1
|
|
|
48 |
1295 |
2
|
Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Šali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000; 103:525-35. [PMID: 11081638 PMCID: PMC2211528 DOI: 10.1016/s0092-8674(00)00143-4] [Citation(s) in RCA: 1067] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nervous system, the channel is expressed in neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ankyrin Repeat/genetics
- Ankyrin Repeat/physiology
- Brain/cytology
- Brain/metabolism
- Brain/physiology
- CHO Cells
- Calcium Signaling
- Cations/metabolism
- Chickens/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 17/genetics
- Cloning, Molecular
- Cricetinae
- Electrophysiology
- Gene Expression Profiling
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Humans
- Hypotonic Solutions
- In Situ Hybridization
- Ion Channel Gating
- Merkel Cells/chemistry
- Merkel Cells/metabolism
- Mice
- Molecular Sequence Data
- Neurons, Afferent/chemistry
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Osmolar Concentration
- Osmotic Pressure
- Phylogeny
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Radiation Hybrid Mapping
- Rats
- Receptors, Drug/chemistry
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sequence Alignment
Collapse
|
research-article |
25 |
1067 |
3
|
Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 1998; 95:1005-15. [PMID: 9875854 DOI: 10.1016/s0092-8674(00)81724-9] [Citation(s) in RCA: 805] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of cystic fibrosis (CF) airways infection is unknown. Two hypotheses, "hypotonic [low salt]/defensin" and "isotonic volume transport/mucus clearance," attempt to link defects in cystic fibrosis transmembrane conductance regulator-mediated ion transport to CF airways disease. We tested these hypotheses with planar and cylindrical culture models and found no evidence that the liquids lining airway surfaces were hypotonic or that salt concentrations differed between CF and normal cultures. In contrast, CF airway epithelia exhibited abnormally high rates of airway surface liquid absorption, which depleted the periciliary liquid layer and abolished mucus transport. The failure to clear thickened mucus from airway surfaces likely initiates CF airways infection. These data indicate that therapy for CF lung disease should not be directed at modulation of ionic composition, but rather at restoring volume (salt and water) on airway surfaces.
Collapse
|
|
27 |
805 |
4
|
Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 1994; 331:1416-20. [PMID: 7969280 DOI: 10.1056/nejm199411243312104] [Citation(s) in RCA: 759] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Injections of radiocontrast agents are a frequent cause of acute decreases in renal function, occurring most often in patients with chronic renal insufficiency and diabetes mellitus. METHODS We prospectively studied 78 patients with chronic renal insufficiency (mean [+/- SD] serum creatinine concentration, 2.1 +/- 0.6 mg per deciliter [186 +/- 53 mumol per liter]) who underwent cardiac angiography. The patients were randomly assigned to receive 0.45 percent saline alone for 12 hours before and 12 hours after angiography, saline plus mannitol, or saline plus furosemide. The mannitol and furosemide were given just before angiography. Serum creatinine was measured before and for 48 hours after angiography, and urine was collected for 24 hours after angiography. An acute radiocontrast-induced decrease in renal function was defined as an increase in the base-line serum creatinine concentration of at least 0.5 mg per deciliter (44 mumol per liter) within 48 hours after the injection of radiocontrast agents. RESULTS Twenty of the 78 patients (26 percent) had an increase in the serum creatinine concentration of at least 0.5 mg per deciliter after angiography. Among the 28 patients in the saline group, 3 (11 percent) had such an increase in serum creatinine, as compared with 7 of 25 in the mannitol group (28 percent) and 10 of 25 in the furosemide group (40 percent) (P = 0.05). The mean increase in serum creatinine 48 hours after angiography was significantly greater in the furosemide group (P = 0.01) than in the saline group. CONCLUSIONS In patients with chronic renal insufficiency who are undergoing cardiac angiography, hydration with 0.45 percent saline provides better protection against acute decreases in renal function induced by radiocontrast agents than does hydration with 0.45 percent saline plus mannitol or furosemide.
Collapse
|
Clinical Trial |
31 |
759 |
5
|
Canham PB. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 1970; 26:61-81. [PMID: 5411112 DOI: 10.1016/s0022-5193(70)80032-7] [Citation(s) in RCA: 719] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
55 |
719 |
6
|
|
|
52 |
521 |
7
|
|
|
56 |
464 |
8
|
Hungerford DA. Leukocytes cultured from small inocula of whole blood and the preparation of metaphase chromosomes by treatment with hypotonic KCl. STAIN TECHNOLOGY 1965; 40:333-8. [PMID: 5866557 DOI: 10.3109/10520296509116440] [Citation(s) in RCA: 448] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
60 |
448 |
9
|
Dunn FL, Brennan TJ, Nelson AE, Robertson GL. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 1973; 52:3212-9. [PMID: 4750450 PMCID: PMC302597 DOI: 10.1172/jci107521] [Citation(s) in RCA: 442] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A sensitive and specific radioimmunoassay for plasma arginine vasopressin (AVP) has been used to study the effects of blood osmolality and volume in regulating AVP secretion in unanesthetized rats. Under basal conditions, plasma AVP and osmolality were relatively constant, averaging 2.3+/-0.9 (SD) pg/ml and 294+/-1.4 mosmol/kg, respectively. Fluid restriction, which increased osmolality and decreased volume, resulted in a progressive rise in plasma AVP to about 10 times basal levels after 96 h. A 2-3-fold increase in plasma AVP occurred as early as 12 h, when osmolality and volume had each changed by less than 2%. Intraperitoneal injections of hypertonic saline, which had no effect on blood volume, also produced a rise in plasma AVP that was linearly correlated with the rise in osmolality (r > 0.9) and quantitatively similar to that found during fluid restriction (plasma AVP increased 2-4-fold with each 1% increase in osmolality). Intraperitoneal injection of polyethylene glycol, which decreased blood volume without altering osmolality, also increased plasma AVP but this response followed an exponential pattern and did not become significant until volume had decreased by 8% or more. At these levels of hypovolemia, the osmoregulatory system continued to function but showed a lower threshold and increase sensitivity to osmotic stimulation. We conclude that AVP secretion is regulated principally by blood osmolality but that the responsiveness of this mechanism may be significantly altered by modest changes in blood volume.
Collapse
|
research-article |
52 |
442 |
10
|
Grinstein S, Rothstein A, Sarkadi B, Gelfand EW. Responses of lymphocytes to anisotonic media: volume-regulating behavior. THE AMERICAN JOURNAL OF PHYSIOLOGY 1984; 246:C204-15. [PMID: 6367480 DOI: 10.1152/ajpcell.1984.246.3.c204] [Citation(s) in RCA: 370] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The regulatory responses elicited in lymphoid cells suspended in anisotonic media are reviewed. The immediate response approximates osmometric behavior. In addition, in hypotonic media, the initial osmometric swelling is followed by a regulatory volume decrease (RVD), which is associated with KCl loss. The volume-induced effluxes of K+ and Cl- are mediated by two independent conductive pathways. Ca2+-depletion experiments and studies of inhibitor susceptibility suggest that Ca2+ may mediate the activation of the K+ pathway. The responses of the two main lymphocyte subpopulations to hypotonic challenge are different. RVD is much more rapid in T- than in B-cells, regardless of their tissue of origin. Under certain conditions, shrunken lymphocytes will regain their initial volume. This regulatory volume increase (RVI) is due to NaCl uptake, followed by a secondary exchange of Na+ for K+ via the Na+-K+ pump. Na+ is primarily taken up in exchange for H+ through an amiloride-sensitive pathway, whereas Cl- enters in exchange for HCO-3 (or OH-). Anion and cation fluxes responsible for RVI are electroneutral. Some of the volume-sensitive pathways can also be activated in isotonic cells. The conductive K+ pathway is activated by Ca2+ plus ionophore A23187, and the Na+-H+ exchanger can be activated by cytoplasmic acidification. The responses of lymphocytes to anisotonic challenge are compared with those of other cells, and the possible significance of the volume-induced fluxes is discussed.
Collapse
|
Comparative Study |
41 |
370 |
11
|
Perry RP, Kelley DE. Messenger RNA-protein complexes and newly synthesized ribosomal subunits: analysis of free particles and components of polyribosomes. J Mol Biol 1968; 35:37-59. [PMID: 5000315 DOI: 10.1016/s0022-2836(68)80035-x] [Citation(s) in RCA: 363] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
57 |
363 |
12
|
Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 2006; 103:15463-8. [PMID: 17030791 PMCID: PMC1622845 DOI: 10.1073/pnas.0607224103] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemodynamic shear stress stimulates a number of intracellular events that both regulate vessel structure and influence development of vascular pathologies. The precise molecular mechanisms by which endothelial cells transduce this mechanical stimulus into intracellular biochemical response have not been established. Here, we show that mechanical perturbation of the plasma membrane leads to ligand-independent conformational transitions in a G protein-coupled receptor (GPCR). By using time-resolved fluorescence microscopy and GPCR conformation-sensitive FRET we found that stimulation of endothelial cells with fluid shear stress, hypotonic stress, or membrane fluidizing agent leads to a significant increase in activity of bradykinin B2 GPCR in endothelial cells. The GPCR conformational dynamics was detected by monitoring redistribution of GPCRs between inactive and active conformations in a single endothelial cell under fluid shear stress in real time. We show that this response can be blocked by a B(2)-selective antagonist. Our data demonstrate that changes in cell membrane tension and membrane fluidity affect conformational dynamics of GPCRs. Therefore, we suggest that GPCRs are involved in mediating primary mechanochemical signal transduction in endothelial cells. We anticipate our experiments to be a starting point for more sophisticated studies of the effects of changes in lipid bilayer environment on GPCR conformational dynamics. Furthermore, because GPCRs are a major target of drug development, a detailed characterization of mechanochemical signaling via the GPCR pathway will be relevant for the development of new antiatherosclerosis drugs.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
353 |
13
|
Abstract
The several widely different values of the elastic modulus of the human red blood cell membrane which have been reported in the literature are incorporated into a single strain energy function consisting of two terms. One term gives the small stresses and low elastic modulus which is observed when the red cell membrane is deformed at constant area. The second term contributes a large isotropic stress dependent on the change of area. The strain energy function is applied to the process of sphering of red blood cells in a hypotonic solution. It is shown that a nearly perfect sphere can result even though the red blood cell membrane is homogeneous in all areas of the cell. Results pertinent to sieving and micropipette experiments are also explored.
Collapse
|
research-article |
52 |
349 |
14
|
Duan D, Winter C, Cowley S, Hume JR, Horowitz B. Molecular identification of a volume-regulated chloride channel. Nature 1997; 390:417-21. [PMID: 9389484 DOI: 10.1038/37151] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A volume-regulated chloride current (ICl.vol) is ubiquitously present in mammalian cells, and is required for the regulation of electrical activity, cell volume, intracellular pH, immunological responses, cell proliferation and differentiation. However, the molecule responsible for ICl.vol has yet to be determined. Although three putative chloride channel proteins expressed from cloned genes (P-glycoprotein, pICln and ClC-2 ) have been proposed to be the molecular equivalent of ICl.vol, neither P-glycoprotein nor pICln is thought to be a chloride channel or part thereof, and the properties of expressed ClC-2 channels differ from native ICl.vol. Here we report that functional expression in NIH/3T3 cells of a cardiac clone of another member of the ClC family, ClC-3, results in a large basally active chloride conductance, which is strongly modulated by cell volume and exhibits many properties identical to those of ICl.vol in native cells. A mutation of asparagine to lysine at position 579 at the end of the transmembrane domains of ClC-3 abolishes the outward rectification and changes the anion selectivity from I- > Cl- to Cl- > I- but leaves swelling activation intact. Because ClC-3 is a channel protein belonging to a large gene family of chloride channels, these results indicate that ClC-3 encodes ICl.vol in many native mammalian cells.
Collapse
|
|
28 |
348 |
15
|
Blaustein MP, Goldring JM. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol 1975; 247:589-615. [PMID: 49421 PMCID: PMC1309490 DOI: 10.1113/jphysiol.1975.sp010949] [Citation(s) in RCA: 347] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1. Some physiological properties of tissue fractions from rat brain homogenates have been examined. Of the three fractions studied (presynaptic nerve terminals, mitochondria and fragmented membranes), only the nerve terminals (synaptosomes) have the ability to accumulate 42K from physiological salt solutions. 2. The ability to accumulate and retain K is lost if synaptosomes are exposed to very hypotonic solutions. The K uptake and total K content is reduced by ouabain and by inhibitors of glycolysis and oxidative phosphorylation. 3. These results suggest that synaptosomes in physiological saline accumulate K against a concentration gradient, and may have K diffusion potentials across their surface membranes. The voltage-sensitive fluorescent probe, 3,3'-dipentyl 2,2'-oxacarbocyanine (CC5), was used to test this possibility. 4. In the squid axon, the fluorescent emission of CC5 is directly proportional to membrane potential; depolarization causes an increase in fluorescence. 5. The fluorescence of synaptosomes ('synaptosome fluorescence') treated with CC5 is increased when [K]o is increased or [K]o is reduced; replacement of external Na by Li or choline has little effect on the synaptosome fluorescence. In quantitative terms, synaptosome fluorescence is proportional to log ([K]o plus 0-05[Na]o). Rb is about as effective as K in enhancing synaptosome fluorescence; Cs is about 1/4 as effective. The effect of increased [K]o is reversible. 6. The fluorescence data provide corroborative evidence that there is normally a large K gradient ([K]o smaller than [I]i) across the synaptosome surface membrane. The data suggest the [K]i may be in excess of 100 mM. 7. Replacement of Cl- by methylsulphate did not significantly affect the relationship between synaptosome fluorescence and [K]o, nor did removal of external Ca. 8. The fluorescence of CC5-treated mitochondria, membrane fragmnets, or lysed synaptosomes is unaffected by changes in the K concentration of the medium. 9. Veratridine and gramicidin D, both of which enhance Na permeability (PNa) in some intact tissues, increase synaptosome fluorescence when added to the standard medium. The increment is greatly reduced or abolished when external Na is replaced by choline. 10. If synaptosomes are first Na-loaded (by pre-treatment with cyanide + iodoacetate), and then placed in a choline medium, addition of gramicidin D significantly decreases fluorescence. This effect could be explained if, with [Na]o smaller than [Na]i, the increase in PNa causes the synaptosomes to hyperpolarize. 11. The veratridine-induced increase in synaptosome fluorescence was prevented by 3 times 10- minus 7M tetrodotoxin, which also blocks the depolarizing effect of veratridine in intact neurones. 12. The main conclusion is that synaptosomes may retain resting membrane potentials and the ability to increase Na permeability.
Collapse
|
research-article |
50 |
347 |
16
|
Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 2003; 39:497-511. [PMID: 12895423 DOI: 10.1016/s0896-6273(03)00462-8] [Citation(s) in RCA: 343] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We hypothesized that TRPV4, a member of the transient receptor family of ion channels, functions as a sensory transducer for osmotic stimulus-induced nociception. We found that, as expected for a transducer molecule, TRPV4 protein is transported in sensory nerve distally toward the peripheral nerve endings. In vivo single-fiber recordings in rat showed that hypotonic solution activated 54% of C-fibers, an effect enhanced by the hyperalgesic inflammatory mediator prostaglandin E2. This osmotransduction causes nociception, since administration of a small osmotic stimulus into skin sensitized by PGE2 produced pain-related behavior. Antisense-induced decrease in expression of TRPV4 confirmed that the channel is required for hypotonic stimulus-induced nociception. Thus, we conclude that TRPV4 can function as an osmo-transducer in primary afferent nociceptive nerve fibers. Because this action is enhanced by an inflammatory mediator, TRPV4 may be important in pathological states and may be an attractive pharmacological target for the development of novel analgesics.
Collapse
|
|
22 |
343 |
17
|
Gründer S, Thiemann A, Pusch M, Jentsch TJ. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 1992; 360:759-62. [PMID: 1334533 DOI: 10.1038/360759a0] [Citation(s) in RCA: 318] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulation of cell volume is essential for every cell and is accomplished by the regulated loss or gain of intracellular ions or other osmolytes. Regulatory volume decrease often involves the parallel activation of potassium and chloride channels. Overexpression of P-glycoprotein leads to volume-activated Cl- currents but its physiological importance for volume regulation is unclear. CIC-2 is a ubiquitously expressed Cl- channel activatable by non-physiologically strong hyperpolarization. We now show that CIC-2 can be activated by extracellular hypotonicity, which suggests that it has a widespread role in volume regulation. Domains necessary for activation by both voltage and volume are localized to the amino terminus. Mutations in an 'essential' region lead to constitutively open channels unresponsive to medium tonicity, whereas deletions in a 'modulating' region produce partially opened channels responsive to both hypo- and hypertonicity. These domains can be transplanted to different regions of the protein without loss of function.
Collapse
|
|
33 |
318 |
18
|
Payne JA. Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol Cell Physiol 1997; 273:C1516-25. [PMID: 9374636 DOI: 10.1152/ajpcell.1997.273.5.c1516] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neuronal K-Cl cotransporter isoform (KCC2) was functionally expressed in human embryonic kidney (HEK-293) cell lines. Two stably transfected HEK-293 cell lines were prepared: one expressing an epitope-tagged KCC2 (KCC2-22T) and another expressing the unaltered KCC2 (KCC2-9). The KCC2-22T cells produced a glycoprotein of approximately 150 kDa that was absent from HEK-293 control cells. The 86Rb influx in both cell lines was significantly greater than untransfected control HEK-293 cells. The KCC2-9 cells displayed a constitutively active 86Rb influx that could be increased further by 1 mM N-ethylmaleimide (NEM) but not by cell swelling. Both furosemide [inhibition constant (Ki) approximately 25 microM] and bumetanide (Ki approximately 55 microM) inhibited the NEM-stimulated 86Rb influx in the KCC2-9 cells. This diuretic-sensitive 86Rb influx in the KCC2-9 cells, operationally defined as KCC2 mediated, required external Cl- but not external Na+ and exhibited a high apparent affinity for external Rb+(K+) [Michaelis constant (Km) = 5.2 +/- 0.9 (SE) mM; n = 5] but a low apparent affinity for external Cl- (Km > 50 mM). On the basis of thermodynamic considerations as well as the unique kinetic properties of the KCC2 isoform, it is hypothesized that KCC2 may serve a dual function in neurons: 1) the maintenance of low intracellular Cl- concentration so as to allow Cl- influx via ligand-gated Cl- channels and 2) the buffering of external K+ concentration ([K+]o) in the brain.
Collapse
|
|
28 |
291 |
19
|
Abstract
When membrane-attached beads are pulled vertically by a laser tweezers, a membrane tube of constant diameter (tether) is formed. We found that the force on the bead (tether force) did not depend on tether length over a wide range of tether lengths, which indicates that a previously unidentified reservoir of membrane and not stretch of the plasma membrane provides the tether membrane. Plots of tether force vs. tether length have an initial phase, an elongation phase, and an exponential phase. During the major elongation phase, tether force is constant, buffered by the "membrane reservoir." Finally, there is an abrupt exponential rise in force that brings the tether out of the trap, indicating depletion of the membrane reservoir. In chick embryo fibroblasts and 3T3 fibroblasts, the maximum tether lengths that can be pulled at a velocity of 4 microm/s are 5.1 +/- 0. 3 and 5.0 +/- 0.2 microm, respectively. To examine the importance of the actin cytoskeleton, we treated cells with cytochalasin B or D and found that the tether lengths increased dramatically to 13.8 +/- 0.8 and 12.0 +/- 0.7 microm, respectively. Similarly, treatment of the cells with colchicine and nocodazole results in more than a twofold increase in tether length. We found that elevation of membrane tension (through osmotic pressure, a long-term elevation of tether force, or a number of transitory increases) increased reservoir size over the whole cell. Using a tracking system to hold tether force on the bead constant near its maximal length in the exponential phase, the rate of elongation of the tethers was measured as a function of tether force (membrane tension). The rate of elongation of tethers was linearly dependent on the tether force and reflected an increase in size of the reservoir. Increases in the reservoir caused by tension increases on one side of the cell caused increases in reservoir size on the other side of the cell. Thus, we suggest that cells maintain a plasma membrane reservoir to buffer against changes in membrane tension and that the reservoir is increased with membrane tension or disruption of the cytoskeleton.
Collapse
|
research-article |
26 |
280 |
20
|
Okada CY, Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 1982; 29:33-41. [PMID: 6179631 DOI: 10.1016/0092-8674(82)90087-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have developed a new procedure for introducing macromolecules into cultured mammalian cells based on osmotic lysis of pinocytic vesicles. Cells are first incubated in culture medium containing 0.5 M sucrose, 10% polyethylene glycol 1000 and the macromolecule to be transferred. Cells are then placed in medium diluted with 0.66 parts water. Most pinocytic vesicles formed in the presence of sucrose burst in hypotonic medium, thereby releasing the enclosed macromolecule. L929 cells remain fully viable after a single hypertonic sucrose treatment, and a majority survives four successive rounds of osmotic lysis. This procedure, termed osmotic lysis of pinosomes, has been used to transfer substantial amounts of horseradish peroxidase, antiricin antibodies and dextran 70,000 into the cytosol of L929 cells. Direct comparison of the degree of ricin resistance conferred by transfer of antiricin antibodies revealed pinosome lysis to be equal, if not superior, to injection mediated by red blood cells.
Collapse
|
|
43 |
277 |
21
|
Waldegger S, Barth P, Raber G, Lang F. Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A 1997; 94:4440-5. [PMID: 9114008 PMCID: PMC20741 DOI: 10.1073/pnas.94.9.4440] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatic metabolism and gene expression are among other regulatory mechanisms controlled by the cellular hydration state, which changes rapidly in response to anisotonicity, concentrative substrate uptake, oxidative stress, and under the influence of hormones such as insulin and glucagon. Differential screening for cell volume sensitive transcripts in a human hepatoma cell line revealed a gene for a putative serine/threonine kinase, h-sgk, which has 98% sequence identity to a serum- and glucocorticoid regulated kinase, sgk, cloned from a rat mammary tumor cell line. h-sgk transcript levels were strongly altered during anisotonic and isotonic cell volume changes. Within 30 min h-sgk RNA was, independent of de novo protein synthesis, induced upon cell shrinkage and, due to a complete stop in h-sgk transcription, reduced upon cell swelling. Comparable changes of sgk transcript levels were observed in a renal epithelial cell line. h-sgk mRNA was detected in all human tissues tested, with the highest levels in pancreas, liver, and heart. The putative serine/threonine protein kinase h-sgk may provide a functional link between the cellular hydration state and metabolic control.
Collapse
|
research-article |
28 |
274 |
22
|
Wang Y, Roman R, Lidofsky SD, Fitz JG. Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci U S A 1996; 93:12020-5. [PMID: 8876255 PMCID: PMC38176 DOI: 10.1073/pnas.93.21.12020] [Citation(s) in RCA: 271] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.
Collapse
|
research-article |
29 |
271 |
23
|
Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 2004; 24:4444-52. [PMID: 15128858 PMCID: PMC6729449 DOI: 10.1523/jneurosci.0242-04.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of treatments for neuropathic pain has been hindered by our limited understanding of the basic mechanisms underlying abnormalities in nociceptor hyperexcitability. We recently showed that the polymodal receptor transient receptor potential vanilloid 4 (TRPV4), a member of the transient receptor potential (TRP) family of ion channels, may play a role in inflammatory pain (Alessandri-Haber et al., 2003). The present study tested whether TRVP4 also contributes to neuropathic pain, using a rat model of Taxol-induced painful peripheral neuropathy. Taxol is the most widely used drug for the treatment of a variety of tumor types, but the dose of Taxol that can be tolerated is limited by the development of a small-fiber painful peripheral neuropathy. We found that Taxol treatment enhanced the nociceptive behavioral responses to both mechanical and hypotonic stimulation of the hind paw. Spinal administration of antisense oligodeoxynucleotides to TRPV4, which reduced the expression of TRPV4 in sensory nerve, abolished Taxol-induced mechanical hyperalgesia and attenuated hypotonic hyperalgesia by 42%. The enhancement of osmotic nociception involves sensitization of osmotransduction in primary afferents because osmotransduction was enhanced in cultured sensory neurons isolated from Taxol-treated rats. Taxol-induced TRPV4-mediated hyperalgesia and the enhanced osmotransduction in cultured nociceptors were dependent on integrin/Src tyrosine kinase signaling. These results suggest that TRPV4 plays a crucial role in a painful peripheral neuropathy, making it a very promising target for the development of a novel class of analgesics.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
252 |
24
|
Andrew RD, MacVicar BA. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 1994; 62:371-83. [PMID: 7830884 DOI: 10.1016/0306-4522(94)90372-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain cell swelling is a consequence of seizure, ischemia or excitotoxicity. Changes in light reflectance from cortical surface are now used to monitor brain activity but these intrinsic signals are poorly understood. The objectives of this study were first, to show that changes in light transmittance were correlated with cell volume and second, to image increases in light transmittance as they related to neuronal activation. Transverse hippocampal slices from the rat were used for the study. Brief exposure (4-6 min) to hypo-osmotic artificial cerebrospinal fluid (-40 mOsm) elevated light transmittance consistently and reversibly in most regions of the slice and particularly in CA1 dendritic regions. Neither zero-Ca2+ artificial cerebrospinal fluid nor tetrodotoxin altered the transmittance increase and its subsequent reversal, suggesting that it was dependent on osmolality but independent of synaptic transmission and neuronal firing. The amplitude of the CA1 population spike evoked from Schaffer collaterals increased concomitantly with the hypo-osmotic increase in light transmittance, providing evidence that the extracellular tissue resistance increased. Hyper-osmotic artificial cerebrospinal fluid (+40 mOsm) containing impermeant mannitol consistently lowered light transmittance and the amplitude of the population spike. Glycerol (+40 mOsm), which is cell permeant, did not have an affect. Taken together these observations indicate that osmotic challenge alters light transmittance by inducing changes in cell volume. Transmittance increases induced by hypo-osmotic artificial cerebrospinal fluid or 10 microM kainate were small in the CA1 cell body region compared to dendritic regions. Similarly, orthodromic stimulation of axons terminating in stratum oriens or in stratum radiatum evoked transmittance increases only in their respective postsynaptic areas. In contrast, the cell body region and its adjacent proximal-apical dendrites (both sites of action potential initiation) could display dramatic increases in light transmittance upon brief exposure to 20 mM K+. The response, which may represent neuronal damage, was blocked in tetrodotoxin. Antidromic stimulation evoked a weak response in these same proximal areas. We conclude that activity-dependent increases in light transmittance across brain slices primarily reveal glial and neuronal swelling associated with excitatory synaptic input and action potential discharge. The signal can be imaged in real time to reveal neuronal activation, not only among hippocampal areas, but among neuronal regions. Cell swelling is a known consequence of excessive neuronal discharge. Therefore, the imaging of changes in light transmittance across brain slices should prove useful in monitoring epileptiform and excitotoxic states.
Collapse
|
Comparative Study |
31 |
246 |
25
|
Abstract
We demonstrated that beta-glucosidase and beta-galactosidase can be trapped inside erythrocytes by rapid hemolysis of the cell in the presence of these enzymes. Enzyme enters only during hemolysis, and optimum uptake occurs within 60 sec. There is no loss in cell number after hemolysis-induced enzyme uptake, and the ghosts have only a slightly increased mean cell volume. Smaller proteins enter more readily than larger proteins, although enzymes with a molecular weight of at least 180,000 can be readily entrapped by erythrocytes. This finding may provide a useful approach to the problem of enzyme replacement in certain diseases, including Gaucher's disease.
Collapse
|
research-article |
52 |
224 |