the mechanism of folate uptake by the human-derived pancreatic MIA PaCa-2 cells. Our results show folic acid uptake to be 1). temperature and energy dependent; 2). pH dependent, with a markedly higher uptake at acidic pH compared with neutral or alkaline pH; 3). Na(+) independent; 4). saturable as a function of substrate concentration (apparent K(m) = 0.762 +/- 0.10 microM); 5). inhibited (with similar affinity) by reduced, substituted, and oxidized folate derivatives; and 6). sensitive to the inhibitory effect of anion transport inhibitors. RT-PCR and Western blot analysis showed expression of the human reduced folate carrier (hRFC) at the RNA and protein levels, respectively. The functional contribution of hRFC in carrier-mediated folate uptake was confirmed by gene silencing using gene-specific small interfering RNA. Evidence also was found suggesting that the folate uptake process by MIA PaCa-2 cells is regulated by cAMP- and protein tyrosine kinase (PTK)-mediated pathways. These studies demonstrate for the first time the involvement of a specialized, acidic pH-dependent, carrier-mediated mechanism for folate uptake by human pancreatic MIA PaCa-2 cells. The results also show the involvement of hRFC in the uptake process and suggest the possible involvement of intracellular cAMP- and PTK-mediated pathways in the regulation of folate uptake.
Collapse
|
84
|
Kneuer C, Honscha KU, Honscha W. Sodium-dependent methotrexate carrier-1 is expressed in rat kidney: cloning and functional characterization. Am J Physiol Renal Physiol 2004; 286:F564-71. [PMID: 14612385 DOI: 10.1152/ajprenal.00257.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous Northern blot studies suggested strong expression of a homolog to the sodium-dependent hepatocellular methotrexate transporter in the kidneys. Here, we report on the cloning of the cDNA for the renal methotrexate carrier isoform-1 (RK-MTX-1) and its functional characterization. Sequencing revealed 97% homology to the rat liver methotrexate carrier with an identical open reading frame. Differences were located in the 5′-untranslated region and resulted in the absence of putative regulatory elements (Barbie box, Ah/ARNT receptor) identified in the cDNA for the hepatocellular carrier. For functional characterization, MTX-1 cDNA was stably expressed in Madin-Darby canine kidney (MDCK) cells. A sodium-dependent transport of methotrexate with a Kmof 41 μM and a Vmaxof 337 pmol·mg protein-1·min-1was observed. This uptake was blocked by the reduced folates dihydro- and tetrahydrofolate as well as by methotrexate itself. Folate was inhibiting only weakly, whereas 5-methyltetrahydrofolate was a strong inhibitor. Further inhibitors of the methotrexate transport included the bile acids cholate and taurocholate and xenobiotics like bumetanide and BSP. PAH, ouabain, bumetanide, cholate, taurocholate, and acetyl salicylic acid were tested as potential substrates. However, none of these substances was transported by MTX-1. Furthermore, expression of RK-MTX-1 in MDCK cells enhanced methotrexate toxicity in these cells fivefold. Analysis of a fusion protein of RK-MTX-1 and the influenza virus hemagglutinin epitope by immunoblotting revealed a major band at 72 kDa within the cell membrane but not in the soluble fraction of transfected MDCK. Indirect immunofluorescence staining revealed an exclusive localization of the carrier in the plasma membrane, and by confocal laser-scanning microscopy we were able to demonstrate that the protein is expressed in the serosal region of MDCK tubules grown in a morphogenic collagen gel model.
Collapse
|
85
|
Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, Hattinger CM, Manara MC, Pasello M, Scotlandi K, Picci P. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 2004; 15:151-60. [PMID: 14679136 DOI: 10.1093/annonc/mdh004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To evaluate the impact of dihydrofolate reductase (DHFR) and reduced folate carrier (RFC) genes on methotrexate (MTX) resistance in osteosarcoma cells in relation to retinoblastoma (RB1) gene status. MATERIALS AND METHODS A series of human osteosarcoma cell lines-either sensitive or resistant to MTX-and 16 osteosarcoma tumour samples were used in this study. RESULTS In U-2OS MTX-resistant variants, and in other RB1-positive cell lines, MTX resistance was associated with increased levels of DHFR and with a slight decrease of RFC gene expression. In Saos-2 MTX-resistant variants, and in another RB1-negative cell line, development of MTX resistance was associated with a decrease in expression of RFC, without any significant involvement of DHFR. In osteosarcoma clinical samples, amplification of the DHFR gene at clinical onset appeared to be more frequent in RB1-positive compared with RB1-negative tumours. CONCLUSIONS Amplification of the DHFR gene may occur more frequently in the presence of RB1-mediated negative regulation of its activity and can be present at clinical onset in osteosarcoma patients. Simultaneous evaluation of RFC, DHFR and RB1 gene status at the time of diagnosis may become the basis for the identification of potentially MTX-unresponsive osteosarcoma patients, who could benefit from treatment protocols with alternative antifolate drugs.
Collapse
|
86
|
Jansen G, van der Heijden J, Oerlemans R, Lems WF, Ifergan I, Scheper RJ, Assaraf YG, Dijkmans BAC. Sulfasalazine is a potent inhibitor of the reduced folate carrier: Implications for combination therapies with methotrexate in rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:2130-9. [PMID: 15248210 DOI: 10.1002/art.20375] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate whether interactions of sulfasalazine (SSZ) with reduced folate carrier (RFC), the dominant cell membrane transporter for natural folates and methotrexate (MTX), may limit the efficacy of combination therapy with MTX and SSZ in patients with rheumatoid arthritis. METHODS Human RFC-(over)expressing CEM cells of T cell origin were used to analyze the effect of SSZ on the RFC-mediated cellular uptake of radiolabeled MTX and the natural folate leucovorin. Moreover, both cells with and those without acquired resistance to SSZ were used to assess the antiproliferative effects of MTX in combination with SSZ. RESULTS Transport kinetic analyses revealed that SSZ was a potent noncompetitive inhibitor of RFC-mediated cellular uptake of MTX and leucovorin, with mean +/- SD K(i) (50% inhibitory concentration) values of 36 +/- 6 microM and 74 +/- 7 microM, respectively. Consistent with the inhibitory interaction of SSZ with RFC, a marked loss of MTX efficacy was observed when MTX was coadministered with SSZ: up to 3.5-fold for CEM cells in the presence of 0.25 mM of SSZ, and >400-fold for SSZ-resistant cells in the presence of 2.5 mM of SSZ. Importantly, along with diminished efficacy of MTX, evidence for cellular folate depletion was obtained by the demonstration of an SSZ dose-dependent decrease in leucovorin accumulation. CONCLUSION At clinically relevant plasma concentrations, interactions of SSZ with RFC provide a biochemical rationale for 2 important clinical observations: 1) the onset of (sub)clinical folate deficiency during SSZ treatment, and 2) the lack of additivity/synergism of the combination of SSZ and MTX when these disease-modifying antirheumatic drugs are administered simultaneously. Thus, when considering use of these drugs in combination therapies, the present results provide a rationale both for the use of folate supplementation and for spacing administration of these drugs over time.
Collapse
|
87
|
Kaufman Y, Drori S, Cole PD, Kamen BA, Sirota J, Ifergan I, Arush MWB, Elhasid R, Sahar D, Kaspers GJL, Jansen G, Matherly LH, Rechavi G, Toren A, Assaraf YG. Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer 2004; 100:773-82. [PMID: 14770434 DOI: 10.1002/cncr.20018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although the majority of children with acute lymphoblastic leukemia (ALL) are cured with combination chemotherapy containing methotrexate (MTX), drug resistance contributes to treatment failure for a substantial fraction of patients. The primary transporter for folates and MTX is the reduced folate carrier (RFC). Impaired drug transport is a documented mechanism of MTX resistance in patients with ALL; however, to the authors' knowledge it is not known whether inactivating RFC mutations are a contributing factor. METHODS The authors devised a genomic polymerase chain reaction-single strand conformational polymorphism assay followed by sequencing and screened the entire RFC coding region for sequence alterations in DNA from 246 leukemia specimens from patients with diverse ethnic variation, 24 at the time of recurrence and the rest at the time of diagnosis. This cohort was comprised of 203 B-precursor ALL specimens (82.5%), 32 T-lineage ALL specimens (13%), and 11 acute myeloblastic leukemia specimens (4.5%). RESULTS Of 246 DNA samples, only 3 diagnosis B-precursor ALL specimens (1.2%) were found to harbor alterations in the RFC gene, including heterozygous single nucleotide changes resulting in D56H and D522N substitutions in the first extracellular loop and the C-terminus of this transporter, respectively. The third sample had a sequence alteration in exon 3 that could not be identified because of the lack of availability of DNA. CONCLUSIONS Whereas inactivating RFC mutations are a frequent mechanism of MTX resistance in human leukemia cell lines and in patients with osteosarcoma, they are not common and do not appear to play any significant role in intrinsic or acquired resistance to MTX in childhood leukemia. This is the first study of RFC mutations in multiple pediatric leukemia specimens.
Collapse
|
88
|
Odin E, Wettergren Y, Nilsson S, Willén R, Carlsson G, Spears CP, Larsson L, Gustavsson B. Altered gene expression of folate enzymes in adjacent mucosa is associated with outcome of colorectal cancer patients. Clin Cancer Res 2003; 9:6012-9. [PMID: 14676127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
PURPOSE The purpose of this study was to analyze whether gene expression levels of folate enzymes in adjacent mucosa were associated with outcome of colorectal cancer patients. EXPERIMENTAL DESIGN Real-time PCR was used to quantify expression levels of folate-associated genes including the reduced folate carrier (RFC-1), folylpolyglutamate synthase (FPGS), gamma-glutamyl hydrolase (GGH),and thymidylate synthase (TS) in tumor tissue and adjacent mucosa of patients with primary colorectal cancer (n=102). Furthermore, reduced folates in the tissues were measured with a binding-assay method. RESULTS Mean gene expression levels of RFC-1, FPGS, GGH, and TS were significantly higher in tumor biopsies compared with mucosa. Univariate and multivariate analyses showed that the FPGS gene expression level in mucosa, but not in tumor, was a prognostic parameter independent of the clinicopathological factors with regard to survival. Patients with high FPGS levels (>0.92) in mucosa also showed significantly higher total folate concentrations (P=0.03) and gene expression levels of RFC-1 (P<0.01), GGH (P<0.01), and TS (P=0.04) compared with patients with low FPGS levels. The total reduced folate concentration correlated with the gene expression levels of RFC-1 and FPGS but not with TS or GGH. CONCLUSION Our results suggest that normal-appearing colonic mucosa adjacent to primary colon cancer can show altered gene expression levels of FPGS that may have bearing on the development of aggressive metastatic behavior of the tumor and on tumor-specific survival.
Collapse
|
89
|
Ifergan I, Meller I, Issakov J, Assaraf YG. Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer 2003; 98:1958-66. [PMID: 14584080 DOI: 10.1002/cncr.11741] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND High-dose methotrexate (MTX) is an important component of current protocols for the treatment of osteosarcoma. Although MTX uptake proceeds primarily through the reduced folate carrier (RFC) protein and efflux occurs via multidrug resistance protein 1 (MRP1), RFC protein expression in osteosarcoma remains unexamined. METHODS RFC and MRP1 expression (normalized to beta-actin expression) was examined with Western blot analysis in 11 osteosarcoma specimens obtained at diagnosis and 9 osteosarcoma specimens obtained on recurrence. RESULTS The average RFC level in specimens obtained on recurrence was significantly higher than the level in specimens obtained at diagnosis (P = 0.0005). Furthermore, in all three matched pairs of diagnosis and recurrence specimens, RFC levels were higher in recurrence specimens than in the corresponding diagnosis specimens. Potential correlations between RFC and MRP1 expression and histologic response to preoperative chemotherapy were examined. Tumors with poor histologic responses (i.e., </= 90% necrosis) had significantly lower RFC levels than did those with favorable responses to chemotherapy (P = 0.0016). In contrast, there was no correlation between MRP1 levels at diagnosis and histologic response to chemotherapy (P = 0.8764). The elevated MRP1 levels in specimens obtained on recurrence relative to MRP1 levels in specimens obtained at diagnosis were not statistically significant (P = 0.2056). CONCLUSIONS The significant correlation between low RFC levels at diagnosis and poor histologic response to preoperative chemotherapy suggests that RFC levels at diagnosis may be a useful predictor of chemosensitivity and warrants large-scale studies. In addition, postchemotherapy progression to recurrence is associated with a significant increase in RFC expression. To our knowledge, the current study is the first to examine RFC protein levels in tumor specimens. Cancer 2003.
Collapse
|
90
|
Flintoff WF, Williams FMR, Sadlish H. The region between transmembrane domains 1 and 2 of the reduced folate carrier forms part of the substrate-binding pocket. J Biol Chem 2003; 278:40867-76. [PMID: 12909642 DOI: 10.1074/jbc.m302102200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A functional cysteine-less form of the hamster reduced folate carrier protein was generated by alanine replacement of the 14 cysteine residues. The predicted 12-transmembrane topology was examined by replacing selected amino acids, predicted to be exposed to the extracellular or cytosolic environments, with cysteines. The location of these cysteines was defined by their accessibility to biotin maleimide in the presence or absence of specific blocking agents. Amino acids predicted to be exposed to the extracellular environment (S46C, S179C, L300C, Y355C, and K430C) could be labeled with biotin maleimide; this modification could be blocked by prior treatment with nonpermeable reagents. Amino acids predicted to be within the cytosol (S152C, Cys224, and L475C) could be labeled only after streptolysin O permeabilization. In addition, the cysteine-less reduced folate carrier was exploited to evaluate a potential substrate-binding domain as suggested by previous studies. Nineteen cysteine replacements were generated between residues 39 and 75, a region located between the first and second transmembrane segments. From the biotinylation of these sites and the ability of various reagents to block this labeling, it appears that L41C, E45C, S46C, T49C, I66C, and L70C are exposed to the extracellular environment, whereas Q54C, Q61C, and T63C are slightly less accessible. Cysteines 39, 42, 44, 47, 51, and 73 were inefficiently biotinylated, suggesting that these sites are located in the membrane or within a tightly folded domain of the protein. Furthermore, biotinylation of cysteines 41, 46, 49, 70, and 71 could be prevented by prior treatment with either methotrexate or folinic acid, indicating that these sites form part of a substrate-binding pocket.
Collapse
|
91
|
Rothem L, Stark M, Kaufman Y, Mayo L, Assaraf YG. Reduced folate carrier gene silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. J Biol Chem 2003; 279:374-84. [PMID: 14551190 DOI: 10.1074/jbc.m309092200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human reduced folate carrier (hRFC) is the major uptake route for antifolates used in cancer chemotherapy. Here we explored the molecular basis for the decrease or loss of hRFC gene expression in seventeen tumor cell lines with resistance to multiple antifolates due to impaired antifolate transport. We studied the role of various cis-acting elements including CRE/AP-1-like element and GC-box in hRFC promoters A and B, respectively, as well as AP-2, Mzf-1 and E-box that are contained within or near four tandemly repeated sequences upstream of promoter A. Decreased or abolished binding either to [32P]GC-box, Mzf-1, AP-1, E-box, or CRE oligonucleotides was detected in approximately 50-80% of antifolate-resistant cell lines. Strikingly, approximately 80% of the cell lines displayed a simultaneously decreased binding to three or more of these hRFC promoter elements, whereas normal AP-2 binding was retained. The possible contribution of promoter methylation to hRFC gene silencing was also explored. None of the antifolate-resistant cell lines, except for MDA-MB-231 cells, showed hRFC promoter methylation; consistently, MDA-MB-231 was the only cell line that retained binding to all six cis-acting elements. Western blot analysis demonstrated decreased expression of transcriptional activators (pCREB-1, pATF-1, USF-1, c-Fos, c-Jun, Sp1, and Sp3) and/or increased expression of repressors (short Sp3 isoforms), whereas normal AP2alpha levels were retained. Transient expression of the relevant transcription factors restored, at least partially, both promoter binding and hRFC gene expression. This is the first report that transcriptional silencing of the hRFC gene in multiple tumor cell lines with resistance to various novel antifolates is a result of a simultaneous loss of function of multiple transcription factors but not promoter methylation.
Collapse
|
92
|
Li T, Tomimatsu T, Ito K, Horie T. Fluorescein-methotrexate transport in brush border membrane vesicles from rat small intestine. Life Sci 2003; 73:2631-9. [PMID: 12967687 DOI: 10.1016/s0024-3205(03)00616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transport characteristics of fluorescein-methotrexate (F-MTX) in isolated brush border membrane vesicles (BBMVs) from rat small intestine were studied. F-MTX uptake in BBMVs was measured by a rapid filtration technique. Our results demonstrated that F-MTX uptake into vesicles was 1) significantly increased under the experimental conditions of an outwardly directed OH(-) gradient or an inwardly directed H(+)gradient, 2) sensitive to temperature, 3) increased with decreasing pH of the incubation buffer, 4) significantly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) at the early stage of the uptake, and 5) significantly inhibited by methotrexate (MTX). Thus, the transport of F-MTX in BBMVs was shown to be mediated in part by the reduced folate transporter (RFC) which was known to transport MTX through the epithelium of small intestine.
Collapse
|
93
|
Hattinger CM, Reverter-Branchat G, Remondini D, Castellani GC, Benini S, Pasello M, Manara MC, Scotlandi K, Picci P, Serra M. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol 2003; 82:483-93. [PMID: 14582536 DOI: 10.1078/0171-9335-00336] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methotrexate (MTX) is one of the most important drugs for osteosarcoma (OS) treatment. To identify genetic aberrations associated with the development of MTX resistance in OS cells, in addition to the previously reported expression changes of dihydrofolate reductase (DHFR) and reduced folate carrier (RFC) genes, comparative genomic hybridization (CGH)-based techniques were used. The direct comparison between MTX-resistant variants of U-2OS or Saos-2 human OS cell lines with their respective parental cell lines by CGH on chromosomes revealed that development of MTX resistance was associated with gain of the chromosomal regions 5q12-q15 and 11q14-qter in U-2OS variants, and with gain of 8q22-qter in Saos-2 variants. Further analyses by CGH on microarrays demonstrated a progressively increasing gain of mixed lineage leukemia (MLL) gene (11q23) in U-2OS MTX-resistant variants, which was also confirmed by fluorescence in situ hybridization (FISH), in addition to gain of FGR (1p36), amplification/overexpression of DHFR, and slight decrease of RFC expression. In Saos-2 MTX-resistant variants, gain of MYC (8q24.12-q24.13) was detected, together with a remarkable decrease of RFC expression. Further analyses of DHFR, MLL, MYC, and RFC gene status in four additional human OS cell lines revealed that only gain of DHFR and MLL were associated with an inherent lower sensitivity to MTX. These data demonstrate that genetic analyses with complementary techniques are helpful for the identification of new candidate genes, which might be considered for an early identification of MTX unresponsive tumors.
Collapse
|
94
|
Bosson G. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell. Br J Biomed Sci 2003; 60:117-29. [PMID: 12866924 DOI: 10.1080/09674845.2003.11783687] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cytotoxic drug methotrexate uses the reduced folate carrier for transport into the cell, where it inhibits key enzymes in nucleotide biosynthesis. Resistance to methotrexate can be achieved by altering the genetic code of the reduced folate carrier gene and thus change the structure and function of the protein. Our understanding of RFC structure and function is based on the information gained from studying the uptake of folates and antifolates in living cells and the application of molecular techniques to determine gene expression and genetic mutations. The aim of this essay is to explain the structure and function of the reduced folate carrier, review the molecular biology of the reduced folate carrier gene and the mutations and polymorphisms that can result in methotrexate resistance.
Collapse
|
95
|
Kishi S, Griener J, Cheng C, Das S, Cook EH, Pei D, Hudson M, Rubnitz J, Sandlund JT, Pui CH, Relling MV. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 2003; 21:3084-91. [PMID: 12915598 DOI: 10.1200/jco.2003.07.056] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Despite its clinical success, methotrexate (MTX) therapy is associated with toxicities such as seizures, the pathogenesis of which remains unclear. It has been suggested that hyperhomocysteinemia is caused by MTX and is responsible for its neurotoxic effects. The purposes of this study were to explore whether hyperhomocysteinemia was related to MTX administration and toxicity and whether homocysteine or MTX toxicity differed by methylenetetrahydrofolate reductase (MTHFR) or reduced folate carrier (RFC) genetic polymorphisms. PATIENTS AND METHODS We studied 53 children with newly diagnosed acute lymphoblastic leukemia who were consecutively treated on a single clinical protocol that included two courses of high-dose MTX (high-dose methotrexate [HDMTX]; 2.5 or 5.0 g/m2 per day) as consolidation therapy. RESULTS The study participants' median plasma homocysteine concentrations at 23 and 44 hours after HDMTX (9.00 micromol/L and 10.12 micromol/L, respectively) were greater than the concentrations immediately before HDMTX (5.77 micromol/L, P <.0001 for both comparisons). Seven days after HDMTX treatment, their plasma concentration returned to baseline. Nine patients experienced seizures, and five patients experienced thrombosis during the first 15 months of therapy, with a tendency for there to be higher plasma homocysteine in patients with seizures across all time points (P =.063) but not in patients with thrombosis (P =.59). We observed no significant differences in plasma or cerebrospinal fluid homocysteine levels or in toxicity based on the MTHFR 677C/T or RFC 80G/A genotypes. CONCLUSION We conclude that homocysteine was transiently elevated after HDMTX and may be related to seizure risk in children with leukemia.
Collapse
|
96
|
Abstract
The chapter reviews the current understanding of the transport mechanisms for folates in mammalian cells--their molecular identities and organization, tissue expression, regulation, structures, and their kinetic and thermodynamic properties. This encompasses a variety of diverse processes. Best characterized is the reduced folate carrier, a member of the SLC19 family of facilitative carriers. But other facilitative organic anion carriers (SLC21), largely expressed in epithelial tissues, transport folates as well. In addition to these bi-directional carrier systems are the membrane-localized folate receptors alpha and beta, that mediate folate uptake unidirectionally into cells via an endocytotic process. There are also several transporters, typified by the family of multidrug resistance-associated proteins, that unidirectionally export folates from cells. There are transport activities for folates, that function optimally at low pH, related in part to the reduced folate carrier, with at least one activity that is independent of this carrier. The reduced folate carrier-associated low-pH route mediates intestinal folate transport. This review considers how these different transport processes contribute to the generation of transmembrane folate gradients and to vectorial flows of folates across epithelia. The role of folate transporters in mouse development, as assessed by homologous deletion of folate receptors and the reduced folate carrier, is described. Much of the focus is on antifolate cancer chemotherapeutic agents that are often model surrogates for natural folates in transport studies. In particular, antifolate transport mediated by the reduced folate carrier is a major determinant of the activity of, and resistance to, these agents. Finally, many of the key in vitro findings on the properties of antifolate transporters are now beginning to be extended to patient specimens, thus setting the stage for understanding response to these drugs in the clinical setting at the molecular level.
Collapse
|
97
|
Subramanian VS, Chatterjee N, Said HM. Folate uptake in the human intestine: promoter activity and effect of folate deficiency. J Cell Physiol 2003; 196:403-8. [PMID: 12811835 DOI: 10.1002/jcp.10324] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The intestinal folate absorption process occurs via a specialized mechanism that involves the reduced folate carrier (RFC). In humans, multiple variants of the hRFC (driven by multiple promoters) have been identified with variant I being the prominent form expressed in the intestine. While it is known that promoter B (pB) of hRFC drives the expression of this variant, little is known about the minimal region required for basal activity of this promoter in human intestinal epithelial cells. Also not known is whether folate absorption in the human intestine is up-regulated during folate deficiency (as occur in animal studies), and if so, whether transcriptional mechanisms via activation of hRFC pB are involved in such regulation. To address these issues, we have used deletion constructs of the hRFC pB and determined their activity in two human intestinal epithelial cell lines: the colon-derived Caco-2 cells, and the duodenum-derived HuTu-80 cells. Our results showed that activity of hRFC pB to be significantly higher in Caco-2 cells compared to HuTu-80 cells, a finding that corresponds with a higher level of folate uptake and endogenous hRFC mRNA levels in the former compared to the latter cell type. The minimal region required for basal activity of hRFC pB in Caco-2 cells was found to be encoded in a sequence between -1088 and -1043, while in HuTu-80 cells it was encoded in a sequence between -1431 and -1088. Growing Caco-2 cells in a folate deficient medium led to a significant and specific up-regulation in folate uptake. This up-regulation was associated with a parallel increase in hRFC protein and mRNA levels, and in the activity of hRFC pB. The most responsive sequence of pB to the effect of folate deficiency was found to be encoded in a sequence between -2016 and -1431, i.e., outside the minimal region of the pB. These results show that different minimal regions for hRFC pB are utilized by different intestinal epithelial cells. In addition, folate-deficiency was found to up-regulate folate uptake by human intestinal epithelial cells and that this regulation involves activation of hRFC pB.
Collapse
|
98
|
Maddox DM, Manlapat A, Roon P, Prasad P, Ganapathy V, Smith SB. Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart. BMC DEVELOPMENTAL BIOLOGY 2003; 3:6. [PMID: 12887734 PMCID: PMC184426 DOI: 10.1186/1471-213x-3-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 07/29/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND Folate is essential for cellular proliferation and tissue regeneration. As mammalian cells cannot synthesize folates de novo, tightly regulated cellular uptake processes have evolved to sustain sufficient levels of intracellular tetrahydrofolate cofactors to support biosynthesis of purines, pyrimidines, and some amino acids (serine, methionine). Though reduced-folate carrier (RFC) is one of the major proteins mediating folate transport, knowledge of the developmental expression of RFC is lacking. We utilized in situ hybridization and immunolocalization to determine the developmental distribution of RFC message and protein, respectively. RESULTS In the mouse, RFC transcripts and protein are expressed in the E10.0 placenta and yolk sac. In the E9.0 to E11.5 mouse embryo RFC is widely detectable, with intense signal localized to cell populations in the neural tube, craniofacial region, limb buds and heart. During early development, RFC is expressed throughout the eye, but by E12.5, RFC protein becomes localized to the retinal pigment epithelium (RPE). CONCLUSIONS Clinical studies show a statistical decrease in the number of neural tube defects, craniofacial abnormalities, cardiovascular defects and limb abnormalities detected in offspring of female patients given supplementary folate during pregnancy. The mechanism, however, by which folate supplementation ameliorates the occurrence of developmental defects is unclear. The present work demonstrates that RFC is present in placenta and yolk sac and provides the first evidence that it is expressed in the neural tube, craniofacial region, limb buds and heart during organogenesis. These findings suggest that rapidly dividing cells in the developing neural tube, craniofacial region, limb buds and heart may be particularly susceptible to folate deficiency.
Collapse
|
99
|
Zhao R, Wang Y, Gao F, Goldman ID. Residues 45 and 404 in the murine reduced folate carrier may interact to alter carrier binding and mobility. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1613:49-56. [PMID: 12832086 DOI: 10.1016/s0005-2736(03)00136-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reduced folate carrier (RFC), a facilitative transporter, plays a major role in the delivery of reduced folates and antifolates into cells. Previous studies indicated that mutations of E45K in the first transmembrane domain (TMD), and K404L in the 11th TMD, produce selective and opposite alterations in binding of natural folate substrates to murine RFC. The former mutation is frequently associated with antifolate resistance. The current study was designed to determine whether there might be an interaction between these sites by comparing the transport properties of RFC-null cell lines stably transfected with K404E, E45K, or E45K/K404E carriers. These studies demonstrated that: (1) All mutant carriers were inserted into the plasma membrane. (2) In the K404E mutant, the influx K(t)'s for 5-formyltetrahydrofolate and 5-methyltetrahydrofolate were markedly increased, and to a much smaller extent folic acid, as compared to L1210 cells. However, with introduction of a second E45K mutation the influx K(t) for these folates reverted to those of the E45K cells which retained wild-type binding for 5-methyltetrahydrofolate and enhanced binding of 5-formyltetrahydrofolate and folic acid. (3) The influx V(max) of the E45K mutant was markedly reduced. Introduction of the second K404E mutation doubled this parameter and the ratio of V(max) to K(t) for 5-formytetrahydrofolate was restored to approximately 50% that of the wild-type carrier consistent with a substantial increase in function. (4) Chloride inhibits wild-type RFC but the E45K mutant requires chloride for activity. The K404E mutant is also suppressed by chloride but introduction of the K404E mutation decreased the chloride-dependence of E45K. The results suggest that there is an interaction between the E45 and K404 residues in the first and 11th TMDs, respectively, but that the E45 residue appears to be the more dominant determinant of binding and anion sensitivity.
Collapse
|
100
|
Sowers R, Toguchida J, Qin J, Meyers PA, Healey JH, Huvos A, Banerjee D, Bertino JR, Gorlick R. mRNA expression levels of E2F transcription factors correlate with dihydrofolate reductase, reduced folate carrier, and thymidylate synthase mRNA expression in osteosarcoma. Mol Cancer Ther 2003; 2:535-41. [PMID: 12813132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Previous studies have shown that decreased expression of the reduced folate carrier (RFC) and increased expression of dihydrofolate reductase (DHFR) are associated with intrinsic and acquired methotrexate resistance, respectively, in osteosarcoma (OS). It has also been shown in colorectal cancer that E2F-1 expression correlates with thymidylate synthase (TS) and, to a lesser extent, DHFR expression. To begin to investigate the regulation of DHFR and RFC expression in OS samples, mRNA expression of E2F-1 and E2F-4 were measured in OS tumor samples and related to DHFR, RFC, and TS mRNA expression. Using fluorescent quantitative real-time PCR, 112 human OS patient samples were investigated for potential E2F-1/E2F-4:DHFR, E2F-1/E2F-4:RFC, and E2F-1/E2F-4:TS correlations. The expression ranges for each gene are as follows: DHFR, 0.02-33.13 (median = 0.20); RFC, 0.02-229.13 (median = 1.91); TS, 0.01-9.99 (median = 0.15); E2F-1, 0.05-69.07 (median = 0.52); and E2F-4, 0.24-52.35 (median = 1.45). Spearman correlation coefficients (r(s)) for E2F-1:DHFR, E2F-1:RFC, E2F-1:TS, E2F-4:DHFR, E2F-4:RFC, and E2F-4:TS were calculated to be 0.53, 0.63, 0.60, 0.41, 0.58, and 0.33, respectively (P < 0.001). On the basis of this data, moderate correlations exist between E2F-1/E2F-4 and DHFR, RFC, and TS. These results suggest E2F-1/E2F-4 may play a role in the regulation of RFC expression, which has not been reported previously. The E2F transcription factors are also related to DHFR and TS expression in OS samples, suggesting a possible involvement in methotrexate resistance. Although E2F mRNA levels correlate with DHFR, RFC, and TS mRNA expression, additional experiments are necessary to determine the direct effects of these transcription factors and identify other proteins that may influence this relationship.
Collapse
|