101
|
Ullrich N, Caplanusi A, Brône B, Hermans D, Larivière E, Nilius B, Van Driessche W, Eggermont J. Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells. Am J Physiol Cell Physiol 2005; 290:C1287-96. [PMID: 16338968 DOI: 10.1152/ajpcell.00545.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K(+), Cl(-), and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl(-) current (I(Cl,swell)) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl(-) or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied I(Cl,swell) and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted I(Cl,swell), but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl(-), taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane.
Collapse
|
102
|
Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RKN. Water Intoxication: A Possible Complication During Endurance Exercise☆. Wilderness Environ Med 2005; 16:221-7. [PMID: 16366205 DOI: 10.1580/1080-6032(2005)16[221:wiapcd]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
103
|
Nandigama R, Padmasekar M, Wartenberg M, Sauer H. Feed forward cycle of hypotonic stress-induced ATP release, purinergic receptor activation, and growth stimulation of prostate cancer cells. J Biol Chem 2005; 281:5686-93. [PMID: 16321972 DOI: 10.1074/jbc.m510452200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP is released in many cell types upon mechanical strain, the physiological function of extracellular ATP is largely unknown, however. Here we report that ATP released upon hypotonic stress stimulated prostate cancer cell proliferation, activated purinergic receptors, increased intracellular [Ca(2+)](i), and initiated downstream signaling cascades that involved MAPKs ERK1/2 and p38 as well as phosphatidylinositol 3-kinase (PI3K). MAPK activation, the calcium response as well as induction of cell proliferation upon hypotonic stress were inhibited by preincubation with the ATP scavenger apyrase, indicating that hypotonic stress-induced signaling pathways are elicited by released ATP. Hypotonic stress increased prostaglandin E(2) (PGE(2)) synthesis. Consequently, ATP release was inhibited by antagonists of PI3K (LY294002 and wortmannin), phospholipase A(2) (methyl arachidonyl fluorophosphonate (MAFP)), cyclooxygenase-2 (COX-2) (indomethacin, etodolac, NS398) and 5,8,11,14-eicosatetraynoic acid (ETYA), which are involved in arachidonic acid metabolism. Furthermore, ATP release was abolished in the presence of the adenylate cyclase (AC) inhibitor MDL-12,330A, indicating regulation of ATP-release by cAMP. The hypotonic stress-induced ATP release was significantly blunted when the ATP-mediated signal transduction cascade was inhibited on different levels, i.e. purinergic receptors were blocked by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), the Ca(2+) response was inhibited upon chelation of intracellular Ca(2+) by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), and ERK1,2 as well as p38 were inhibited by UO126 and SB203580, respectively. In summary our data demonstrate that hypotonic stress initiates a feed forward cycle of ATP release and purinergic receptor signaling resulting in proliferation of prostate cancer cells.
Collapse
|
104
|
Arangasamy A, Singh LP, Ahmed N, Ansari MR, Ram GC. Isolation and characterization of heparin and gelatin binding buffalo seminal plasma proteins and their effect on cauda epididymal spermatozoa. Anim Reprod Sci 2005; 90:243-54. [PMID: 16260100 DOI: 10.1016/j.anireprosci.2004.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/15/2004] [Accepted: 12/16/2004] [Indexed: 11/19/2022]
Abstract
Seventy semen ejaculates were obtained from 14 Murrah buffalo bulls and were subjected to plasma separation immediately after collection by centrifugation at 2000 rpm for 20 min and stored in liquid nitrogen until analysis. In the seminal plasma the total protein concentration were estimated and the heparin and gelatin binding (HB and GB) proteins were isolated using heparin and gelatin affinity column chromatography. The molecular weight of individual isolated HB and GB protein was determined by SDS-PAGE analysis. Buffalo bull spermatozoa was collected from cauda epididymis under aseptic conditions and was used for the in vitro fertility tests (i.e. bovine cervical mucus penetration test (BCMPT) and hypo-osmotic swelling test (HOST)). The heparin and gelatin binding buffalo seminal plasma proteins were used in six concentrations i.e. 10, 20, 30, 40, 50 and 60 microg/ml to test their effect on in vitro fertility assessment of cauda epididymal spermatozoa. The overall mean values of total protein, HB and GB proteins were recorded as 29+/-2.7, 2.61 and 0.2mg/ml, respectively. Eighteen total protein bands were observed in the range of 12-127 kDa. Eight major HB proteins were isolated in the range of 13-71 kDa. Seven major GB proteins were isolated in the range of 13-61 kDa in the buffalo seminal plasma. The mean penetration distance (mm) travelled by the buffalo cauda spermatozoa was maximum in HB proteins (26.9+/-0.6) followed by GB proteins (25.4+/-0.6) and control (21.2+/-1.4). The difference in BCMPT values between protein treated and control group was significant (P<0.05). Almost similar trend in the effect of protein on values of HOST percentage in both HB and GB proteins treated semen samples were recorded (66.4+/-0.65 and 66.1+/-0.6, respectively). The difference in HOST values between proteins treated and control group (50.4+/-2.0) was significant (P<0.05). The present results indicate that among the isolated proteins, 4 proteins were commonly seen in both the heparin and gelatin-sepharose affinity column chromatography, and the addition of buffalo seminal plasma proteins improved the in vitro sperm functions (40 microg/ml gave best results) of buffalo cauda spermatozoa.
Collapse
|
105
|
Bacová Z, Benický J, Lukyanetz EE, Lukyanetz IA, Strbák V. Different Signaling Pathways Involved in Glucose- and Cell Swelling-Induced Insulin Secretion by Rat Pancreatic Islets in Vitro. Cell Physiol Biochem 2005; 16:59-68. [PMID: 16121034 DOI: 10.1159/000087732] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.
Collapse
|
106
|
Busso JM, Ponzio MF, de Cuneo MF, Ruiz RD. Year-round testicular volume and semen quality evaluations in captive Chinchilla lanigera. Anim Reprod Sci 2005; 90:127-34. [PMID: 16257602 DOI: 10.1016/j.anireprosci.2005.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/18/2005] [Accepted: 02/03/2005] [Indexed: 11/22/2022]
Abstract
In mammals, reproductive performance is usually associated with seasons. Chinchilla lanigera, an endemic South American rodent, reproduces throughout the year in captivity but its seasonal breeding pattern is not fully understood. The present study was designed to evaluate (bi-weekly) over 1 year: (1) testicular volume variations and (2) seminal volume, sperm concentration and functional activity changes. Five animals were studied; they were individually housed indoors (22.2 +/- 1.0 degrees C) under natural photoperiod in Argentina (Córdoba, 31 degrees S-64 degrees W). Semen was obtained by electroejaculation; a total of 116 ejaculates was evaluated. Monthly values for paired testicular volume were less in the middle of the summer than in other seasons (p < 0.006), while those for seminal volume and total spermatozoa/ejaculate were not significantly different; these variables ranged between 7.2-30.9 cm(3), 10-130 microL and 0.9-432.6 x 10(6), respectively. Spermatozoa concentration was (x 10(6)/mL) 2145.9 +/- 365.3 and the pH of semen was 7.3 +/- 0.0. Spermatozoa functional activity showed no significant differences between monthly evaluations; confidence intervals were calculated for the means of: motility, 92.2-95.8%; viability, 92.2-96.1%; swollen cells (hypo-osmotic swelling test), 81.2-87.7% and viable intact acrosome, 83.5-89.0%. The present study represents the first longitudinal reproductive assessment in the chinchilla male. In conclusion, males produce spermatozoa continuously that exhibit high quality functional activity.
Collapse
|
107
|
Kumaresan A, Ansari MR, Garg A. Modulation of post-thaw sperm functions with oviductal proteins in buffaloes. Anim Reprod Sci 2005; 90:73-84. [PMID: 15950408 DOI: 10.1016/j.anireprosci.2005.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/06/2005] [Accepted: 01/31/2005] [Indexed: 11/29/2022]
Abstract
A study was undertaken to determine the effects of oviductal proteins obtained from various stages of the estrous cycle on spermatozoa characteristics in buffaloes. Oviducts were collected from apparently healthy buffalo genital tracts (nonluteal and luteal stage of estrous cycle) and separated into isthmus and ampulla. Each segment of oviduct (nonluteal and luteal) was flushed with PBS (pH 7.4). The flushing obtained was centrifuged (3000 rpm; 30 min), filtered (0.2 microm) and frozen at -20 degrees C. The proteins in pooled nonluteal isthmic and ampullary and luteal isthmic and ampullary fluids were precipitated overnight using ammonium sulphate, centrifuged (10000 rpm; 30 min) and dialyzed (>10 kDa). After protein estimation, aliquots of samples containing 10 mg proteins were lyophilized in cryovials and stored in frozen form at -20 degrees C. Six pooled good-quality ejaculates collected by artificial vagina method from two Murrah buffalo bulls were utilized for the study. After fresh semen analysis, each pooled ejaculate was splited into five parts and extended in Tris-egg yolk-citrate extender (20% egg yolk; 7% glycerol), so that final dilution yielded approximately 60 million sperm cells per ml, and cryopreserved in 0.5 ml French straws (30 million sperm cells/straw) in LN(2) (-196 degrees C). Before freezing, nonluteal isthmic and ampullary and luteal isthmic and ampullary proteins were incorporated at the rate of 1mg/ml of extended semen. The equilibrated and frozen-thawed (37 degrees C for 30 s) semen was evaluated for motility, live %, acrosomal integrity percentage, bovine cervical mucus penetration test and hypo-osmotic sperm swelling test. Besides this, spermatozoa from treatment and control groups were incubated at 37 degrees C for 6 h in sperm TALP. Among the nonluteal and luteal oviductal proteins, the former maintained higher (P < 0.05) post-thaw sperm motility, live %, and acrosomal integrity than the control group. Between the isthmic and ampullary proteins, the isthmic proteins incorporated group maintained higher (P < 0.05) post-thaw sperm motility, live %, and acrosomal integrity. Similarly, higher sperm penetration distance in cervical mucus was recorded in nonluteal isthmic proteins incorporated group. But, irrespective of the stage of an estrous cycle, isthmic proteins included group maintains higher sperm membrane integrity as revealed by higher (P < 0.05) swollen sperm percentage in response to hypo-osmotic solution than the ampullary proteins included and control groups. Similarly, at any time during incubation the sperm motility and viability was higher (P < 0.05) in isthmic proteins treated group than the ampullary and control group. But, the same trend was not observed in terms of acrosomal integrity percentages. It is inferred that inclusion of oviductal proteins in the extender prior to freezing improved post-thaw semen quality. Oviductal proteins differentially affected sperm function depending upon the region of oviduct and the stage of estrous cycle at which the proteins were obtained.
Collapse
|
108
|
Bamba T, Kanda T, Ohashi M, Hanyu T, Sakamoto K, Ishikawa T, Yajima K, Makino S, Tanabe T, Kosugi SI, Hatakeyama K. [Safety and efficacy of hypotonic CDDP intraperitoneal administration for gastric cancer with peritoneal dissemination]. Gan To Kagaku Ryoho 2005; 32:1695-7. [PMID: 16315912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We examined safety and efficacy of hypotonic CDDP intraperitoneal administration followed by systemic chemotherapy using MTX/5-FU and UFT. Between 1998 and 2004, seven patients who had histologically proven gastric adenocarcinoma with peritoneal metastases underwent palliative gastrectomy at Niigata University Medical Hospital. For residual peritoneal tumors, 100 mg/body of CDDP diluted with distilled water was intraperitoneally administered to the patients before closure of abdominal wall and was drained 30 to 60 minutes after administration. During the postoperative period, a patient suffered from intraperitoneal abscess and another patient had a renal dysfunction with an increasing level of serum Cr (2.1 mg/dl). As adverse effects of the following systemic chemotherapy, three patients had grade 3 anemia and one had grade 3 leukopenia. The median time to progression was 109 days and the median survival time was 248 days. Although intraperitoneal CDDP administration is safe to be carried out intraoperatively, the effect on survival is not better than new anticancer drugs, such as TS-1 and paclitaxel.
Collapse
|
109
|
Defoin L, David C, Le Vern Y, Kerboeuf D, Magistrini M. Hypoosmotic swelling test: a new approach by multi-hypotonic steps. Anim Reprod Sci 2005; 89:219-23. [PMID: 16261684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
110
|
|
111
|
Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl- cotransport, intracellular Cl- and L-type Ca2+ channels. Pflugers Arch 2005; 449:42-55. [PMID: 15293051 DOI: 10.1007/s00424-004-1316-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study elucidates the role of cell volume in contractions of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat aorta. We observed that hyposmotic swelling as well as hyper- and isosmotic shrinkage led to VSMR contractions. Swelling-induced contractions were accompanied by activation of Ca2+ influx and were abolished by nifedipine and verapamil. In contrast, contractions of shrunken cells were insensitive to the presence of L-type channel inhibitors and occurred in the absence of Ca2+ o. Thirty minutes preincubation with bumetanide, a potent Na+, K+, CI- cotransport (NKCC) inhibitor, decreased Cl(-)i content, nifedipine-sensitive 45Ca uptake and contractions triggered by modest depolarization ([K+]o = 36 mM). Elevation of [K+]o to 66 mM completely abolished the effect of bumetanide on these parameters. Bumetanide almost completely abrogated phenylephrine-induced contraction, partially suppressed contractions triggered by hyperosmotic shrinkage, but potentiated contractions of isosmotically shrunken VSMR. Our results suggest that bumetanide suppresses contraction of modestly depolarized cells via NKCC inhibition and Cl(-)i-mediated membrane hyperpolarization, whereas augmented contraction of isosmotically shrunken VSMR by bumetanide is a consequence of suppression of NKCC-mediated regulatory volume increase. The mechanism of bumetanide inhibition of contraction of phenylephrine-treated and hyperosmotically shrunken VSMR should be examined further.
Collapse
|
112
|
Wang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR, Duan D. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes. J Physiol 2005; 568:423-43. [PMID: 16081489 PMCID: PMC1474744 DOI: 10.1113/jphysiol.2005.091264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The K(v)4.2/4.3 channels are the primary subunits that contribute to the fast-inactivating, voltage-dependent transient outward K(+) current (I(to,fast)) in the heart. I(to,fast) is the critical determinant of the early repolarization of the cardiac action potential and plays an important role in the adaptive remodelling of cardiac myocytes, which usually causes cell volume changes, during myocardial ischaemia, hypertrophy and heart failure. It is not known, however, whether I(to,fast) is regulated by cell volume changes. In this study we investigated the molecular mechanism for cell volume regulation of I(to,fast) in native mouse left ventricular myocytes. Hyposmotic cell swelling caused a marked increase in densities of the peak I(to,fast) and a significant shortening in phase 1 repolarization of the action potential duration. The voltage-dependent gating properties of I(to,fast) were, however, not altered by changes in cell volume. In the presence of either protein kinase C (PKC) activator (12,13-dibutyrate) or phosphatase inhibitors (calyculin A and okadaic acid), hyposmotic cell swelling failed to further up-regulate I(to,fast). When expressed in NIH/3T3 cells, both K(v)4.2 and K(v)4.3 channels were also strongly regulated by cell volume in the same voltage-independent but PKC- and phosphatase-dependent manner as seen in I(to,fast) in the native cardiac myocytes. We conclude that K(v)4.2/4.3 channels in the heart are regulated by cell volume through a phosphorylation/dephosphorylation pathway mediated by PKC and serine/threonine phosphatase(s). These findings suggest a novel role of K(v)4.2/4.3 channels in the adaptive electrical and structural remodelling of cardiac myocytes in response to myocardial hypertrophy, ischaemia and reperfusion.
Collapse
|
113
|
Lambert S, Oberwinkler J. Characterization of a proton-activated, outwardly rectifying anion channel. J Physiol 2005; 567:191-213. [PMID: 15961423 PMCID: PMC1474181 DOI: 10.1113/jphysiol.2005.089888] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Anion channels are present in every mammalian cell and serve many different functions, including cell volume regulation, ion transport across epithelia, regulation of membrane potential and vesicular acidification. Here we characterize a proton-activated, outwardly rectifying current endogenously expressed in HEK293 cells. Binding of three to four protons activated the anion permeable channels at external pH below 5.5 (50% activation at pH 5.1). The proton-activated current is strongly outwardly rectifying, due to an outwardly rectifying single channel conductance and an additional voltage dependent facilitation at depolarized membrane potentials. The anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) rapidly and potently inhibited the channel (IC50: 2.9 microm). Flufenamic acid blocked this channel only slowly, while mibefradil and amiloride at high concentrations had no effect. As determined from reversal potential measurements under bi-ionic conditions, the relative permeability sequence of this channel was SCN-> I-> NO3-> Br-> Cl-. None of the previously characterized anion channel matches the properties of the proton-activated, outwardly rectifying channel. Specifically, the proton-activated and the volume-regulated anion channels are two distinct and separable populations of ion channels, each having its own set of biophysical and pharmacological properties. We also demonstrate endogenous proton-activated currents in primary cultured hippocampal astrocytes. The proton-activated current in astrocytes is also carried by anions, strongly outwardly rectifying, voltage dependent and inhibited by DIDS. Proton-activated, outwardly rectifying anion channels therefore may be a broadly expressed part of the anionic channel repertoire of mammalian cells.
Collapse
|
114
|
Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca-Prados M, Barnes S, Kelly ME. Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol 2005; 82:708-18. [PMID: 15674438 DOI: 10.1139/o04-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as I(Cl,swell). Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of I(Cl,swell). Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to I(Cl,swell) following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.
Collapse
|
115
|
Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 2005; 118:2435-40. [PMID: 15923656 DOI: 10.1242/jcs.02372] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight regulation of the cell volume is important for the maintenance of cellular homeostasis. In a hypotonic environment, cells swell owing to osmosis. With many vertebrate cells, swelling is followed by an active reduction of volume, a process called regulatory volume decrease (RVD). A possible participant in RVD is the non-selective cation channel TRPV4, a member of the TRP superfamily that has been shown to react to hypotonic stimuli with a conductance for Ca2+. As a model for cell-volume regulation, we used a human keratinocyte cell line (HaCaT) that produces TRPV4 endogenously. When HaCaT cells were exposed to a hypotonic solution (200 mOsm) maximal swelling was followed by RVD. During swelling and volume regulation, a strong Ca2+ influx was measured. Gd3+, an inhibitor of TRPV4, blocked RVD of HaCaT cells and the accompanying rise of cytosolic Ca2+. To define the role of TRPV4 in volume regulation, a TRPV4-EGFP fusion protein was produced in CHO cells. CHO cells are unable to undergo RVD under hypotonic conditions and do not produce TRPV4 endogenously. Fluorescence imaging revealed that recombinant TRPV4 was localized to the cell membrane. Production of TRPV4 enabled CHO cells to undergo typical RVD after hypo-osmolarity-induced cell swelling. RVD of TRPV4-transfected CHO cells was significantly reduced by Gd3+ treatment or in Ca2+-free solution. Taken together, these results show a direct participation of TRPV4 in RVD.
Collapse
|
116
|
Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Ingham E, Fisher J. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root. THE JOURNAL OF HEART VALVE DISEASE 2005; 14:408-21; discussion 422. [PMID: 15974537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS OF THE STUDY Tissue-engineered heart valves offer the potential to deliver a heart valve replacement that will develop with the young patient. The present authors' approach is to use decellularized aortic heart valves reseeded in vitro or in vivo with the patient's own cells. It has been reported that treatment of porcine aortic valve leaflets with 0.1% (w/v) sodium dodecyl sulfate (SDS) in hypotonic buffer produced complete leaflet acellularity without affecting tissue strength. The present study aim was to investigate the effect of an additional treatment incorporating 1.25% (w/v) trypsin and 0.1% (w/v) SDS on the biomechanics and hydrodynamics of the aortic root. This treatment has been shown to produce decellularization of both the aorta and valve leaflets. METHODS Fresh porcine aortic roots were treated to reduce the thickness of their aortic wall, and incubated in hypotonic buffer for 24 h. The leaflets were masked with agarose gel, and the aorta was treated with 1.25% (w/v) trypsin for 4 h at 37 degrees C. The trypsin and agarose were removed and the roots incubated with 0.1% (w/v) SDS in hypotonic buffer for 24 h. Fresh and treated circumferential and axial aortic specimens were subjected to uniaxial tensile testing, while intact porcine aortic roots were subjected to dilation and pulsatile flow testing. RESULTS Decellularized aortic wall specimens demonstrated significantly decreased elastin phase slope and increased transition strain compared to the fresh control. However, the treatment did not impair tissue strength. Decellularized intact roots presented complete leaflet competence under systemic pressures, increased dilation and effective orifice areas, reduced pressure gradients, physiological leaflet kinematics and reduced leaflet deformation. CONCLUSION The excellent leaflet kinematics and hydrodynamic performance of the decellularized roots, coupled with the excellent biomechanical characteristics of their aortic wall, form a promising platform for the creation of an acellular valve scaffold with adequate mechanical strength and functionality to accommodate dynamic cell repopulation in vitro or in vivo. This approach can be used for both allogeneic and xenogeneic tissue matrices.
Collapse
|
117
|
Blodgett DM, Carruthers A. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport. Biochemistry 2005; 44:2650-60. [PMID: 15709778 DOI: 10.1021/bi048247m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Standard models for carrier-mediated nonelectrolyte transport across cell membranes do not explain sugar uptake by human red blood cells. This means that either (1) the models for sugar transport are incorrect or (2) measurements of sugar transport are flawed. Most measurements of red cell sugar transport have been made over intervals of 10 s or greater, a range which may be too long to measure transport accurately. In the present study, we examine the time course of sugar uptake over intervals as short as 5 ms to periods as long as 8 h. Using conditions where transport by a uniform population of cells is expected to be monophasic (use of subsaturating concentrations of a nonmetabolizable but transported sugar, 3-O-methylglucose), our studies demonstrate that red cell sugar uptake is comprised of three sequential, protein-mediated events (rapid, fast, and slow). The rapid phase is more strongly temperature-dependent than the fast and slow phases. All three phases are inhibited by extracellular (maltose or phloretin) or intracellular (cytochalasin B) sugar-transport inhibitors. The rate constant for the rapid phase of uptake is independent of the 3-O-methylglucose concentration. The magnitude (moles of sugar associated with cells) of the rapid phase increases in a saturable manner with [3-O-methylglucose] and is similar to (1) the amount of sugar that is retained by red cell membrane proteins upon addition of cytochalasin B and phloretin and (2) the d-glucose inhibitable cytochalasin B binding capacity of red cell membranes. These results are consistent with the hypothesis that previous studies have both under- and overestimated the rate of erythrocyte sugar transport. These data support a transport mechanism in which newly bound sugars are transiently sequestered within the translocation pathway where they become inaccessible to extra- and intracellular water.
Collapse
|
118
|
Sue D, Fink D, Wiedmann M, Boor KJ. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. MICROBIOLOGY-SGM 2005; 150:3843-3855. [PMID: 15528669 DOI: 10.1099/mic.0.27257-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes must overcome a variety of stress conditions in the host digestive tract to cause foodborne infections. The alternative sigma factor sigma(B), encoded by sigB, is responsible for regulating transcription of several L. monocytogenes virulence and stress-response genes, including genes that contribute to establishment of gastrointestinal infections. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the virulence genes inlA and bsh, the stress-response genes opuCA and lmo0669 (encoding a carnitine transporter and an oxidoreductase, respectively) and the housekeeping gene rpoB. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting osmotic (0.3 M NaCl) or acid (pH 4.5) conditions typical for the human intestinal lumen. In exponential-phase cells, as well as under osmotic and acid stress, inlA, opuCA and bsh showed significantly lower absolute expression levels in a L. monocytogenes DeltasigB null mutant compared to wild-type. A statistical model that normalized target gene expression relative to rpoB showed that accumulation of inlA, opuCA and bsh transcripts was significantly increased in the wild-type strain within 5 min of acid and osmotic stress exposure; lmo0669 transcript accumulation increased significantly only after acid exposure. It was concluded that sigma(B) is essential for rapid induction of the tested stress-response and virulence genes under conditions typically encountered during gastrointestinal passage. As inlA, bsh and opuCA are critical for gastrointestinal infections in animal models, the data also suggest that sigma(B) contributes to the ability of L. monocytogenes to cause foodborne infections.
Collapse
|
119
|
Fraser JA, Rang CEJ, Usher-Smith JA, Huang CLH. Slow volume transients in amphibian skeletal muscle fibres studied in hypotonic solutions. J Physiol 2005; 564:51-63. [PMID: 15649980 PMCID: PMC1456058 DOI: 10.1113/jphysiol.2004.080911] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2004] [Accepted: 01/10/2005] [Indexed: 12/11/2022] Open
Abstract
The influence of extracellular hypotonicity on the relationship between cell volume (V(c)) and resting membrane potential (E(m)) was investigated in Rana temporaria skeletal muscle. V(c) was measured by confocal microscope imaging of fibres through their transverse (xz) planes, and E(m) was determined using standard microelectrode techniques. Hypotonic solutions first elicited a rapid increase in fibre volume, DeltaV(R+) that fulfilled expectations of simple osmotic behaviour described in earlier reports. However, this was consistently followed by a slow increase in V(c) (DeltaV(S+)) to 10-15% above osmotic predictions. Longer (>1 h) exposures to hypotonic solutions permitted a subsequent slow decrease in V(c) (DeltaV(S-)), the eventual magnitude of which exceeded that of the preceding DeltaV(S+). Restoration of isotonic conditions elicited a prompt recovery in V(c) that matched simple osmotic predictions and thus left a net change in V(c). Such alterations in V(c) attributable to DeltaV(S+) then gradually reversed, while those due to DeltaV(S-) persisted. Both DeltaV(S+) and DeltaV(S-) persisted under conditions of Cl- deprivation. The depolarization of E(m) that accompanied DeltaV(R+) was consistent with dilution of intracellular [K(+)]. E(m) did not significantly alter during the subsequent DeltaV(S) transients. These empirical features of DeltaV(S+) and DeltaV(S-) were analysed using the quantitative charge-difference model of Fraser and Huang, published in 2004. This attributed the DeltaV(S+) to an electroneutral increase in the effective osmotic activity of normally membrane-impermeant intracellular anions. In contrast, the DeltaV(S-) could only be explained by an efflux of such anions and was accordingly comparable to organic anion-dependent regulatory volume decreases reported in other cell types.
Collapse
|
120
|
Reuss R, Ludwig J, Shirakashi R, Ehrhart F, Zimmermann H, Schneider S, Weber MM, Zimmermann U, Schneider H, Sukhorukov VL. Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J Membr Biol 2005; 200:67-81. [PMID: 15520905 DOI: 10.1007/s00232-004-0694-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/21/2004] [Indexed: 10/26/2022]
Abstract
Volume changes of human T-lymphocytes (Jurkat line) exposed to hypotonic carbohydrate-substituted solutions of different composition and osmolality were studied by videomicroscopy. In 200 mOsm media the cells first swelled within 1-2 min and then underwent regulatory volume decrease (RVD) to their original isotonic volume within 10-15 min. RVD also occurred in strongly hypotonic 100 mOsm solutions of di- and trisaccharides (trehalose, sucrose, raffinose). In contrast to oligosaccharide media, 100 mOsm solutions of monomeric carbohydrates (glucose, galactose, inositol and sorbitol) inhibited RVD. The complex volumetric data were analyzed with a membrane transport model that allowed the estimation of the hydraulic conductivity and volume-dependent solute permeabilities. We found that under slightly hypotonic stress (200 mOsm) the cell membrane was impermeable to all carbohydrates studied here. Upon osmolality decrease to 100 mOsm, the membrane permeability to monomeric carbohydrates increased dramatically (apparently due to channel activation caused by extensive cell swelling), whereas oligosaccharide permeability remained very poor. The size-selectivity of the swelling-activated sugar permeation was confirmed by direct chromatographic measurements of intracellular sugars. The results of this study are of interest for biotechnology, where sugars and related compounds are increasingly being used as potential cryo- and lyoprotective agents for preservation of rare and valuable mammalian cells and tissues.
Collapse
|
121
|
Jiang S, Storrie B. Cisternal rab proteins regulate Golgi apparatus redistribution in response to hypotonic stress. Mol Biol Cell 2005; 16:2586-96. [PMID: 15758030 PMCID: PMC1087260 DOI: 10.1091/mbc.e04-10-0861] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We show that a physiological role of the extensively studied cisternal Golgi rab protein, rab6, is modulation of Golgi apparatus response to stress. Taking exposure of cells to hypotonic media as the best-known example of mammalian Golgi stress response, we found that hypotonic-induced tubule extension from the Golgi apparatus was sensitive to GDP-rab6a expression. Similarly, we found that Golgi tubulation induced by brefeldin A, a known microtubule-dependent process, was inhibited by GDP-restricted rab6a, rab6a', and rab33b, the most commonly studied cisternal rab proteins. These GDP-rab levels were sufficient to inhibit rab-induced redistribution of Golgi glycosyltransferases into the endoplasmic reticulum (ER), also a microtubule-dependent process, and to depress Golgi membrane association of the GTP-conformer of rab6. Nocodazole-induced Golgi scattering, a microtubule-independent process, also was inhibited by GDP-rab6a expression. In comparison, we found similar GDP-rab expression levels had little inhibitory effect on another microtubule-independent process, constitutive recycling of Golgi resident proteins to the ER. We conclude that Golgi cisternal rabs, and in particular rab6a, are regulators of the Golgi response to stress and presumably the molecular targets of stress-activated signaling pathway(s). Moreover, we conclude that rab6a can regulate select microtubule-independent processes as well as microtubule-dependent processes.
Collapse
|
122
|
Saravia F, Wallgren M, Nagy S, Johannisson A, Rodríguez-Martínez H. Deep freezing of concentrated boar semen for intra-uterine insemination: effects on sperm viability. Theriogenology 2005; 63:1320-33. [PMID: 15725440 DOI: 10.1016/j.theriogenology.2004.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/23/2022]
Abstract
The use of deep-frozen boar semen for artificial insemination (AI) is constrained by the need for high sperm numbers per dose, yielding few doses per ejaculate. With the advancement of new, intra-uterine insemination strategies, there is an opportunity for freezing small volumes containing high sperm numbers, provided the spermatozoa properly sustain cryopreservation. The present study aimed to concentrate (2 x 10(9) spz/mL) and freeze boar spermatozoa packed in a 0.5 mL volume plastic medium straw (MS) or a multiple FlatPack (MFP) (four 0.7 mL volume segments of a single FlatPack [SFP]) intended as AI doses for intra-uterine AI. A single freezing protocol was used, with a conventional FlatPack (SFP, 5 x 10(9) spz/5 mL volume) as control. Sperm viability post-thaw was monitored as sperm motility (measured by computer-assisted sperm analysis, CASA), as plasma membrane integrity (PMI, assessed either by SYBR-14/PI, combined with flow cytometry, or a rapid hypo-osmotic swelling test [sHOST]). Sperm motility did not differ statistically (NS) between test-packages and control, neither in terms of overall sperm motility (range of means: 37-46%) nor sperm velocity. The percentages of linearly motile spermatozoa were, however, significantly higher in controls (SFP) than in the test packages. Spermatozoa frozen in the SFP (control) and MFP depicted the highest PMI (54 and 49%, respectively) compared to MS (38%, P < 0.05) when assessed with flow cytometry. In absolute numbers, more viable spermatozoa post-thaw were present in the MFP dose than in the MS (P < 0.05). Inter-boar variation was present, albeit only significant for MS (sperm motility) and SFP (PMI). In conclusion, the results indicate that boar spermatozoa can be successfully frozen when concentrated in a small volume.
Collapse
|
123
|
Al-Nakkash L, Iserovich P, Coca-Prados M, Yang H, Reinach PS. Functional and molecular characterization of a volume-activated chloride channel in rabbit corneal epithelial cells. J Membr Biol 2005; 201:41-9. [PMID: 15635811 DOI: 10.1007/s00232-004-0706-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We characterized the functional and molecular properties of a volume-regulated anion channel (VRAC) in SV40-immortalized rabbit corneal epithelial cells (tRCE), since they mediate a robust regulatory volume decrease (RVD) response during exposure to a hypotonic challenge. Whole-cell patch clamp-monitored chloride currents and light-scattering measurements evaluated temporal cell-volume responsiveness to hypoosmotic challenges. Exposure to 200 mOsm medium elicited an outwardly-rectifying current (VACC), which was reversible upon reperfusion with isotonic (300 mOsm) medium. VACC and RVD were chloride-dependent because either chloride removal or application of NPPB (100 microM) suppressed these responses. VACC behavior exhibited voltage-dependent inhibition in the presence of DIDS (500 microM), whereas inhibition by both NPPB (100 microM) and niflumic acid (500 microM) was voltage-independent. VACC was insensitive to glibenclamide (250 microM), verapamil (500 microM) or removal of extracellular calcium. Phorbol dibutyrate, PDBu, (100 nM) had no effect on activated VACC. However, preincubation with PDBu prior to hypotonic challenge prevented VACC and RVD responses as well as prolonged characteristic time. An inactive phorbol ester analogue had no effect on RVD behavior. Moreover, Northern blot analysis verified expression of ClC-3 gene transcripts. The presence of ClC-3 transcripts along with the correspondence between the effects of known ClC-3 inhibitors on VACC and RVD suggest that ClC-3 activation underlies these responses to hypotonic-induced cell swelling.
Collapse
|
124
|
Gutiérrez Millán C, Zarzuelo Castañeda A, Sayalero Marinero ML, Lanao JM. Factors associated with the performance of carrier erythrocytes obtained by hypotonic dialysis. Blood Cells Mol Dis 2005; 33:132-40. [PMID: 15315791 DOI: 10.1016/j.bcmd.2004.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 11/17/2022]
Abstract
Carrier erythrocytes containing drugs, enzymes or peptides can be used as a delivery system that allows changes in the kinetic behaviour and selective biodistribution of the substances encapsulated. Hypotonic dialysis is the method most commonly used in the preparation of carrier erythrocytes, but many factors affect the yield and characteristics of the ghost erythrocytes obtained using this method. This review analyses the factors that affect the performance of carrier erythrocytes prepared by hypotonic dialysis. Factors such as the composition and osmolality range of the hypotonic buffer used, the duration of the hypotonic dialysis, temperature, the volume ratio between the erythrocyte suspension and the dialysis buffer, the inclusion in the process of an annealing phase, the composition and osmolality of the resealing buffer, and the conditions under which the final washing of the erythrocytes is carried out may all affect the morphological properties and the later in vivo behaviour of the ghost erythrocytes obtained. Changes in the yield of the encapsulation process, the in vitro drug or enzyme controlled delivery, the pharmacokinetic properties or the in vivo tissue targeting may be modified depending on the conditions under which the preparation of carrier erythrocytes by hypotonic dialysis is carried out. Chemical alterations to the membrane of carrier erythrocytes obtained by hypotonic dialysis with substances such as glutaraldehyde, band 3 cross-linking reagents, trypsin or NHS-biotin, among others, may affect the release rate of the substances encapsulated and may increase the uptake of cells by macrophages both in vitro and in vivo.
Collapse
|
125
|
Chahine NO, Wang CCB, Hung CT, Ateshian GA. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech 2005; 37:1251-61. [PMID: 15212931 PMCID: PMC2819725 DOI: 10.1016/j.jbiomech.2003.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2003] [Indexed: 11/30/2022]
Abstract
Articular cartilage exhibits complex mechanical properties such as anisotropy, inhomogeneity and tension-compression nonlinearity. This study proposes and demonstrates that the application of compressive loading in the presence of osmotic swelling can be used to acquire a spectrum of incremental cartilage moduli (EYi) and Poisson's ratios (upsilon ij) from tension to compression. Furthermore, the anisotropy of the tissue can be characterized in both tension and compression by conducting these experiments along three mutually perpendicular loading directions: parallel to split-line (1-direction), perpendicular to split-line (2-direction) and along the depth direction (3-direction, perpendicular to articular surface), accounting for tissue inhomogeneity between the surface and deep layers in the latter direction. Tensile moduli were found to be strain-dependent while compressive moduli were nearly constant. The peak tensile (+) Young's moduli in 0.15M NaCl were E+Y1=3.1+/-2.3, E+Y2=1.3+/-0.3, E+Y3(Surface)=0.65+/-0.29 and E+Y3(Deep)=2.1+/-1.2 MPa. The corresponding compressive (-) Young's moduli were E-Y1=0.23+/-0.07, E-Y2=0.22+/-0.07, E-Y3(Surface)=0.18+/-0.07 and E-Y3(Deep)=0.35+/-0.11 MPa. Peak tensile Poisson's ratios were upsilon+12=0.22+/-0.06, upsilon+21=0.13+/-0.07, upsilon+31(Surface)=0.10+/-0.03 and upsilon+31(Deep)=0.20+/-0.05 while compressive Poisson's ratios were upsilon-12=0.027+/-0.012, upsilon-21=0.017+/-0.07, upsilon-31(Surface)=0.034+/-0.009 and upsilon-31(Deep)=0.065+/-0.024. Similar measurements were also performed at 0.015 M and 2 M NaCl, showing strong variations with ionic strength. Results indicate that (a) a smooth transition occurs in the stress-strain and modulus-strain responses between the tensile and compressive regimes, and (b) cartilage exhibits orthotropic symmetry within the framework of tension-compression nonlinearity. The strain-softening behavior of cartilage (the initial decrease in EYi with increasing compressive strain) can be interpreted in the context of osmotic swelling and tension-compression nonlinearity.
Collapse
|