126
|
Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Khatri P, Tomsick T, Sharp FR. Mechanical reperfusion is associated with post-ischemic hemorrhage in rat brain. Exp Neurol 2009; 216:407-12. [PMID: 19162014 DOI: 10.1016/j.expneurol.2008.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/21/2008] [Accepted: 12/19/2008] [Indexed: 01/26/2023]
Abstract
A major complication of recanalization therapy after an acute arterial occlusion in brain is hemorrhagic transformation (HT). Although it is known that prolonged ischemia is important in the development of HT, the role of reperfusion in ischemia-reperfusion induced HT is less well studied. To address the effect of reperfusion on HT, we assessed the incidence and severity of hemorrhage in rats after 5 h of middle cerebral artery occlusion (MCAO) followed by 19-hour reperfusion compared to rats with permanent occlusion (PMCAO) at the same 24-hour time point. The incidence and amount of hemorrhage, neurological function, and mortality rates were measured. MCAO (5 h) with 19-hour reperfusion was associated with a significantly higher incidence of cortical hemorrhage compared to PMCAO (81.8% vs 18.2%, p<0.05). Hemorrhage scores were higher in the 5-hour MCAO/reperfusion group compared to PMCAO rats (17.6+/-11.5 vs 2.4+/-5.3 in cortex, 20.4+/-4.6 vs 9.7+/-4.5 in striatum, p<0.01). Neurological function was worse in the ischemia-reperfusion group compared to PMCAO (p<0.05) and mortality rates were insignificantly higher in the 5-hour MCAO/reperfusion group vs PMCAO group (54.5% vs 18.1%; p<0.08). The results suggest that reperfusion after prolonged ischemia is associated with increased hemorrhagic transformation and neurological deterioration as compared to permanent ischemia. Whether pharmacological treatments prior to reperfusion attenuate post-ischemic HT requires further study.
Collapse
|
127
|
Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009; 23:124-33. [PMID: 18762240 PMCID: PMC2636576 DOI: 10.1016/j.bbi.2008.08.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/02/2008] [Accepted: 08/06/2008] [Indexed: 11/20/2022] Open
Abstract
Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNgamma) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNgamma in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.
Collapse
|
128
|
Walker WL, Liao IH, Gilbert DL, Wong B, Pollard KS, McCulloch CE, Lit L, Sharp FR. Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients. BMC Genomics 2008; 9:494. [PMID: 18937867 PMCID: PMC2576259 DOI: 10.1186/1471-2164-9-494] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022] Open
Abstract
Background Non-biological experimental error routinely occurs in microarray data collected in different batches. It is often impossible to compare groups of samples from independent experiments because batch effects confound true gene expression differences. Existing methods can correct for batch effects only when samples from all biological groups are represented in every batch. Results In this report we describe a generalized empirical Bayes approach to correct for cross-experimental batch effects, allowing direct comparisons of gene expression between biological groups from independent experiments. The proposed experimental design uses identical reference samples in each batch in every experiment. These reference samples are from the same tissue as the experimental samples. This design with tissue matched reference samples allows a gene-by-gene correction to be performed using fewer arrays than currently available methods. We examine the effects of non-biological variation within a single experiment and between experiments. Conclusion Batch correction has a significant impact on which genes are identified as differentially regulated. Using this method, gene expression in the blood of patients with Duchenne Muscular Dystrophy is shown to differ for hundreds of genes when compared to controls. The numbers of specific genes differ depending upon whether between experiment and/or between batch corrections are performed.
Collapse
|
129
|
Zhan X, Kim C, Sharp FR. Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res 2008; 1234:183-97. [PMID: 18708034 DOI: 10.1016/j.brainres.2008.07.094] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/29/2022]
Abstract
This study examined very brief focal ischemia that simulates transient ischemic attacks (TIAs) that occur in humans. Adult rats were subjected to sham operations or 5 min, 10 min, or 2 h of middle cerebral artery (MCA) ischemia using the suture (thread) model. Hsp70 protein was induced 24 h, 48 h and 72 h later in neurons throughout the entire MCA territory in many but not all animals. Following 5- and 10-minute MCA occlusions, 9 of 32 animals (28%) had microinfarcts mostly in dorsal lateral striatum. Uncommon Hsp70 stained intracellular cytoplasmic inclusions, some of which co-localized with activated caspase-3, were detected in microglia, macrophages, astrocytes and oligodendrocytes. Hsp70 stained neurons were TUNEL negative at 24 h and 48 h whereas some Hsp70 stained neurons were TUNEL positive at 72 h after reperfusion. Hsp70 positive, activated "bushy" microglia and Hsp70 negative, activated "polarized" or rod-shaped microglia were located outside of the microinfarcts. Thus, experimental focal ischemia simulating TIAs can: induce Hsp70 protein throughout the ischemic vessel territory; produce Hsp70 protein positive glial inclusions; activate Hsp70 positive and negative microglia; and cause microinfarcts in some animals.
Collapse
|
130
|
Xu H, Tang Y, Liu DZ, Ran R, Ander BP, Apperson M, Liu XS, Khoury JC, Gregg JP, Pancioli A, Jauch EC, Wagner KR, Verro P, Broderick JP, Sharp FR. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab 2008; 28:1320-8. [PMID: 18382470 DOI: 10.1038/jcbfm.2008.22] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are no biomarkers that differentiate cardioembolic from large-vessel atherosclerotic stroke, although the treatments differ for each and approximately 30% of strokes and transient ischemic attacks have undetermined etiologies using current clinical criteria. We aimed to define gene expression profiles in blood that differentiate cardioembolic from large-vessel atherosclerotic stroke. Peripheral blood samples were obtained from healthy controls and acute ischemic stroke patients (<3, 5, and 24 h). RNA was purified, labeled, and applied to Affymetrix Human U133 Plus 2.0 Arrays. Expression profiles in the blood of cardioembolic stroke patients are distinctive from those of large-vessel atherosclerotic stroke patients. Seventy-seven genes differ at least 1.5-fold between them, and a minimum number of 23 genes differentiate the two types of stroke with at least 95.2% specificity and 95.2% sensitivity for each. Genes regulated in large-vessel atherosclerotic stroke are expressed in platelets and monocytes and modulate hemostasis. Genes regulated in cardioembolic stroke are expressed in neutrophils and modulate immune responses to infectious stimuli. This new method can be used to predict whether a stroke of unknown etiology was because of cardioembolism or large-vessel atherosclerosis that would lead to different therapy. These results have wide ranging implications for similar disorders.
Collapse
|
131
|
Liu DZ, Cheng XY, Ander BP, Xu H, Davis RR, Gregg JP, Sharp FR. Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons. Neurobiol Dis 2008; 30:201-11. [PMID: 18343677 DOI: 10.1016/j.nbd.2008.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/24/2007] [Accepted: 01/19/2008] [Indexed: 10/22/2022] Open
Abstract
Since Src kinase inhibitors decrease brain injury produced by intracerebral hemorrhage (ICH) and thrombin is activated following ICH, this study determined whether Src kinase inhibitors decrease thrombin-induced brain injury. Thrombin injections into adult rat striatum produced focal infarction and motor deficits. The Src kinase inhibitor PP2 decreased thrombin-induced Src activation, infarction in striatum and motor deficits in vivo. Thrombin applied to cultured post-mitotic striatal neurons caused: injury to axons and dendrites; many TUNEL positive neuronal nuclei; and re-entry into the cell cycle as manifested by cyclin D1 expression, induction of several other cell cycle genes and cyclin-dependent kinase 4 activation. PP2 dose-dependently attenuated thrombin-induced injury to the cultured neurons; and attenuated thrombin-induced neuronal cell cycle re-entry. These results are consistent with the hypotheses that Src kinase inhibitors decrease injury produced by ICH by decreasing thrombin activation of Src kinases and, at least in part, by decreasing Src induced cell cycle re-entry.
Collapse
|
132
|
Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Ran R, Khatri P, Tomsick T, Sharp FR. Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp Neurol 2007; 210:549-59. [PMID: 18187134 DOI: 10.1016/j.expneurol.2007.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/31/2007] [Accepted: 12/04/2007] [Indexed: 12/17/2022]
Abstract
In this study, we examine the effects of reperfusion on the activation of matrix metalloproteinase (MMP) and assess the relationship between MMP activation during reperfusion and neurovascular injury. Ischemia was produced using suture-induced middle cerebral artery occlusion in rats. The MMP activation was examined with in situ and gel zymography. Injury to cerebral endothelial cells and basal lamina was assessed using endothelial barrier antigen (EBA) and collagen IV immunohistochemistry. Injury to neurons and glial cells was assessed using Cresyl violet staining. These were examined at 3 h after reperfusion (8 h after initiation of ischemia) and compared with permanent ischemia at the same time points to assess the effects of reperfusion. A broad-spectrum MMP inhibitor, AHA (p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala-hydroxamate, 50 mg/kg intravenously) was administered 30 min before reperfusion to assess the roles of MMPs in activating gelatinolytic enzymes and in reperfusion-induced injury. We found that reperfusion accelerated and potentiated MMP-9 and MMP-2 activation and injury to EBA and collagen IV immunopositive microvasculature and to neurons and glial cells in ischemic cortex and striatum relative to permanent ischemia. Administering AHA 30 min before reperfusion decreased MMP-9 activation and neurovascular injury in ischemic cerebral cortex.
Collapse
|
133
|
Gregg JP, Lit L, Baron CA, Hertz-Picciotto I, Walker W, Davis RA, Croen LA, Ozonoff S, Hansen R, Pessah IN, Sharp FR. Gene expression changes in children with autism. Genomics 2007; 91:22-9. [PMID: 18006270 DOI: 10.1016/j.ygeno.2007.09.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/11/2007] [Accepted: 09/15/2007] [Indexed: 01/30/2023]
Abstract
The objective of this study was to identify gene expression differences in blood differences in children with autism (AU) and autism spectrum disorder (ASD) compared to general population controls. Transcriptional profiles were compared with age- and gender-matched, typically developing children from the general population (GP). The AU group was subdivided based on a history of developmental regression (A-R) or a history of early onset (A-E without regression). Total RNA from blood was processed on human Affymetrix microarrays. Thirty-five children with AU (17 with early onset autism and 18 with autism with regression) and 14 ASD children (who did not meet criteria for AU) were compared to 12 GP children. Unpaired t tests (corrected for multiple comparisons with a false discovery rate of 0.05) detected a number of genes that were regulated more than 1.5-fold for AU versus GP (n=55 genes), for A-E versus GP (n=140 genes), for A-R versus GP (n=20 genes), and for A-R versus A-E (n=494 genes). No genes were significantly regulated for ASD versus GP. There were 11 genes shared between the comparisons of all autism subgroups to GP (AU, A-E, and A-R versus GP) and these genes were all expressed in natural killer cells and many belonged to the KEGG natural killer cytotoxicity pathway (p=0.02). A subset of these genes (n=7) was tested with qRT-PCR and all genes were found to be differentially expressed (p<0.05). We conclude that the gene expression data support emerging evidence for abnormalities in peripheral blood leukocytes in autism that could represent a genetic and/or environmental predisposition to the disorder.
Collapse
|
134
|
Lit L, Gilbert DL, Walker W, Sharp FR. A subgroup of Tourette's patients overexpress specific natural killer cell genes in blood: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:958-63. [PMID: 17503477 DOI: 10.1002/ajmg.b.30550] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gilles de la Tourette Syndrome (TS) is a heritable, neurodevelopmental disorder characterized by motor and vocal tics. As no single gene or region has emerged from standard linkage approaches, TS may result from several as-yet-unidentified genetic factors, and may also occur due to infection-triggered, autoimmune processes. Etiological or pathogenic differences might result in clinically indistinguishable TS subgroups. We have previously used whole genome human oligonucleotide microarrays in an attempt to identify patterns of gene expression in blood linked with TS. In this proof-of-principle study, we applied Principal Components Analysis to a previously collected set of 16 familial TS and 16 control blood samples to identify subgroups. Fourteen genes, primarily Natural Killer Cell (NK) genes, discriminated between TS and all controls. Granzyme B and NKG7 were confirmed using RT-PCR. Five probesets (four genes) reside in chromosomal regions previously linked to familial TS or obsessive-compulsive disorder. Using the 14 genes, a Principal Components Analysis as well as a cluster analysis identified a TS subgroup (n = 10/16) that overexpressed the NK genes. 7/10 subjects within this subgroup were diagnosed with attention-deficit hyperactivity disorder (ADHD), suggesting that this expression profile might be associated with TS and co-morbid ADHD. Principal Components Analysis of gene expression in blood may be useful for identifying subgroups of other complex neurodevelopmental diseases, and the gene expression profile identified in this study may provide a biomarker for at least one subgroup of heritable TS.
Collapse
|
135
|
Ran R, Pan R, Lu A, Xu H, Davis RR, Sharp FR. A novel 165-kDa Golgin protein induced by brain ischemia and phosphorylated by Akt protects against apoptosis. Mol Cell Neurosci 2007; 36:392-407. [PMID: 17888676 DOI: 10.1016/j.mcn.2007.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/18/2007] [Accepted: 07/30/2007] [Indexed: 01/02/2023] Open
Abstract
A cDNA encoding a novel protein was cloned from ischemic rat brain and found to be homologous to testis Mea-2 Golgi-associated protein (Golga3). The sequence predicted a 165-kDa protein, and in vitro translated protein exhibited a molecular mass of 165-170 kDa. Because brain ischemia induced the mRNA, and the protein localized to the Golgi apparatus, this protein was designated Ischemia-Inducible Golgin Protein 165 (IIGP165). In HeLa cells, serum and glucose deprivation-induced caspase-dependent cleavage of the IIGP165 protein, after which the IIGP165 fragments translocated to the nucleus. The C-terminus of IIGP165, which contains a LXXLL motif, appears to function as a transcriptional co-regulator. Akt co-localizes with IIGP165 protein in the Golgi in vivo, and phosphorylates IIGP165 on serine residues 345 and 134. Though transfection of IIGP165 cDNA alone does not protect HeLa cells from serum deprivation or Brefeldin-A-triggered cell death, co-transfection of both Akt and IIGP165 cDNA or combined IIGP165-transfection with PDGF treatment significantly protects HeLa cells better than either treatment alone. These data show that Akt phosphorylation of IIGP165 protects against apoptotic cell death, and add to evidence that the Golgi apparatus also plays a role in regulating apoptosis.
Collapse
|
136
|
Sharp FR, Hendren RL. Psychosis: atypical limbic epilepsy versus limbic hyperexcitability with onset at puberty? Epilepsy Behav 2007; 10:515-20. [PMID: 17416210 PMCID: PMC2680611 DOI: 10.1016/j.yebeh.2007.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/18/2007] [Accepted: 02/22/2007] [Indexed: 11/20/2022]
Abstract
Phencyclidine (PCP), ketamine (Special K), and MK-801 are noncompetitive N-methyl-d-aspartate (NMDA) antagonists that produce acute psychosis in humans. The psychosis produced by these psychomimetic drugs is indistinguishable from schizophrenia and includes both positive and negative symptoms. This drug-induced psychosis occurs after puberty in humans. On the basis of the MK-801-induced spike-and-wave activity in rats and increased blood flow and metabolism in brain of patients with psychosis caused by these psychomimetics, this brief review argues that this psychosis is an atypical form of limbic epilepsy. Moreover, there is a specific limbic thalamcortical psychosis circuit that mediates cell injury in limbic cortex of rodents and may mediate this PCP-induced psychosis in humans. It is proposed that this thalamocortical psychosis circuit develops at puberty and can mediate PCP and ketamine-mediated psychosis and possibly the psychosis of schizophrenia, bipolar disease and other disorders that have their onset at puberty. Finally, based on this developmentally regulated psychosis/epilepsy-related thalamocortical circuitry, it is proposed that antiepileptic drugs that promote GABAergic mechanisms may decrease the probability of episodic psychosis from any cause.
Collapse
|
137
|
Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 2007; 38:1621-5. [PMID: 17395859 DOI: 10.1161/strokeaha.106.478966] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The mechanisms by which intracerebral hemorrhages produce changes of blood flow and metabolism, cell death, and behavioral abnormalities are complex. In this study, we begin to test the hypothesis that intracerebral hemorrhage activates Src kinases that phosphorylate other molecules to produce cell injury and behavioral deficits after intracerebral hemorrhage (ICH). METHODS ICH was produced in adult Sprague Dawley rats by direct injection of autologous blood (50 microL) into striatum. Src kinase activity, glucose hypermetabolic areas around the ICH, TUNEL-stained cells, and apomorphine-induced rotational behaviors were assessed in animals with ICH pretreated with the Src kinase inhibitor, PP1, or with vehicle. RESULTS PP1 (3 mg/kg) blocked increases of Src kinase activity (5-fold) at 3 hours after ICH. PP1 also blocked the areas of glucose hypermetabolism and decreased the numbers of TUNEL-stained cells surrounding the ICH at 24 hours. Finally, apomorphine-induced (1 mg/kg) rotation at 24 hours after ICH was markedly attenuated by previous treatment with PP1 (3 mg/kg intraperitoneal). CONCLUSIONS PP1 decreases Src kinase activation, glucose metabolic activation, cell death, and behavioral abnormalities after ICH in striatum of adult rats. It is hypothesized that intracerebral hemorrhage, possibly via thrombin activation of protease-activated receptors, activates Src that phosphorylates NMDA receptors, matrix metalloproteinases, and other proteins that mediate injury after ICH.
Collapse
|
138
|
Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, Rocke DM, Sharp FR. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 2007; 12:292-306. [PMID: 17189958 DOI: 10.1038/sj.mp.4001943] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern methods that use systematic, quantitative and unbiased approaches are making it possible to discover proteins altered by a disease. To identify proteins that might be differentially expressed in autism, serum proteins from blood were subjected to trypsin digestion followed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) on time-of-flight (TOF) instruments to identify differentially expressed peptides. Children with autism 4-6 years of age (n=69) were compared to typically developing children (n=35) with similar age and gender distributions. A total of 6348 peptide components were quantified. Of these, five peptide components corresponding to four known proteins had an effect size >0.99 with a P<0.05 and a Mascot identification score of 30 or greater for autism compared to controls. The four proteins were: Apolipoprotein (apo) B-100, Complement Factor H Related Protein (FHR1), Complement C1q and Fibronectin 1 (FN1). In addition, apo B-100 and apo A-IV were higher in children with high compared to low functioning autism. Apos are involved in the transport of lipids, cholesterol and vitamin E. The complement system is involved in the lysis and removal of infectious organisms in blood, and may be involved in cellular apoptosis in brain. Despite limitations of the study, including the low fold changes and variable detection rates for the peptide components, the data support possible differences of circulating proteins in autism, and should help stimulate the continued search for causes and treatments of autism by examining peripheral blood.
Collapse
|
139
|
Abstract
These studies show that gene expression changes in most patients by 2 to 3 hours after ischemic stroke, and in all patients studied by 24 hours.
Collapse
|
140
|
Sharp FR, Xu H, Lit L, Walker W, Apperson M, Gilbert DL, Glauser TA, Wong B, Hershey A, Liu DZ, Pinter J, Zhan X, Liu X, Ran R. The future of genomic profiling of neurological diseases using blood. ACTA ACUST UNITED AC 2006; 63:1529-36. [PMID: 17101821 DOI: 10.1001/archneur.63.11.1529] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sequencing of the human genome and new microarray technology make it possible to assess all genes on a single chip or array. Recent studies show different patterns of gene expression related to different tissues and diseases, and these patterns of gene expression are beginning to be used for diagnosis and treatment decisions in various types of lymphoid and solid malignancies. Because of obvious problems obtaining brain tissue, progress in genomics of neurological diseases has been slow. To address this, we demonstrated that different types of acute injury in rodent brain produced different patterns of gene expression in peripheral blood. These animal studies have now been extended to human studies. Two groups have shown that there are specific genomic profiles in the blood of patients after ischemic stroke that are highly sensitive and specific for predicting stroke. Other recent studies demonstrate specific genomic profiles in the blood of patients with Down syndrome, neurofibromatosis, tuberous sclerosis, Huntington disease, multiple sclerosis, Tourette syndrome, and others. In addition, data demonstrate specific profiles of gene expression in the blood related to different drugs, toxins, and infections. Although all of these studies are still preliminary basic scientific endeavors, they suggest that this approach will have clinical applications to neurological diseases in humans.
Collapse
|
141
|
Sharp FR, Lit L, Xu H, Apperson M, Walker W, Wong B, Gilbert DL, Hershey A, Glauser TA. Genomics of brain and blood: progress and pitfalls. Epilepsia 2006; 47:1603-7. [PMID: 17054680 DOI: 10.1111/j.1528-1167.2006.00809.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gene expression profiles in brain and blood of animals and humans can be useful for diagnosis, prognosis, and treatment of epilepsy. This article reviews recent progress and prospects for the future.
Collapse
|
142
|
Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006; 26:1223-33. [PMID: 16467784 DOI: 10.1038/sj.jcbfm.9600280] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many factors have been postulated to cause delayed subarachnoid hemorrhage (SAH)-induced vasospasm, including hemoglobin, nitric oxide, endothelin, and free radicals. We propose that free radicals (because of the high levels that are produced in the blood clots surrounding blood vessels after SAH) act on bilirubin, biliverdin, and possibly heme to produce BOXes (Bilirubin OXidized Products). Bilirubin oxidation products act on vascular smooth muscle cells to produce chronic vasoconstriction and vasospasm combined with a vasculopathy because of smooth muscle cell injury. This review summarizes recent evidence that BOXes play a role in SAH-induced vasospasm. The data supporting a role for BOXes includes (1) identification of molecules in cerebrospinal fluid (CSF) of patients with vasospasm after SAH that have structures consistent with BOXes; (2) BOXes are vasoactive in vitro and mimic the biochemical actions of CSF of patients with vasospasm; (3) BOXes are vasoactive in vivo, constricting rat cerebral vessels; and (4) there is a correlation between clinical occurrence of vasospasm and BOXes concentration in our preliminary study of patients with SAH. Since oxidation of bilirubin, biliverdin, and perhaps heme is proposed to produce BOXes that contribute to vasospasm, either blocking bilirubin formation, inactivating bilirubin or BOXes, or removing all of the blood clot before vasospasm are potential treatment targets.
Collapse
|
143
|
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:566-83. [PMID: 16877357 PMCID: PMC1780162 DOI: 10.2353/ajpath.2006.051066] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is a critical factor for cell death or survival in ischemic stroke, but the pathological consequences of combined ischemia-hypoxia are not fully understood. Here we examine this issue using a modified Levine/Vannucci procedure in adult mice that consists of unilateral common carotid artery occlusion and hypoxia with tightly regulated body temperature. At the cellular level, ischemia-hypoxia produced proinflammatory cytokines and simultaneously activated both prosurvival (eg, synthesis of heat shock 70 protein, phosphorylation of ERK and AKT) and proapoptosis signaling pathways (eg, release of cytochrome c and AIF from mitochondria, cleavage of caspase-9 and -8). However, caspase-3 was not activated, and very few cells completed the apoptosis process. Instead, many damaged neurons showed features of autophagic/lysosomal cell death. At the tissue level, ischemia-hypoxia caused persistent cerebral perfusion deficits even after release of the carotid artery occlusion. These changes were associated with both platelet deposition and fibrin accumulation within the cerebral circulation and would be expected to contribute to infarction. Complementary studies in fibrinogen-deficient mice revealed that the absence of fibrin and/or secondary fibrin-mediated inflammatory processes significantly attenuated brain damage. Together, these results suggest that ischemia-hypoxia is a powerful stimulus for spontaneous coagulation leading to reperfusion deficits and autophagic/lysosomal cell death in brain.
Collapse
|
144
|
Tang Y, Xu H, Du X, Lit L, Walker W, Lu A, Ran R, Gregg JP, Reilly M, Pancioli A, Khoury JC, Sauerbeck LR, Carrozzella JA, Spilker J, Clark J, Wagner KR, Jauch EC, Chang DJ, Verro P, Broderick JP, Sharp FR. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 2006; 26:1089-102. [PMID: 16395289 DOI: 10.1038/sj.jcbfm.9600264] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ischemic brain and peripheral white blood cells release cytokines, chemokines and other molecules that activate the peripheral white blood cells after stroke. To assess gene expression in these peripheral white blood cells, whole blood was examined using oligonucleotide microarrays in 15 patients at 2.4+/-0.5, 5 and 24 h after onset of ischemic stroke and compared with control blood samples. The 2.4-h blood samples were drawn before patients were treated either with tissue-type plasminogen activator (tPA) alone or with tPA plus Eptifibatide (the Combination approach to Lysis utilizing Eptifibatide And Recombinant tPA trial). Most genes induced in whole blood at 2 to 3 h were also induced at 5 and 24 h. Separate studies showed that the genes induced at 2 to 24 h after stroke were expressed mainly by polymorphonuclear leukocytes and to a lesser degree by monocytes. These genes included: matrix metalloproteinase 9; S100 calcium-binding proteins P, A12 and A9; coagulation factor V; arginase I; carbonic anhydrase IV; lymphocyte antigen 96 (cluster of differentiation (CD)96); monocarboxylic acid transporter (6); ets-2 (erythroblastosis virus E26 oncogene homolog 2); homeobox gene Hox 1.11; cytoskeleton-associated protein 4; N-formylpeptide receptor; ribonuclease-2; N-acetylneuraminate pyruvate lyase; BCL6; glycogen phosphorylase. The fold change of these genes varied from 1.6 to 6.8 and these 18 genes correctly classified 10/15 patients at 2.4 h, 13/15 patients at 5 h and 15/15 patients at 24 h after stroke. These data provide insights into the inflammatory responses after stroke in humans, and should be helpful in diagnosis, understanding etiology and pathogenesis, and guiding acute treatment and development of new treatments for stroke.
Collapse
|
145
|
Pritchard LM, Logue AD, Taylor BC, Ahlbrand R, Welge JA, Tang Y, Sharp FR, Richtand NM. Relative expression of D3 dopamine receptor and alternative splice variant D3nf mRNA in high and low responders to novelty. Brain Res Bull 2006; 70:296-303. [PMID: 17027765 PMCID: PMC1815377 DOI: 10.1016/j.brainresbull.2006.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/28/2006] [Accepted: 06/04/2006] [Indexed: 11/25/2022]
Abstract
Studies in rodents suggest an important role for the D3 dopamine receptor in regulating locomotor responses to spatial novelty and psychostimulants. The D3 receptor alternatively spliced variant D3nf produces a non-dopamine binding protein that may alter D3 receptor localization by dimerizing with the full-length receptor. In the high responder/low responder (HR/LR) model, the locomotor response to an inescapable, novel spatial environment predicts individual differences in the locomotor and rewarding effects of psychostimulants. We hypothesized that individual differences in D3 receptor expression could contribute to individual differences in the locomotor response to novelty in the HR/LR model. To test this hypothesis, we screened rats for response to a novel spatial environment and analyzed brain tissue for mRNA levels of the D3 receptor and D3nf by real-time RT-PCR. The ratios of D3/D3nf mRNA in prefrontal cortex and substantia nigra/ventral tegmentum were significantly lower in HRs than in LRs. There were no differences in relative expression of D3/D3nf between HRs and LRs in nucleus accumbens. These data further support a role for the D3 dopamine receptor in behavioral responses to novelty and, given the established relationship between novelty and psychostimulant responses, suggest that the D3 receptor may be an important target for assessment of drug abuse vulnerability. Additionally, these findings are consistent with the hypothesis that alternative splicing may contribute to regulation of D3 dopamine receptor function.
Collapse
|
146
|
Dickerson J, Sharp FR. Atypical antipsychotics and a Src kinase inhibitor (PP1) prevent cortical injury produced by the psychomimetic, noncompetitive NMDA receptor antagonist MK-801. Neuropsychopharmacology 2006; 31:1420-30. [PMID: 16123741 DOI: 10.1038/sj.npp.1300878] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine, ketamine, and MK-801 produce schizophrenia-like psychosis in humans. The same NMDA antagonists injure retrosplenial cortical neurons in adult rats. We examined the effects of atypical antipsychotics and an inhibitor of nonreceptor tyrosine kinase pp60 (Src) on the cortical injury produced by MK-801. An atypical antipsychotic (either clozapine, ziprasidone, olanzapine, quetiapine, or risperidone) or vehicle was administered to adult female Sprague-Dawley rats. PP1 (Src inhibitor), PP3 (nonfunctional analog of PP1) or vehicle (DMSO) was administered to another group of animals. After pretreatment, animals were injected with MK-801, killed 24 h after the MK-801, and injury to retrosplenial cortex assessed by neuronal Hsp70 protein expression. All atypical antipsychotics examined significantly attenuated MK-801-induced cortical damage. PP1 protected compared to vehicle, whereas PP3 did not protect. The ED50s (decrease injury by 50%) were as follows: PP1 <0.1 mg/kg; olanzapine 0.8 mg/kg; risperdal 1 mg/kg; clozapine 3 mg/kg; ziprasidone 32 mg/kg; and quetiapine 45 mg/kg. The data show that the atypical antipsychotics tested as well as a Src kinase inhibitor prevent the injury produced by the psychomimetic MK-801, and the potency of the atypical antipsychotics for preventing cortical injury was roughly similar to the potency of these drugs for treating psychosis in patients.
Collapse
|
147
|
Vexler ZS, Sharp FR, Feuerstein GZ, Ashwal S, Thoresen M, Yager JY, Ferriero DM. Translational stroke research in the developing brain. Pediatr Neurol 2006; 34:459-63. [PMID: 16765824 DOI: 10.1016/j.pediatrneurol.2005.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/15/2005] [Accepted: 10/06/2005] [Indexed: 11/26/2022]
Abstract
Preclinical animal models can help guide the development of clinical pediatric and newborn stroke trials. Data obtained using currently available models of hypoxia-ischemia and focal stroke have demonstrated the need for age-appropriate models. There are age-related differences in susceptibility of the immature brain to oxidative stress and inflammation, as well as in the rate and degree of apoptotic neuronal death. These issues need to be carefully addressed in designing future clinical trials.
Collapse
|
148
|
Du X, Tang Y, Xu H, Lit L, Walker W, Ashwood P, Gregg JP, Sharp FR. Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and Tourette syndrome. Genomics 2006; 87:693-703. [PMID: 16546348 DOI: 10.1016/j.ygeno.2006.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/18/2006] [Accepted: 02/05/2006] [Indexed: 11/27/2022]
Abstract
Blood genomic profiling has been applied to disorders of the blood and various organ systems including brain to elucidate disease mechanisms and identify surrogate disease markers. Since most studies have not examined specific cell types, we performed a preliminary genomic survey of major blood cell types from normal individuals using microarrays. CD4+ T cells, CD8+ T cells, CD19+ B cells, CD56+ natural killer cells, and CD14+ monocytes were negatively selected using the RosetteSep antibody cocktail, while polymorphonuclear leukocytes were separated with density gradient media. Genes differentially expressed by each cell type were identified. To demonstrate the potential use of such cell subtype-specific genomic expression data, a number of the major genes previously reported to be regulated in ischemic stroke, migraine, and Tourette syndrome are shown to be associated with distinct cell populations in blood. These specific gene expression, cell-type-related profiles will need to be confirmed in larger data sets and could be used to study these and many other neurological diseases.
Collapse
|
149
|
Abstract
After intracerebral hemorrhage (ICH), many changes of gene transcription occur that may be important because they will contribute to understanding mechanisms of injury and recovery. Therefore, gene expression was assessed using Affymetrix microarrays in the striatum and the overlying cortex at 24 h after intracranial infusions of blood into the striatum of adult rats. Intracerebral hemorrhage regulated 369 of 8,740 transcripts as compared with saline-injected controls, with 104 regulated genes shared by the striatum and cortex. There were 108 upregulated and 126 downregulated genes in striatum, and 170 upregulated and 69 downregulated genes in the cortex. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed upregulation of IL-1-beta, Lipcortin 1 (annexin) and metallothionein 1,2, and downregulation of potassium voltage-gated channel, shaker-related subfamily, beta member 2 (Kcnab2). Of the functional groups of genes modulated by ICH, many metabolism and signal-transduction-related genes decreased in striatum but increased in adjacent cortex. In contrast, most enzyme, cytokine, chemokine, and immune response genes were upregulated in both striatum and in the cortex after ICH, likely in response to foreign proteins from the blood. A number of these genes may contribute to brain edema and cellular apoptosis caused by ICH. In addition, downregulation of growth factor pathways and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway could also contribute to perihematoma cell death/apoptosis. Intracerebral hemorrhage-related downregulation of GABA-related genes and potassium channels might contribute to perihematoma cellular excitability and increased risk of post-ICH seizures. These genomic responses to ICH potentially provide new therapeutic targets for treatment.
Collapse
|
150
|
Ran R, Xu H, Lu A, Bernaudin M, Sharp FR. Hypoxia preconditioning in the brain. Dev Neurosci 2005; 27:87-92. [PMID: 16046841 DOI: 10.1159/000085979] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 01/03/2005] [Indexed: 11/19/2022] Open
Abstract
Exposure to moderate hypoxia alone does not cause neuronal death as long as blood pressure and cerebral blood flow are maintained in mammals. In neonatal and adult mammals including rats and mice, carotid occlusion in combination with hypoxia produces neuronal death and brain infarction. However, preexposure to 8% oxygen for 3 h protects the brain and likely other organs of neonatal and adult rats against combined hypoxia-ischemia 24 h later. In this paper, the possible mechanisms of this so-called hypoxia-induced tolerance to ischemia is discussed. One mechanism likely involves hypoxia-inducible factor-1alpha (HIF-1alpha). HIF-1alpha is a transcription factor that - during hypoxia - binds with a second protein (HIF-1beta) in the nucleus to promoter elements in hypoxia-responsive target genes. This causes upregulation of HIF target genes including VEGF, erythropoietin, iNOS, glucose transporter-1, glycolytic enzymes, and many other genes to protect the brain against ischemia 24 h later. In addition, non-HIF pathways including MTF-1, Egr-1 and others act directly or indirectly on other target genes to also promote hypoxia-induced preconditioning. Hypoxia preconditioning can be mimicked by iron chelators like desferrioxamine and transition metals like cobalt chloride that inhibit prolyl hydroxylases, increase HIF-1alpha levels in the brain, and produce protection of the brain against combined hypoxia-ischemia 24 h later. This hypoxia preconditioning has potential clinical usefulness in protecting high-risk newborns or to provide protection prior to surgery.
Collapse
|