101
|
Grothe C, Timmer M, Scholz T, Winkler C, Nikkhah G, Claus P, Itoh N, Arenas E. Fibroblast growth factor-20 promotes the differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons. Neurobiol Dis 2004; 17:163-70. [PMID: 15474354 DOI: 10.1016/j.nbd.2004.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/25/2022] Open
Abstract
Stem cells are currently considered as alternative cell resources for restorative transplantation strategies in Parkinson's disease. However, the mechanisms that induce differentiation of a stem cell toward the dopaminergic phenotype are still partly unknown thus hampering the production of dopaminergic neurons from stem cells. In the past, FGF-20 has been found to promote the survival of ventral mesencephalic (VM) dopaminergic (DA) neurons in culture. We hereby provide evidence that FGF-20, a growth factor of the FGF family, is expressed in the adult and 6-OHDA-lesioned striatum and substantia nigra, but is not expressed by VM glia or DA neurons, suggesting that FGF-20 may work on DA neurons in a paracrine- or target-derived manner. We also found that co-culture of Nurr1-NSCs with Schwann cells overexpressing FGF-20 induced the acquisition of a neuronal morphology by the NSCs and the expression of tyrosine hydroxylase (TH) as assessed by immunocytochemistry, cell ELISA, and Western blot analysis. RT-PCR showed, that both, Schwann cells and Nurr1-NSCs (differentiated or not), expressed the FGF-1 receptor suggesting that both direct and indirect actions of FGF-20 are possible. We show that differentiated Nurr1 cells retained both neuronal morphology and TH expression after transplantation into the striatum of 6-OHDA-lesioned postnatal or adult rats, but that neuritogenesis was only observed after postnatal grafts. Thus, our results suggest that FGF-20 promotes the differentiation of Nurr1-NSCs into TH-positive neurons and that additional factors are required for the efficient differentiation of DA neurons in the adult brain.
Collapse
|
102
|
Mauritz C, Grothe C, Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells. J Neurosci Res 2004; 77:453-61. [PMID: 15248300 DOI: 10.1002/jnr.20166] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present here a fast protocol that could be used to obtain highly purified cultures of maximal proliferating adult rat Schwann cells. These adult rat Schwann cells can be transfected in a nonbiological way using the physical transfection method of electroporation. Schwann cells are decisive in recovery of peripheral nerves after injury. In a clinical context, the use of enriched adult Schwann cells is necessary for autologous cell transplantation within nerve transplants for peripheral nerve repair. Different parameters such as tissue preparation, culture conditions, and protocols for enrichment, elevation of proliferation rates, and transfection were evaluated in cell cultures harvested from adult rat peripheral nerves. Cell preparation from in vivo predegenerated adult rat sciatic nerves combined with the use of melanocyte growth medium supplemented with forskolin, fibroblast growth factor (FGF)-2, and pituitary extract as a selective, serum-free culture medium, with a secondary cell-enrichment step using specific detachment, resulted in highly enriched cultures of adult rat Schwann cells (>90%) with enhanced proliferation rates (>or=40%). About 20% of these adult Schwann cells could be modified genetically using an optimized electroporation protocol.
Collapse
|
103
|
Jungnickel J, Gransalke K, Timmer M, Grothe C. Fibroblast growth factor receptor 3 signaling regulates injury-related effects in the peripheral nervous system. Mol Cell Neurosci 2004; 25:21-9. [PMID: 14962737 DOI: 10.1016/j.mcn.2003.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 09/16/2003] [Accepted: 09/29/2003] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) signaling is crucial for neural development and regeneration. Here we investigated the L5 spinal ganglion and the sciatic nerve of intact Fgfr3-deficient mice after nerve injury. Quantification of sensory neurons in the L5 spinal ganglion revealed no significant differences between wild-type and Fgfr3-deficient mice. Seven days after nerve lesion, the normally occurring neuron loss in wild-type mice was not found in Fgfr3-deficient animals, suggesting that FGFR3 signaling is involved in the cell death process. Morphometric analysis of the sciatic nerve showed similar numbers of myelinated axons, but the axonal and myelin diameter was significantly smaller in Fgfr3-deficient mice compared to the wild types. Evaluation of regenerating myelinated axons of the sciatic nerve revealed no differences between both mouse strains 7 days after crush injury. Our results suggest that FGFR3 signaling seems to be involved in processes of damage-induced neuron death and axonal development.
Collapse
MESH Headings
- Animals
- Cell Death/physiology
- Denervation
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Lumbar Vertebrae/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Regeneration/physiology
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Peripheral Nerve Injuries
- Peripheral Nerves/metabolism
- Peripheral Nerves/physiopathology
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/deficiency
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Sciatic Nerve/metabolism
- Sciatic Nerve/pathology
- Sciatic Nerve/physiopathology
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
- Signal Transduction/physiology
Collapse
|
104
|
Timmer M, Müller-Ostermeyer F, Kloth V, Winkler C, Grothe C, Nikkhah G. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol 2004; 187:118-36. [PMID: 15081594 DOI: 10.1016/j.expneurol.2004.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/08/2004] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
Dopaminergic (DA) micrografts were co-transplanted with Schwann cells (SC) overexpressing 18 kDa and 21/23 kDa FGF-2 into the caudate-putamen unit (CPu) of unilaterally 6-hydroxydopamine-lesioned rats. We report here that SC engineered to overexpress FGF-2 promoted DA-graft-induced restoration, whether co-transplanted at the same site or grafted at a second more distant site within the CPu. In addition, the 21/23 kDa FGF-2 isoforms resulted in a significantly better reinnervation and survival of dopaminergic micrografts when compared to the 18-kDa FGF-2 isoform. However, this effect was not that distinct on functional recovery due to, for example, ceiling effects. One main finding of this study was the influence of the gene promotor on DA survival, respectively, vector-mediated trophism. Therefore, comparisons in terms of survival between 18 kDa and higher molecular weight (HMW) FGF-2 are complicated in the mixed grafted experiments. Furthermore, the first demonstration of the presence of the 21/23 kDa FGF-2 isoforms in the nigrostriatal system and their potent neurotrophic in vivo activities, as shown in the present study, suggest (I) a physiological role of these proteins for dopaminergic neurons and (II) a restorative potential under normal as well as regenerative processes. However, FGF-2-mediated effects are more pronounced after co-transplantation with SC/DA cells mixed in one suspension at the same implantation side than in the side-by-side approach with a spatially and temporally separated transplantation of SC (day 1) and DA-cells (day 3). These findings indicate the necessity of direct contact between FGF-2 and DA-neurons, further elucidate the neurotrophic role of FGF-2 for DA-neurons and highlight the differential restorative potentials of its respective isoforms. We propose that administration of HMW FGF-2 may be used to improve function in the rat Parkinson's disease model.
Collapse
|
105
|
Timmer M, Robben S, Müller-Ostermeyer F, Nikkhah G, Grothe C. Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2. Cell Transplant 2004; 12:265-77. [PMID: 12797381 DOI: 10.3727/000000003108746821] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) has been shown to enhance the survival and neurite extension of various types of neurons including spinal ganglion neurons. In addition, endogenous FGF-2 and FGF receptors are upregulated following peripheral nerve lesion in ganglia and at the lesion site. FGF-2 protein is expressed in different isoforms (18 kDa, 21 kDa, 23 kDa) and differentially regulated after nerve injury. In the rat we analyzed the regenerative capacity of the high molecular weight (HMW) FGF-2 isoforms (21/23 kDa) to support the regeneration of the axotomized adult sciatic nerve across long gaps. The nerve stumps were inserted into the opposite ends of a silicone chamber resulting in an interstump gap of 15 mm. Silicone tubes were filled with Matrigel or a mixture of Schwann cells (SC) and Matrigel. SC were prepared from newborn rats and transfected to overexpress HMW FGF-2. Four weeks after the operation procedure, channels were analyzed with regard to tissue cables bridging both nerve stumps and myelinated axons distal to the original proximal nerve stump. Peripheral nerves interposed with HMW Schwann cells displayed significantly enhanced nerve regeneration, with the greatest number of tissue cables containing myelinated axons and the highest number of myelinated axons. These results suggest that a cellular substrate together with a source of a trophic factor could be a promising tool to promote nerve regeneration and, therefore, become useful also for a clinical approach to repair long gaps.
Collapse
|
106
|
Claus P, Werner S, Timmer M, Grothe C. Expression of the fibroblast growth factor-2 isoforms and the FGF receptor 1–4 transcripts in the rat model system of Parkinson's disease. Neurosci Lett 2004; 360:117-20. [PMID: 15082147 DOI: 10.1016/j.neulet.2004.01.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 01/21/2004] [Indexed: 11/16/2022]
Abstract
Basic fibroblast growth factor (FGF)-2 occurs in different isoforms representing different translation products of a single mRNA. We have previously shown that the high molecular weight FGF-2 isoforms (21, 23 kD) stimulated survival- and neurite-promoting activities and protective effects on cultured embryonic dopaminergic (DA) neurons of the substantia nigra (Neuroscience 100 (2000) 73). In this study the expression of FGF-2 isoforms in the striatum and substantia nigra was analyzed by Western blot in adult intact rats and following complete unilateral 6-hydroxydopamine (6-OHDA) lesion. In intact rats, all three FGF-2 isoforms (18, 21, 23 kD) are expressed. Neurotoxin-mediated lesion of nigral DA neurons revealed no change of the FGF-2 isoform expression pattern in the nigrostriatal system. Additionally, the FGF receptors 1, 2 and 3 are expressed in these tissues and displayed no alterations after 6-OHDA injection as demonstrated by RT-PCR. The presence of all three FGF-2 isoforms and the FGFR 1-3, together with the previous demonstrated neurotrophic effects of FGF-2 on dopaminergic neurons, suggest a physiological function of the FGF-2 isoforms in the nigrostriatal system.
Collapse
MESH Headings
- Animals
- Blotting, Western/methods
- Cell Count/methods
- Corpus Striatum/cytology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Disease Models, Animal
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- In Situ Hybridization/methods
- Neurons/metabolism
- Oxidopamine/toxicity
- Parkinson Disease/etiology
- Parkinson Disease/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein-Tyrosine Kinases
- RNA, Messenger/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Substantia Nigra/cytology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Sympatholytics/toxicity
- Time Factors
- Tyrosine 3-Monooxygenase/metabolism
Collapse
|
107
|
Petri S, Krampfl K, Hashemi F, Schmalbach S, Grothe C, Hori A, Dengler R, Bufler J. The mRNA expression of AMPA type glutamate receptors in the primary motor cortex of patients with amyotrophic lateral sclerosis: an in situ hybridization study. Neurosci Lett 2004; 360:170-4. [PMID: 15082160 DOI: 10.1016/j.neulet.2004.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/23/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
The pathogenetic mechanisms leading to progressive neurodegeneration in amyotrophic lateral sclerosis (ALS) have not been fully elucidated. One possible factor responsible for the selective motor neuron loss in the motor cortex, brain stem and spinal cord is glutamate-induced excitotoxicity particularly mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) type glutamate receptors. Data about the expression pattern of AMPA receptors in the primary motor cortex are lacking so far. The pharmacological and physiological properties of AMPA receptors are defined by the heteromeric composition of the four different receptor subunits. Different expression patterns of these subunits at motor neurons may provide a molecular basis for increased vulnerability to excitotoxic damage. Using in situ hybridization histochemistry we did not detect any significant differences in the distribution of AMPA receptor mRNA in the motor cortex of ALS patients compared to controls.
Collapse
|
108
|
Jungnickel J, Claus P, Gransalke K, Timmer M, Grothe C. Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Mol Cell Neurosci 2004; 25:444-52. [PMID: 15033172 DOI: 10.1016/j.mcn.2003.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 11/06/2003] [Accepted: 11/18/2003] [Indexed: 01/03/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is involved in the development, maintenance, and survival of the nervous system. To study the physiological role of endogenous FGF-2 during peripheral nerve regeneration, we analyzed sciatic nerves of FGF-2-deleted mice by using morphometric, morphological, and immunocytochemical methods. Quantification of number and size of myelinated axons in intact sciatic nerves revealed no difference between wild-type and FGF-2 knock-out (ko) animals. One week after nerve crush, FGF-2 ko mice showed about five times more regenerated myelinated axons with increased myelin and axon diameter in comparison to wild-types close to the injury site. In addition, quantitative distribution of macrophages and collapsed myelin profiles suggested faster Wallerian degeneration in FGF-2-deleted mice close to the lesion site. Our results suggest that endogenous FGF-2 is crucially involved in the early phase of peripheral nerve regeneration possibly by regulation of Schwann cell differentiation.
Collapse
|
109
|
Jaeckel M, Haastert K, Claus P, Grothe C, Dengler R, Bufler J, Grosskreutz J. Mechanisms of excitotoxicity: AMPA-mediated calcium dynamics in spinal motoneurons. AKTUELLE NEUROLOGIE 2004. [DOI: 10.1055/s-2004-833365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
110
|
Block W, Träber F, Grothe C, Manka C, Gieseke J, Lamerichs R, Klockgether T, Schild H. 1H-MR-Spektroskopie bei Patienten mit amyotropher Lateralsklerose (ALS) bei 3 Tesla. ROFO-FORTSCHR RONTG 2004. [DOI: 10.1055/s-2004-827486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Nindl W, Kavakebi P, Claus P, Grothe C, Pfaller K, Klimaschewski L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience 2004; 124:561-72. [PMID: 14980727 DOI: 10.1016/j.neuroscience.2003.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2003] [Indexed: 11/16/2022]
Abstract
Low and high molecular weight isoforms of the mitogen and multifunctional cytokine basic fibroblast growth factor (FGF-2) are up-regulated in neurons and glial cells in response to peripheral nerve lesion. While synthesis, regulation and functions of FGF-2 in non-neuronal cells are well established, the significance of neuronal FGF-2 remains to be investigated in the peripheral nervous system. Therefore, the expression, intracellular localization and possible effects of FGF-2 isoforms were analyzed in primary sympathetic neurons derived from the rat superior cervical ganglion. FGF-2 is detected in the nucleus and in perinuclear Golgi fields of early postnatal neurons which also express mRNA and protein for the FGF receptor type 1. Biolistic transfection of plasmids encoding FGF-2 isoforms fused to fluorescent proteins demonstrates nuclear targeting of 18 kDa FGF-2 and 23 kDa FGF-2 with prominent accumulation in the nucleolus of neurons. Neither overexpression nor treatment with FGF-2 isoforms promotes survival of sympathetic neurons deprived of nerve growth factor; however, neuronal transfection of the high molecular weight FGF-2 isoform in dissociated and slice cultures results in a bi- or multinuclear phenotype. The present study provides evidence for neuronal synthesis and targeting of FGF-2 to the nucleus and Golgi apparatus supporting a dual role of FGF-2 in the nucleus and secretory pathway of sympathetic neurons.
Collapse
|
112
|
Petri S, Krampfl K, Hashemi F, Grothe C, Hori A, Dengler R, Bufler J. Distribution of GABAA receptor mRNA in the motor cortex of ALS patients. J Neuropathol Exp Neurol 2003; 62:1041-51. [PMID: 14575239 DOI: 10.1093/jnen/62.10.1041] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathomechanism of amyotrophic lateral sclerosis (ALS) remains unclear. There is some evidence that excitotoxic cell death is involved in the degeneration of the motor nervous system, and that ligand-gated receptor channels play a role in the pathogenesis of the disease. Several electrophysiological and anatomical studies support the pathophysiological concept of an impaired inhibitory, namely GABAergic, control of the motoneurons in the cerebral cortex of ALS patients. The aim of our study was to investigate the expression of GABAA-receptor subunit mRNAs and the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) in the motor cortex of ALS patients compared to tissue of control persons. We performed in situ hybridization histochemistry (ISH) on human postmortem motor cortex sections of ALS patients (n = 5) and age matched controls with no history of neurological disease (n = 5). The most intriguing finding was a significantly reduced mRNA expression of the alpha1-subunit in ALS patients while the level of beta1-subunit mRNA was elevated in the patients group. This may indicate specific alterations of the GABAA receptor subunit composition and result in distinct physiological and pharmacological properties of these receptors in ALS patients.
Collapse
|
113
|
Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C. Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 2003; 278:479-85. [PMID: 12397076 DOI: 10.1074/jbc.m206056200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is an important modulator of cell growth and differentiation and a neurotrophic factor. FGF-2 occurs in isoforms, at a low molecular weight of 18,000 and at least two high molecular weight forms (21,000 and 23,000), representing alternative translation products from a single mRNA. In addition to its role as an extracellular ligand, FGF-2 localizes to the nuclei of cells. Here we show differential localization of the 18- and 23-kDa isoforms in the nuclei of rat Schwann cells. Whereas the 18-kDa isoform was found in the nucleoli, nucleoplasm, and Cajal bodies, the 23-kDa isoform localized in a punctuate pattern and associates with mitotic chromosomes suggesting different functional roles of the isoforms. Moreover, we show here that the 23-kDa FGF-2 isoform co-immunoprecipitates specifically with the survival of motor neuron protein (SMN). SMN is an assembly and recycling factor of the splicing machinery and locates to the cytoplasm, the nucleoplasm, and nuclear gems, where it co-localizes with 23-kDa FGF-2. Patients with spinal muscular atrophy suffer from fatal degeneration of motoneurons because of mutations and deletions of the gene for the SMN protein.
Collapse
|
114
|
Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 2002; 15:1327-42. [PMID: 11994127 DOI: 10.1046/j.1460-9568.2002.01971.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major reason for the insufficient recovery of function after motor nerve injury are the numerous axonal branches which often re-innervate muscles with completely different functions. We hypothesized that a neutralization of diffusable neurotrophic factors at the lesion site in rats could reduce the branching of transected axons. Following analysis of local protein expression by immunocytochemistry and by in situ hybridization, we transected the facial nerve trunk of adult rats and inserted both ends into a silicon tube containing (i) collagen gel with neutralizing concentrations of antibodies to NGF, BDNF, bFGF, IGF-I, CNTF and GDNF; (ii) five-fold higher concentrations of the antibodies and (iii) combination of antibodies. Two months later, retrograde labelling was used to estimate the portion of motoneurons the axons of which had branched and projected into three major branches of the facial trunk. After control entubulation in collagen gel containing non-immune mouse IgG 85% of all motoneurons projecting along the zygomatic branch sprouted and sent at least one twin axon to the buccal and/or marginal-mandibular branches of the facial nerve. Neutralizing concentrations of anti-NGF, anti-BDNF and anti-IGF-I significantly reduced sprouting. The most pronounced effect was achieved after application of anti-BDNF, which reduced the portion of branched neurons to 18%. All effects after a single application of antibodies were concentration-dependent and superior to those observed after combined treatment. This first report on improved quality of reinnervation by antibody-therapy implies that, in rats, the post-transectional collateral axonal branching can be reduced without obvious harmful effects on neuronal survival and axonal elongation.
Collapse
|
115
|
Pohl C, Block W, Träber F, Schmidt S, Pels H, Grothe C, Schild HH, Klockgether T. Proton magnetic resonance spectroscopy and transcranial magnetic stimulation for the detection of upper motor neuron degeneration in ALS patients. J Neurol Sci 2001; 190:21-7. [PMID: 11574102 DOI: 10.1016/s0022-510x(01)00568-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) was compared to proton magnetic resonance spectroscopy (1H-MRS) for the detection of upper motor neuron loss or dysfunction in 49 ALS patients classified according to the El Escorial criteria. Abnormal NAA/Cho ratios were detected in 53% of ALS patients. Abnormal TMS results (i.e. cortical inexcitability or prolonged CMCT's) were obtained in 63% of ALS patients. If one or both methods were considered for diagnosis of upper motor neuron degeneration/dysfunction, the percentage of abnormal findings was 77%, whilst in 39% of all patients both methods produced abnormal results. Compared to TMS, 1H-MRS detected more patients with upper motor neuron involvement in the suspected El Escorial subgroup (42% versus 25%), whereas TMS detected more patients with upper motor neuron involvement in the possible (81% versus 50%), probable (71% versus 57%) and definite El Escorial subgroup (71% versus 64%). We conclude that the combined use of 1H-MRS and TMS increases diagnostic accuracy for the detection of upper motor neuron involvement in ALS patients.
Collapse
|
116
|
Grothe C, Nikkhah G. The role of basic fibroblast growth factor in peripheral nerve regeneration. ANATOMY AND EMBRYOLOGY 2001; 204:171-7. [PMID: 11681796 DOI: 10.1007/s004290100205] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the peripheral nervous system regeneration and gradual functional restoration occur following peripheral nerve injury. Growth of regenerating axons depends on the presence of diffusible neurotrophic factors, in addition to the substratum. Neurotrophic factors that are involved in peripheral nerve regeneration include nerve growth factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, and interleukin-6. Recent functional and expression studies of basic fibroblast growth factor and its receptors have emphasized a physiological role of these molecules in the peripheral nervous system. Basic fibroblast growth factor and its receptors are constitutively expressed in dorsal root ganglia and the peripheral nerve. These molecules display an upregulation in dorsal root ganglia and in the proximal and distal nerve stumps following peripheral nerve injury. In the ganglia these molecules show a mainly neuronal expression, whereas at the lesion site of the nerve, Schwann cells and invading macrophages represent the main cellular sources of basic fibroblast growth factor and the receptors 1-3. Exogenously applied basic fibroblast growth factor mediates rescue effects on injured sensory neurons and supports neurite outgrowth of transectioned nerves. Regarding the expression patterm and the effects after exogenous administration of basic fibroblast growth factor, this molecule seems to play a physiological role during nerve regeneration. Thus, basic fibroblast growth factor could be a promising candidate to contribute to the development of new therapeutic strategies for the treatment of peripheral nerve injuries.
Collapse
|
117
|
Wewetzer K, Grothe C, Claus P. In vitro expression and regulation of ciliary neurotrophic factor and its alpha receptor subunit in neonatal rat olfactory ensheathing cells. Neurosci Lett 2001; 306:165-8. [PMID: 11406321 DOI: 10.1016/s0304-3940(01)01891-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During development and in the adult, ciliary neurotrophic factor (CNTF) is expressed at high levels in the olfactory system. In the present study, we asked whether neonatal rat olfactory ensheathing cells (OECs) express CNTF- and CNTF receptoralpha (CNTFRalpha)-mRNA in vitro and studied the regulation of both transcripts in response to growth factor and forskolin (FSK) treatment. We show here that OECs in vitro express CNTF and CNTFRalpha-mRNA under control conditions. Administration of FSK increased the expression of CNTFRalpha while lowering the levels of CNTF. Contrary to fibroblast growth factor-2, CNTF did not stimulate the proliferation of OECs. The observation that OECs express both the ligand and part of its receptor complex may indicate that CNTF exerts paracrine and/or autocrine effects in vivo, which apparently do not include the regulation of cell division.
Collapse
|
118
|
Grothe C, Meisinger C, Claus P. In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J Comp Neurol 2001; 434:342-57. [PMID: 11331533 DOI: 10.1002/cne.1181] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is involved in several cellular processes of the nervous system during development, maintenance, and regeneration. In the central nervous system, FGF-2 has been shown to be expressed in neurons and glial cells, depending on the developmental stage and brain area. In the present study, a comprehensive analysis was performed of the cellular distribution of the transcripts of FGF-2 and of the FGF high-affinity receptors (R) 1-4 in intact and lesioned sciatic nerve and spinal ganglia. In the adult rat sciatic nerve FGF-2, FGFR1-3 were expressed at low levels as revealed by reverse transcriptase-polymerase chain reaction (RT-PCR). Sciatic nerve crush resulted in an increase of these transcript levels. FGFR4 expression was not detected in the intact and crushed nerve as revealed by RT-PCR and RNase protection assay. In situ hybridization using riboprobes for FGF-2, FGFR1-3 displayed staining in diverse cell types. Immunocytochemical staining of consecutive sections with cell markers for myelin, macrophages, and neurons revealed colocalization of the transcripts with Schwann cells and macrophages. In addition to FGF-2 and FGFR1, the transcripts of FGFR2-4 were expressed in neurons of spinal ganglia. Crush lesion of the sciatic nerve resulted in no alterations of the FGFR1-4 transcripts, whereas FGF-2 and FGFR3 mRNAs were up-regulated in spinal ganglia. The expression of FGFRs and FGF-2 in Schwann cells and macrophages at the lesion site of the sciatic nerve and in sensory neurons suggests that FGF-2 is involved in specific functions of these cells during regeneration.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/physiology
- Gene Expression/physiology
- In Situ Hybridization
- Macrophages/chemistry
- Macrophages/cytology
- Macrophages/physiology
- Mice
- Nerve Crush
- Nerve Regeneration/physiology
- Protein-Tyrosine Kinases
- RNA, Messenger/analysis
- Rats
- Rats, Wistar/physiology
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Sciatic Nerve/chemistry
- Sciatic Nerve/physiology
- Sciatic Neuropathy/physiopathology
Collapse
|
119
|
Grothe C, Urbach H, Bös M, Ko Y, Schröder R. [Cerebellar syndrome, exophthalmos and secondary hypogonadism in Erdheim-Chester disease]. DER NERVENARZT 2001; 72:449-52. [PMID: 11433705 DOI: 10.1007/s001150050778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a 50-year-old patient with a slowly progressive cerebellar syndrome, left-sided exophthalmos, secondary hypogonadism, and multiple pleomorphous skin alterations. The diagnosis of Erdheim-Chester disease was established by the radiological detection of a left-sided retrobulbar space-occupying mass, a hypophysial stalk lesion, alterations in both cerebellar hemispheres, retroperitoneal imbibition, osteolytic/osteosclerotic changes in the metaphysis and diaphysis of the long bones, and a skin biopsy with histological detection of a non-Langerhans-cell histiocytosis. The etiology of the Erdheim-Chester disease is unknown. Cerebral manifestations of this rare disease have been documented in only a very few cases. Whereas the extracranial alterations are due to pathologic histiocyte proliferation, cerebellar changes are considered to be the result of demyelinisation or infiltration of xanthogranulomas.
Collapse
|
120
|
Pohl C, Block W, Karitzky J, Träber F, Schmidt S, Grothe C, Lamerichs R, Schild H, Klockgether T. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. ARCHIVES OF NEUROLOGY 2001; 58:729-35. [PMID: 11346367 DOI: 10.1001/archneur.58.5.729] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To evaluate proton magnetic resonance spectroscopy for detection and monitoring of upper motoneuron degeneration in patients with amyotrophic lateral sclerosis. METHODS Seventy patients with amyotrophic lateral sclerosis according to the El Escorial criteria were compared with 48 healthy control subjects. Single-volume proton magnetic resonance spectroscopy (echo time, 272 milliseconds; repetition time, 2000 milliseconds) was performed in both motor cortices for detection of N-acetylaspartate (NAA), phosphocreatine + creatine ([P]Cr), and choline-containing compounds (Cho) to calculate the metabolite ratios NAA/Cho, NAA/(P)Cr, and Cho/(P)Cr. In addition, absolute metabolite concentrations of NAA, (P)Cr, and Cho were obtained in 30 patients and 15 controls with the unsuppressed water signal used as an internal reference. RESULTS Absolute concentrations of NAA (P<.001) and (P)Cr (P<.05) were reduced in motor cortices of patients, whereas Cho concentrations remained unchanged. The NAA/Cho and NAA/(P)Cr ratios were reduced in all El Escorial subgroups (P<.001). The Cho/(P)Cr ratio was elevated in patients with definite amyotrophic lateral sclerosis (P<.05). Metabolite ratio changes corresponded to the lateralization of clinical symptoms and were weakly correlated with disease duration and disease severity. In follow-up observations of 16 patients during a mean (+/-SD) of 12.1 +/- 8.7 months, NAA/Cho dropped by 9.1% (P<.01), and Cho/(P)Cr increased by 7.0% (P<.01). Changes of metabolite ratios were significantly correlated with progression of disease severity. CONCLUSIONS Measurement of NAA concentrations and NAA/Cho ratios appear to be most suitable for detection of motor cortex degeneration by single-volume proton magnetic resonance spectroscopy. Reduced NAA/Cho ratios correspond to aspects of the clinical presentation and reflect disease progression in follow-up measurements.
Collapse
|
121
|
Grothe C, Schulze A, Semkova I, Müller-Ostermeyer F, Rege A, Wewetzer K. The high molecular weight fibroblast growth factor-2 isoforms (21,000 mol. wt and 23,000 mol. wt) mediate neurotrophic activity on rat embryonic mesencephalic dopaminergic neurons in vitro. Neuroscience 2001; 100:73-86. [PMID: 10996460 DOI: 10.1016/s0306-4522(00)00247-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Basic fibroblast growth factor is expressed in different isoforms which display tissue and species specificity and are differentially regulated during development and after experimental interventions. The differential regulation of the fibroblast growth factor-2 isoforms may indicate specific activities and functions of these molecules. The characterization of fibroblast growth factor-2 effects, however, is almost exclusively based on studies including the 18,000 mol. wt isoform. It is not yet known whether the high molecular weight fibroblast growth factor-2 isoforms (21,000 mol. wt, 23,000 mol. wt) exert similar or distinct activities in the nervous system. In the present study, we investigated the effects of the high molecular weight isoforms on dissociated rat mesencephalic dopaminergic neurons. For this purpose, recombinant fibroblast growth factor-2 isoforms, prepared in a histidine expression system, were administered on dopaminergic neurons in vitro, and Schwann cells over-expressing the high molecular weight isoforms were co-cultured with dopaminergic neurons. This is the first demonstration to show that the high molecular weight isoforms mediate a neurotrophic activity. Exogenous high molecular weight fibroblast growth factor-2 isoforms stimulated the survival of embryonic mesencephalic dopaminergic neurons and protected them from 6-hydroxydopamine neurotoxicity. In addition, co-culture of dopaminergic neurons with high molecular weight fibroblast growth factor-2 over-expressing Schwann cells revealed an increased survival and neurite formation of the mesencephalic dopaminergic neurons. These results suggest that the high molecular weight fibroblast growth factor-2 isoforms may serve as a new tool for the treatment of Parkinson's disease.
Collapse
|
122
|
Claus P, Grothe C. Molecular cloning and developmental expression of rat fibroblast growth factor receptor 3. Histochem Cell Biol 2001; 115:147-55. [PMID: 11444149 DOI: 10.1007/s004180000215] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fibroblast growth factors (FGFs) are involved in the control of a variety of biological functions including regulation and differentiation of various cell types. Furthermore, they play important roles in the processes of regeneration, angiogenesis, and chemotaxis. The family of FGF receptors (FGFRs) comprises four members, FGFR-1 to -4, which exist in several differentially expressed splice variants. Except for FGFR-3, primary structures and expression of the three other FGFRs have been described in the rat system. Although expression studies with heterologous probes of FGFR-3 from mice have been performed in the rat system, these analyses were limited and the complete set of receptors has not yet been revealed. To understand the developmental functions of FGFR-3, it is important to elucidate the expression pattern in embryos of different stages. In this study, we have isolated a cDNA of FGFR-3 from rat brain. Expression analyses by RT-PCR of adult rat revealed expression in several tissues, however, expression levels were highest in lung and brain. During embryonic development, FGFR-3 displays a diffuse expression in most tissues at embryonic day 14 (E14), as observed by in situ hybridization experiments. In E18 the expression pattern is more restricted, showing strong signals in spinal cord, dorsal root ganglia, cortex, chondrocytes, and endothelial cells. The temporal and spatial pattern of FGFR-3 expression suggests specific functions in several tissues during development.
Collapse
|
123
|
Müller-Ostermeyer F, Claus P, Grothe C. Distinctive effects of rat fibroblast growth factor-2 isoforms on PC12 and Schwann cells. Growth Factors 2001; 19:175-91. [PMID: 11811791 DOI: 10.3109/08977190109001085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is an important modulator of cell growth and differentiation and stimulates cell survival of various cells including neurons. Rat FGF-2 occurs in three isoforms, a low molecular weight 18 kD and two high molecular weight forms (21, 23 kD), representing alternative translation products from a single mRNA. The 18 kD isoform shows mainly cytoplasmatic localization, whereas the 21/23 kD FGF-2 are localized in the nucleus. In addition, the FGF-2 isoforms are differentially regulated in the sensory ganglia and peripheral nerve following nerve injury and in the adrenal medulla during post-natal development and after hormonal stimuli. The distinct intracellular distribution and differential regulation of the different FGF-2 isoforms indicate that they have unique biological roles, however, little is known about the biological effects of the high molecular weight FGF-2 isoforms. Immortalized Schwann cells and PC12 cells, which stably overexpress the different FGF-2 isoforms, showed that the different endogenous-overexpressed FGF-2 isoforms lead to dramatic modifications in cell proliferation and survival, when tested in serum-free and serum-containing medium. In contrast, application of recombinant FGF-2 isoforms on normal PC12 and immortalized Schwann cells results in similar biological effects on the proliferation and survival of the cells. Furthermore, we investigated the potential regulatory effects of endogenous-overexpressed and exogenous-applied FGF-2 isoforms on the mRNA level of the FGF-2 receptors and, additionally, on the tyrosin hydroxylase mRNA expression in PC12 cells.
Collapse
|
124
|
Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, Otten U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res 2000; 885:172-81. [PMID: 11102571 DOI: 10.1016/s0006-8993(00)02911-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expression of interleukin-6 (IL-6) and fibroblast growth factor-2 (FGF-2) in Schwann cells is modulated by external stimuli. To study possible interactions of both factors we have analyzed mutual effects of exogenous IL-6 and FGF-2 on the expression of each other and the corresponding receptor (R) molecules IL-6R and FGFR1 after peripheral nerve lesion in vivo and in vitro using cultured Schwann cells. Using rat Schwann cells we found that IL-6 did not exert any effects on the expression of FGF-2 and FGF receptor type 1 (R1) whereas exogenously applied 18-kD FGF-2 strongly increased the expression of the mRNAs of IL-6 and its receptor. In addition, immortalized Schwann cells over-expressing the 18-kD FGF-2 isoform showed elevated levels of IL-6 and IL-6R whereas immortalized Schwann cells over-expressing the high-molecular-weight isoforms (21 kD and 23 kD) displayed unaltered IL-6 and IL-6R expression levels. According to in situ hybridization studies of intact and crushed sciatic nerves in vivo, Schwann cells seems to be the main source of IL-6 and IL-6R. Following sciatic nerve crush, the FGF-2 and the IL-6 system are upregulated after the first hours. Furthermore, we showed that the early increase of the FGF-2 protein is mainly confined to the 18-kD isoform. These results are consistent with the idea of a functional coupling of FGF-2 and the IL-6 system in the early reaction of Schwann cells to nerve injury.
Collapse
|
125
|
Klimaschewski L, Meisinger C, Grothe C. Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. JOURNAL OF NEUROBIOLOGY 1999; 38:499-506. [PMID: 10084685 DOI: 10.1002/(sici)1097-4695(199903)38:4<499::aid-neu6>3.0.co;2-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In response to peripheral nerve lesion, synthesis of basic fibroblast growth factor (FGF-2) increases in sensory ganglia and motoneurons. Here, we investigated the axotomy-induced regulation of FGF-2 and FGF receptor-1 (FGFR-1) expression in the autonomic nervous system using the sympathetic superior cervical ganglion of the adult rat as a model. Transcripts for both proteins were detected by ribonuclease protection assay. Western blotting indicated the presence of all three FGF-2 isoforms (18, 21, and 23 kD) in the superior cervical ganglion. Immunohistochemical analysis revealed FGF-2 localization in nuclei of satellite cells surrounding postganglionic perikarya. After transection of the carotid nerves, the number of FGF-2-immunoreactive glial cells increased. FGF-2 mRNA was up-regulated within 6 h and remained elevated for 3 weeks. The 18-, 21-, and 23-kD isoforms were all increased 7 days after axotomy. FGFR-1 immunoreactivity was observed in neuronal and nonneuronal nuclei in the normal rat superior cervical ganglion. In contrast to FGF-2, expression of FGFR-1 was unchanged in ganglia after axotomy. Taken together, the present results suggest that FGF-2 participates in neuron-glial interactions of sympathetic ganglia and may be involved in sympathetic neuron survival or nerve regeneration after nerve lesion.
Collapse
|