126
|
Fleming LR, Doherty DA, Parisi MA, Glass IA, Bryant J, Fischer R, Turkbey B, Choyke P, Daryanani K, Vemulapalli M, Mullikin JC, Malicdan MC, Vilboux T, Sayer JA, Gahl WA, Gunay-Aygun M. Prospective Evaluation of Kidney Disease in Joubert Syndrome. Clin J Am Soc Nephrol 2017; 12:1962-1973. [PMID: 29146704 PMCID: PMC5718273 DOI: 10.2215/cjn.05660517] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Joubert syndrome is a genetically heterogeneous ciliopathy associated with >30 genes. The characteristics of kidney disease and genotype-phenotype correlations have not been evaluated in a large cohort at a single center. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We evaluated 97 individuals with Joubert syndrome at the National Institutes of Health Clinical Center using abdominal ultrasonography, blood and urine chemistries, and DNA sequencing. RESULTS Patients were ages 0.6-36 years old (mean of 9.0±7.6 years old); 41 were female. Mutations were identified in 19 genes in 92 patients; two thirds of the mutations resided in six genes: TMEM67, C5orf42, CC2D2A, CEP290, AHI1, and KIAA0586. Kidney disease was detected in 30%, most commonly in association with the following genes: CEP290 (six of six), TMEM67 (11 of 22), and AHI1 (three of six). No kidney disease was identified in patients with mutations in C5orf42 (zero of 15) or KIAA0586 (zero of six). Prenatal ultrasonography of kidneys was normal in 72% of patients with kidney disease. Specific types of kidney disease included nephronophthisis (31%), an overlap phenotype of autosomal recessive polycystic kidney disease/nephronophthisis (35%), unilateral multicystic dysplastic kidney (10%), and indeterminate-type cystic kidney disease (24%). Early-onset hypertension occurred in 24% of patients with kidney disease. Age at ESRD (n=13) ranged from 6 to 24 years old (mean of 11.3±4.8 years old). CONCLUSIONS Kidney disease occurs in up to one third of patients with Joubert syndrome, most commonly in those with mutations in CEP290, TMEM67, and AHI1. Patients with mutations in C5orf42 or KIAA0586 are less likely to develop kidney disease. Prenatal ultrasonography is a poor predictor of kidney involvement in Joubert syndrome. Unilateral multicystic dysplastic kidney and autosomal recessive polycystic kidney disease-like enlarged kidneys with early-onset hypertension can be part of the Joubert syndrome kidney phenotype.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnostic imaging
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Vesicular Transport
- Adolescent
- Adult
- Age of Onset
- Antigens, Neoplasm/genetics
- Cell Cycle Proteins/genetics
- Cerebellum/abnormalities
- Cerebellum/diagnostic imaging
- Cerebellum/metabolism
- Child
- Child, Preschool
- Cytoskeletal Proteins
- Eye Abnormalities/complications
- Eye Abnormalities/diagnostic imaging
- Eye Abnormalities/genetics
- Eye Abnormalities/metabolism
- Female
- Genotype
- Humans
- Infant
- Kidney Diseases, Cystic/complications
- Kidney Diseases, Cystic/congenital
- Kidney Diseases, Cystic/diagnostic imaging
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/metabolism
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Magnetic Resonance Imaging
- Male
- Membrane Proteins/genetics
- Multicystic Dysplastic Kidney/complications
- Multicystic Dysplastic Kidney/diagnostic imaging
- Multicystic Dysplastic Kidney/genetics
- Mutation
- Neoplasm Proteins/genetics
- Phenotype
- Polycystic Kidney, Autosomal Recessive/complications
- Polycystic Kidney, Autosomal Recessive/diagnostic imaging
- Polycystic Kidney, Autosomal Recessive/genetics
- Prospective Studies
- Proteins/genetics
- Retina/abnormalities
- Retina/diagnostic imaging
- Retina/metabolism
- Ultrasonography, Prenatal
- Young Adult
Collapse
|
research-article |
8 |
56 |
127
|
Shashi V, Pena LD, Kim K, Burton B, Hempel M, Schoch K, Walkiewicz M, McLaughlin HM, Cho M, Stong N, Hickey SE, Shuss CM, Freemark MS, Bellet JS, Keels MA, Bonner MJ, El-Dairi M, Butler M, Kranz PG, Stumpel CT, Klinkenberg S, Oberndorff K, Alawi M, Santer R, Petrovski S, Kuismin O, Korpi-Heikkilä S, Pietilainen O, Aarno P, Kurki MI, Hoischen A, Need AC, Goldstein DB, Kortüm F, Bacino A, Lee BH, Balasubramanyam A, Burrage LC, Clark GD, Craigen WJ, Dhar SU, Emrick LT, Graham BH, Jain M, Lalani SR, Lewis RA, Moretti PM, Nicholas SK, Orange JS, Posey JE, Potocki L, Rosenfeld JA, Scott DA, Hanchard NA, Alyssa TA, Mercedes AE, Mashid AS, Bellen HJ, Yamamoto S, Wangler MF, Westerfield M, Postlethwait JH, Eng CM, Yang Y, Muzny DM, Ward PA, Ramoni RB, McCray AT, Kohane IS, Holm IA, Might M, Mazur P, Splinter K, Esteves C, Shashi V, Jiang YH, Pena LD, McConkie-Rosell A, Schoch K, Spillmann RC, Sullivan JA, Walley NM, Goldstein DB, Stong N, Beggs AH, Loscalzo J, MacRae CA, Silverman EK, Stoler JM, Sweetser DA, Maas RL, Krier JB, Rodan LH, Walsh CA, Cooper CM, Pallais JC, Donnell-Fink LA, Krieg EL, Lincoln SA, Briere LC, Jacob HJ, Worthey EA, Lazar J, Strong KA, Handley LH, Newberry JS, Bick DP, Schroeder MC, Brown DM, Birch CL, Levy SE, Boone BE, Dorset DC, Jones AL, Manolio TA, Mulvihill JJ, Wise AL, Dayal JG, Eckstein DJ, Krasnewich DM, Loomis CR, Mamounas LA, Iglesias B, Martin C, Koeller DM, Metz TO, Ashley EA, Fisher PG, Bernstein JA, Wheeler MT, Zornio PA, Waggott DM, Dries AM, Kohler JN, Dipple KM, Nelson SF, Palmer CG, Vilain E, Allard P, Dell Angelica EC, Lee H, Sinsheimer JS, Papp JC, Dorrani N, Herzog MR, Barseghyan H, Adams DR, Adams CJ, Burke EA, Chao KR, Davids M, Draper DD, Estwick T, Frisby TS, Frost K, Gahl WA, Gartner V, Godfrey RA, Goheen M, Golas GA, Gordon MG, Groden CA, Gropman AL, Hackbarth ME, Hardee I, Johnston JM, Koehler AE, Latham L, Latour YL, Lau CYC, Lee PR, Levy DJ, Liebendorder AP, Macnamara EF, Maduro VV, Malicdan MV, Markello TC, McCarty AJ, Murphy JL, Nehrebecky ME, Novacic D, Pusey BN, Sadozai S, Schaffer KE, Sharma P, Soldatos AG, Thomas SP, Tifft CJ, Tolman NJ, Toro C, Valivullah ZM, Wahl CE, Warburton M, Weech AA, Wolfe LA, Yu G, Hamid R, Newman JH, Phillips JA, Cogan JD. De Novo Truncating Variants in ASXL2 Are Associated with a Unique and Recognizable Clinical Phenotype. Am J Hum Genet 2016; 99:991-999. [PMID: 27693232 PMCID: PMC5065681 DOI: 10.1016/j.ajhg.2016.08.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The ASXL genes (ASXL1, ASXL2, and ASXL3) participate in body patterning during embryogenesis and encode proteins involved in epigenetic regulation and assembly of transcription factors to specific genomic loci. Germline de novo truncating variants in ASXL1 and ASXL3 have been respectively implicated in causing Bohring-Opitz and Bainbridge-Ropers syndromes, which result in overlapping features of severe intellectual disability and dysmorphic features. ASXL2 has not yet been associated with a human Mendelian disorder. In this study, we performed whole-exome sequencing in six unrelated probands with developmental delay, macrocephaly, and dysmorphic features. All six had de novo truncating variants in ASXL2. A careful review enabled the recognition of a specific phenotype consisting of macrocephaly, prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties, hypotonia, and developmental disabilities. Although overlapping features with Bohring-Opitz and Bainbridge-Ropers syndromes exist, features that distinguish the ASXL2-associated condition from ASXL1- and ASXL3-related disorders are macrocephaly, absence of growth retardation, and more variability in the degree of intellectual disabilities. We were also able to demonstrate with mRNA studies that these variants are likely to exert a dominant-negative effect, given that both alleles are expressed in blood and the mutated ASXL2 transcripts escape nonsense-mediated decay. In conclusion, de novo truncating variants in ASXL2 underlie a neurodevelopmental syndrome with a clinically recognizable phenotype. This report expands the germline disorders that are linked to the ASXL genes.
Collapse
|
brief-report |
9 |
56 |
128
|
Avila NA, Brantly M, Premkumar A, Huizing M, Dwyer A, Gahl WA. Hermansky-Pudlak syndrome: radiography and CT of the chest compared with pulmonary function tests and genetic studies. AJR Am J Roentgenol 2002; 179:887-92. [PMID: 12239031 DOI: 10.2214/ajr.179.4.1790887] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of our study was to describe the chest radiographic and high-resolution CT findings in patients with Hermansky-Pudlak syndrome and to correlate the radiologic findings with age, causative gene, and pulmonary function. SUBJECTS AND METHODS Sixty-seven patients with Hermansky-Pudlak syndrome underwent high-resolution CT of the chest. A scoring system based on the extent of pulmonary involvement and specific high-resolution CT findings was used, and the findings were compared with patient age and the results of pulmonary function and genetic studies. Fifty-eight (87%) of the 67 patients also underwent chest radiography. These radiographs were compared with the high-resolution CT scans. RESULTS High-resolution CT was more sensitive than chest radiography in evaluating the extent of pulmonary disease in patients with Hermansky-Pudlak syndrome. All patients with mild findings on high-resolution CT scans had normal findings on chest radiographs. Common chest radiographic findings included reticulonodular interstitial pattern, perihilar fibrosis, and pleural thickening. High-resolution CT showed septal thickening, ground-glass opacities, and peribronchovascular thickening. For patients with Hermansky-Pudlak syndrome who were 30 years old or younger, high-resolution CT findings were usually minimal. Among patients who were older than 30 years, the 34 patients with HPS1 mutations had a score of 1.38+/-0.18 (mean+/-standard error of the mean) on high-resolution CT. This score is significantly greater than the score for the 11 patients without HPS1 mutations (0.36 +/- 0.15) (p < 0.001). The score based on high-resolution CT findings inversely correlated with percentage of forced vital capacity and was useful in defining the progression of interstitial disease. CONCLUSION High-resolution CT provides a good radiologic monitor of disease status and progression in patients with Hermansky-Pudlak syndrome and correlates well with patient age, extent of pulmonary dysfunction, and genetic findings.
Collapse
|
|
23 |
56 |
129
|
Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AMA. Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 2010; 33:195-210. [PMID: 20464498 PMCID: PMC2877317 DOI: 10.1007/s10545-010-9100-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/09/2010] [Accepted: 03/31/2010] [Indexed: 11/29/2022]
Abstract
Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
56 |
130
|
Zhou Y, He CH, Herzog EL, Peng X, Lee CM, Nguyen TH, Gulati M, Gochuico BR, Gahl WA, Slade ML, Lee CG, Elias JA. Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease. J Clin Invest 2015; 125:3178-92. [PMID: 26121745 DOI: 10.1172/jci79792] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3-like-1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3-dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
56 |
131
|
Machol K, Rousseau J, Ehresmann S, Garcia T, Nguyen TTM, Spillmann RC, Sullivan JA, Shashi V, Jiang YH, Stong N, Fiala E, Willing M, Pfundt R, Kleefstra T, Cho MT, McLaughlin H, Rosello Piera M, Orellana C, Martínez F, Caro-Llopis A, Monfort S, Roscioli T, Nixon CY, Buckley MF, Turner A, Jones WD, van Hasselt PM, Hofstede FC, van Gassen KL, Brooks AS, van Slegtenhorst MA, Lachlan K, Sebastian J, Madan-Khetarpal S, Sonal D, Sakkubai N, Thevenon J, Faivre L, Maurel A, Petrovski S, Krantz ID, Tarpinian JM, Rosenfeld JA, Lee BH, Campeau PM, Adams DR, Alejandro ME, Allard P, Azamian MS, Bacino CA, Balasubramanyam A, Barseghyan H, Batzli GF, Beggs AH, Behnam B, Bican A, Bick DP, Birch CL, Bonner D, Boone BE, Bostwick BL, Briere LC, Brown DM, Brush M, Burke EA, Burrage LC, Chen S, Clark GD, Coakley TR, Cogan JD, Cooper CM, Cope H, Craigen WJ, D’Souza P, Davids M, Dayal JG, Dell’Angelica EC, Dhar SU, Dillon A, Dipple KM, Donnell-Fink LA, Dorrani N, Dorset DC, Douine ED, Draper DD, Eckstein DJ, Emrick LT, Eng CM, Eskin A, Esteves C, Estwick T, Ferreira C, Fogel BL, Friedman ND, Gahl WA, Glanton E, Godfrey RA, Goldstein DB, Gould SE, Gourdine JPF, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Handley LH, Herzog MR, Holm IA, Hom J, Howerton EM, Huang Y, Jacob HJ, Jain M, Jiang YH, Johnston JM, Jones AL, Kohane IS, Krasnewich DM, Krieg EL, Krier JB, Lalani SR, Lau CC, Lazar J, Lee BH, Lee H, Levy SE, Lewis RA, Lincoln SA, Lipson A, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Markello TC, Marom R, Martínez-Agosto JA, Marwaha S, May T, McConkie-Rosell A, McCormack CE, McCray AT, Might M, Moretti PM, Morimoto M, Mulvihill JJ, Murphy JL, Muzny DM, Nehrebecky ME, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Orange JS, Pallais JC, Palmer CG, Papp JC, Parker NH, Pena LD, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Reuter CM, Robertson AK, Rodan LH, Rosenfeld JA, Sampson JB, Samson SL, Schoch K, Schroeder MC, Scott DA, Sharma P, Shashi V, Signer R, Silverman EK, Sinsheimer JS, Smith KS, Spillmann RC, Splinter K, Stoler JM, Stong N, Sullivan JA, Sweetser DA, Tifft CJ, Toro C, Tran AA, Urv TK, Valivullah ZM, Vilain E, Vogel TP, Wahl CE, Walley NM, Walsh CA, Ward PA, Waters KM, Westerfield M, Wise AL, Wolfe LA, Worthey EA, Yamamoto S, Yang Y, Yu G, Zastrow DB, Zheng A. Expanding the Spectrum of BAF-Related Disorders: De Novo Variants in SMARCC2 Cause a Syndrome with Intellectual Disability and Developmental Delay. Am J Hum Genet 2019; 104:164-178. [PMID: 30580808 DOI: 10.1016/j.ajhg.2018.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
56 |
132
|
Anikster Y, Lacbawan F, Brantly M, Gochuico BL, Avila NA, Travis W, Gahl WA. Pulmonary dysfunction in adults with nephropathic cystinosis. Chest 2001; 119:394-401. [PMID: 11171714 DOI: 10.1378/chest.119.2.394] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE To characterize the pulmonary dysfunction in patients with nephropathic cystinosis after renal transplantation. DESIGN Cross-sectional analysis of consecutive adult patients. PATIENTS Twelve adult, nephropathic cystinosis patients and 3 adult, ocular, nonnephropathic cystinosis patients admitted to the National Institutes of Health Clinical Center. RESULTS The 12 nephropathic cystinosis patients (age range, 21 to 40 years) showed an extraparenchymal pattern of restrictive lung disease, with inspiratory and expiratory dysfunction. Specifically, the mean FVC was 58% of predicted, the mean FEV(1) was 57% of predicted, and the mean total lung capacity was 66% of predicted, while the mean residual volume was normal. Furthermore, the mean maximal inspiratory pressure for the eight patients tested was 40% of predicted, and the mean maximal expiratory pressure was 26% of predicted. Two patients died of respiratory insufficiency. All the patients had lived at least 17 years, while lacking compliant cystine-depleting therapy with oral cysteamine. Seven patients had a conical chest, restricting excursion, and 10 of the 12 patients had evidence of the myopathy that typifies late cystinosis. In fact, the severity of pulmonary disease correlated directly with the severity of myopathy in our group of 12 patients. In contrast, the lung parenchyma was essentially normal, as gauged by chest radiographs and CT scans of the lung. The three patients with nonnephropathic cystinosis displayed entirely normal pulmonary function. CONCLUSION The distal myopathy characteristic of nephropathic cystinosis results in an extraparenchymal pattern of restrictive lung disease in adults who have not received long-term cystine depletion. Whether or not oral cysteamine therapy can prevent this complication remains to be determined.
Collapse
|
|
24 |
55 |
133
|
Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, Venselaar H, Vulto-van Silfhout AT, Wolfe LA, Tifft CJ, Zerfas PM, Zambruno G, Kariminejad A, Sabbagh-Kermani F, Lee J, Tsokos MG, Lee CCR, Ferraz V, da Silva EM, Stevens CA, Roche N, Bartsch O, Farndon P, Bermejo-Sanchez E, Brooks BP, Maduro V, Dallapiccola B, Ramos FJ, Chung HYB, Le Caignec C, Martins F, Jacyk WK, Mazzanti L, Brunner HG, Bakkers J, Lin S, Malicdan MCV, Boerkoel CF, Gahl WA, de Vries BBA, van Haelst MM, Zenker M, Markello TC. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. Am J Hum Genet 2015; 97:99-110. [PMID: 26119818 DOI: 10.1016/j.ajhg.2015.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
55 |
134
|
Anikster Y, Lucero C, Touchman JW, Huizing M, McDowell G, Shotelersuk V, Green ED, Gahl WA. Identification and detection of the common 65-kb deletion breakpoint in the nephropathic cystinosis gene (CTNS). Mol Genet Metab 1999; 66:111-6. [PMID: 10068513 DOI: 10.1006/mgme.1998.2790] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most common mutation in the cystinosis gene, CTNS, is a 65-kb deletion thought to have originated in Germany. Although homozygotes for this deletion are detectable by the absence of the D17S829 polymorphic marker, no method exists to identify heterozygotes. We identified the 65-kb deletion breakpoints and used flanking PCR primers to amplify a 423-bp fragment present only in the deletion alleles. Using this method, we determined that 121 of 216 (56%) cystinosis alleles examined bore the 65-kb deletion. We found no non-Europeans with the deletion, and the deletion size and breakpoints appeared identical in all patients studied, supporting the concept of a founder effect. The addition of D17S829 primers (266 bp apart) to the PCR created a multiplex PCR system useful for diagnosing cystinosis patients homozygous and heterozygous for the 65-kb deletion.
Collapse
|
|
26 |
55 |
135
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020; 143:3242-3261. [PMID: 33150406 PMCID: PMC7719027 DOI: 10.1093/brain/awaa304] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
55 |
136
|
Kleta R, Gahl WA. Pharmacological treatment of nephropathic cystinosis with cysteamine. Expert Opin Pharmacother 2004; 5:2255-62. [PMID: 15500372 DOI: 10.1517/14656566.5.11.2255] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystinosis, clinically recognised since 1903, is an autosomal recessive lysosomal storage disease caused by mutations in CTNS. This gene codes for a lysosomal cystine transporter, whose absence leads to intracellular cystine crystals, widespread cellular destruction, renal Fanconi syndrome in infancy, renal glomerular failure in later childhood and other systemic complications. Before the availability of kidney transplantation, patients affected with cystinosis uniformly died during childhood. After solid organ transplantations became successful in the 1960s, cystinosis patients survived, but eventually developed life-threatening consequences of the disease (e.g., swallowing disorders). Since the introduction of cysteamine into the pharmacological management of cystinosis, well-treated adolescent and young adult patients have experienced normal growth and maintenance of renal glomerular function. Oral cysteamine therapy is given at doses of 60 - 90 mg/kg/day q.i.d. every 6 h, and generally achieves approximately 90% depletion of cellular cystine, as measured in circulating leucocytes. Cysteamine (and kidney transplantation) have commuted the death sentence of cystinosis into a nearly normal life with a chronic disease. Because treatment with oral cysteamine can prevent, or significantly delay, the complications of cystinosis, early and accurate diagnosis, as well as proper treatment, is critical.
Collapse
|
Review |
21 |
54 |
137
|
Kaler SG, Das S, Levinson B, Goldstein DS, Holmes CS, Patronas NJ, Packman S, Gahl WA. Successful early copper therapy in Menkes disease associated with a mutant transcript containing a small In-frame deletion. BIOCHEMICAL AND MOLECULAR MEDICINE 1996; 57:37-46. [PMID: 8812725 DOI: 10.1006/bmme.1996.0007] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Classical Menkes disease is a fatal X-linked neurodegenerative disorder caused by defects in a gene (MNK) that encodes a copper-transporting ATPase. Treatment with parenteral copper has been proposed for patients identified before symptoms develop. We recently described suboptimal outcomes despite early copper replacement in two classical Menkes patients whose mutation predicts little if any functional copper transporter. Here, we describe successful copper replacement therapy in a patient with Menkes disease with a splice acceptor site mutation (IVS8,AS,dup5) that causes exon-skipping and generates a mutant transcript with a small in-frame deletion in a noncritical region. The patient was diagnosed by analysis of neurochemical levels in cord blood, and parenteral copper replacement was begun at 8 days of life. Throughout infancy, he showed normal head growth, brain myelination, and age-appropriate neurodevelopment, including independent walking at 14 months of age. In contrast, his affected half-brother and first cousin with the same mutation, but who were not diagnosed and treated from an early age, showed arrested head growth, cerebral atrophy, delayed myelination, and abnormal neurodevelopment. We propose that the successful neurological outcome in this patient was related to early repletion of circulating copper levels, in combination with residual copper transport by a partially functional MNK ATPase containing the small deletion. We hypothesize that raising plasma copper concentrations in patients with Menkes disease with some residual functional gene product can increase the ligand: transporter ratio and thus alter favorably the kinetics of copper transport into and within the brain.
Collapse
|
|
29 |
54 |
138
|
Seppala R, Tietze F, Krasnewich D, Weiss P, Ashwell G, Barsh G, Thomas GH, Packman S, Gahl WA. Sialic acid metabolism in sialuria fibroblasts. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89468-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
|
34 |
54 |
139
|
Abstract
Fifteen patients with nephropathic cystinosis, ranging in age from 13 to 27 years, were studied. Two were in renal failure; 13 had functioning renal allografts; 5 had severe, uncorrectable loss of visual acuity as well as posterior synechiae and crystal deposits on the lens surface. All 15 patients had photophobia and corneal erosions to variable degrees. All patients were growth retarded with delayed bone ages. Puberty occurred late, but was generally complete by 17 years of age. Hepatic function appeared normal. Only 1 patient had neurological deterioration, but 11 patients had some degree of cerebral atrophy radiologically. The continued accumulation of cystine within cystinotic tissues results in serious extrarenal complications many years after renal transplantation in cystinosis.
Collapse
|
Case Reports |
38 |
52 |
140
|
Vilboux T, Kayser M, Introne W, Suwannarat P, Bernardini I, Fischer R, O'Brien K, Kleta R, Huizing M, Gahl WA. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 2010; 30:1611-9. [PMID: 19862842 DOI: 10.1002/humu.21120] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder, characterized by accumulation of homogentisic acid, leading to darkened urine, pigmentation of connective tissue (ochronosis), joint and spine arthritis, and destruction of cardiac valves. AKU is due to mutations in the homogentisate dioxygenase gene (HGD) that converts homogentisic acid to maleylacetoacetic acid in the tyrosine catabolic pathway. Here we report a comprehensive mutation analysis of 93 patients enrolled in our study, as well as an extensive update of all previously published HGD mutations associated with AKU. Within our patient cohort, we identified 52 HGD variants, of which 22 were novel. This yields a total of 91 identified HGD variations associated with AKU to date, including 62 missense, 13 splice site, 10 frameshift, 5 nonsense, and 1 no-stop mutation. Most HGD variants reside in exons 3, 6, 8, and 13. We assessed the potential effect of all missense variations on protein function, using five bioinformatic tools specifically designed for interpretation of missense variants (SIFT, POLYPHEN, PANTHER, PMUT, and SNAP). We also analyzed the potential effect of splice-site variants using two different tools (BDGP and NetGene2). This study provides valuable resources for molecular analysis of alkaptonuria and expands our knowledge of the molecular basis of this disease.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
52 |
141
|
O'Brien K, Troendle J, Gochuico BR, Markello TC, Salas J, Cardona H, Yao J, Bernardini I, Hess R, Gahl WA. Pirfenidone for the treatment of Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2011; 103:128-34. [PMID: 21420888 PMCID: PMC3656407 DOI: 10.1016/j.ymgme.2011.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/07/2011] [Indexed: 11/24/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare disorder of oculocutaneous albinism, platelet dysfunction, and in some subtypes, fatal pulmonary fibrosis. There is no effective treatment for the pulmonary fibrosis except lung transplantation, but an initial trial using pirfenidone, an anti-fibrotic agent, showed promising results. The current, randomized, placebo-controlled, prospective, double-blind trial investigated the safety and efficacy of pirfenidone for mild to moderate HPS-1 and 4 pulmonary fibrosis. Subjects were evaluated every 4 months at the National Institutes of Health Clinical Center, and the primary outcome parameter was change in forced vital capacity using repeated measures analysis with random coefficients. Thirty-five subjects with HPS-1 pulmonary fibrosis were enrolled during a 4-year interval; 23 subjects received pirfenidone and 12 received placebo. Four subjects withdrew from the trial, 3 subjects died, and 10 serious adverse events were reported. Both groups experienced similar side effects, especially gastroesophageal reflux. Interim analysis of the primary outcome parameter, performed 12 months after 30 patients were enrolled, showed no statistical difference between the placebo and pirfenidone groups, and the study was stopped due to futility. There were no significant safety concerns. Other clinical trials are indicated to identify single or multiple drug regimens that may be effective in treatment for progressive HPS-1 pulmonary fibrosis.
Collapse
|
Clinical Trial |
14 |
51 |
142
|
Abstract
We identified 80 patients with nephropathic cystinosis older than age 10 years in the United States and Canada. The oldest reported individual was 26 years of age. Ninety percent of patients had received at least one renal allograft. Age at the time of first transplant varied between 7 and 17 years (mean 10.0 years). Almost three fourths of the patients required thyroid replacement, 27% had splenomegaly, and 42% had hepatomegaly. Photophobia was noted in 86% of patients, decreased visual acuity in 32%, and corneal ulcerations in 15%. Neurologic involvement, renal osteodystrophy, and diabetes mellitus were unusual. All these late complications of nephropathic cystinosis contribute to a description of the natural history of the disease and provide a rationale for the therapeutic use of cystine-depleting agents after renal transplantation.
Collapse
|
|
39 |
51 |
143
|
Abstract
1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine.
Collapse
|
research-article |
43 |
51 |
144
|
Lawrence L, Sincan M, Markello T, Adams DR, Gill F, Godfrey R, Golas G, Groden C, Landis D, Nehrebecky M, Park G, Soldatos A, Tifft C, Toro C, Wahl C, Wolfe L, Gahl WA, Boerkoel CF. The implications of familial incidental findings from exome sequencing: the NIH Undiagnosed Diseases Program experience. Genet Med 2014; 16:741-50. [PMID: 24784157 PMCID: PMC4190001 DOI: 10.1038/gim.2014.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/18/2014] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Using exome sequence data from 159 families participating in the National Institutes of Health Undiagnosed Diseases Program, we evaluated the number and inheritance mode of reportable incidental sequence variants. METHODS Following the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings from next-generation sequencing, we extracted variants in 56 genes from the exome sequence data of 543 subjects and determined the reportable incidental findings for each participant. We also defined variant status as inherited or de novo for those with available parental sequence data. RESULTS We identified 14 independent reportable variants in 159 (8.8%) families. For nine families with parental sequence data in our cohort, a parent transmitted the variant to one or more children (nine minor children and four adult children). The remaining five variants occurred in adults for whom parental sequences were unavailable. CONCLUSION Our results are consistent with the expectation that a small percentage of exomes will result in identification of an incidental finding under the American College of Medical Genetics and Genomics recommendations. Additionally, our analysis of family sequence data highlights that genome and exome sequencing of families has unavoidable implications for immediate family members and therefore requires appropriate counseling for the family.
Collapse
|
Research Support, N.I.H., Intramural |
11 |
51 |
145
|
Bothwell SP, Chan E, Bernardini IM, Kuo YM, Gahl WA, Nussbaum RL. Mouse model for Lowe syndrome/Dent Disease 2 renal tubulopathy. J Am Soc Nephrol 2010; 22:443-8. [PMID: 21183592 DOI: 10.1681/asn.2010050565] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Lowe oculocerebrorenal syndrome is an X-linked disorder characterized by congenital cataracts, cognitive disability, and proximal tubular dysfunction. Both this syndrome and Dent Disease 2 result from loss-of-function mutations in the OCRL gene, which encodes a type II phosphatidylinositol bisphosphate 5-phosphatase. Ocrl-deficient mice are unaffected, however, which we believe reflects a difference in how humans and mice cope with the enzyme deficiency. Inpp5b and INPP5B, paralogous autosomal genes that encode another type II phosphoinositide 5-phosphatase in mice and humans, respectively, might explain the distinct phenotype in the two species because they are the closest paralogs to Ocrl and OCRL in their respective genomes yet differ between the two species with regard to expression and splicing. Here, we generated Ocrl(-/-) mice that express INPP5B but not Inpp5b. Similar to the human syndromes, all showed reduced postnatal growth, low molecular weight proteinuria, and aminoaciduria. Thus, we created an animal model for OCRL and Dent Disease 2 tubulopathy by humanizing a modifier paralog in mice already carrying the mutant disease gene.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
50 |
146
|
Hazelwood S, Shotelersuk V, Wildenberg SC, Chen D, Iwata F, Kaiser-Kupfer MI, White JG, King RA, Gahl WA. Evidence for locus heterogeneity in Puerto Ricans with Hermansky-Pudlak syndrome. Am J Hum Genet 1997; 61:1088-94. [PMID: 9345105 PMCID: PMC1716022 DOI: 10.1086/301611] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) consists of ocu-locutaneous albinism, a platelet storage-pool deficiency, and ceroid lipofuscinosis. In a recent report on the cloning of an HPS gene, all 22 Puerto Rican HPS patients were homozygous for a 16-bp duplication in exon 15. This presumably reflected a founder effect for the HPS mutation in Puerto Rico. Nevertheless, we ascertained two individuals from central Puerto Rico who lacked the 16-bp duplication, exhibited significant amounts of normal-size HPS mRNA by northern blot analysis, and had haplotypes in the HPS region that were different from the haplotype of every 16-bp-duplication patient. Moreover, these two individuals displayed no mutations in their cDNA sequences, throughout the entire HPS gene. Both patients exhibited pigment dilution, impaired visual acuity, nystagmus, a bleeding diathesis, and absent platelet dense bodies, confirming the diagnosis of HPS. These findings indicate that analysis of Puerto Rican patients for the 16-bp duplication in HPS cannot exclude the diagnosis of HPS. In addition, HPS most likely displays locus heterogeneity, consistent with the existence of several mouse strains manifesting both pigment dilution and a platelet storage-pool deficiency.
Collapse
|
research-article |
28 |
50 |
147
|
Hermos CR, Huizing M, Kaiser-Kupfer MI, Gahl WA. Hermansky-Pudlak syndrome type 1: gene organization, novel mutations, and clinical-molecular review of non-Puerto Rican cases. Hum Mutat 2002; 20:482. [PMID: 12442288 DOI: 10.1002/humu.9097] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder causing oculocutaneous albinism and a platelet storage pool deficiency, reflecting defective biosynthesis and/or processing of melanosomes and platelet dense bodies. Four human genes (HPS1, ADTB3A, HPS3, HPS4) are associated with four subtypes of HPS. The most common is HPS-1. A 16-bp duplication in exon 15 of the HPS1 gene causes HPS-1 in 450 northwest Puerto Rican patients; 13 other HPS1 mutations have been reported in non-Puerto Rican patients. We screened 26 HPS patients, who lacked a molecular diagnosis, for HPS1 defects and identified six patients with six different HPS1 mutations. Four novel mutations were discovered, including the first HPS1 missense mutation, 922T>C, in exon 8. This mutation, along with 624delG in exon 6, preserve RNA transcription, while 561delC in exon 5 and [1581delA;1594C>A] in exon 14 produce no RNA on northern blot. One of six adult patients developed pulmonary fibrosis, and two patients ages 16 and 17 have granulomatous colitis. These complications are common among Puerto Rican HPS-1 patients but have not appeared in HPS-2 or HPS-3 patients. The diagnosis of HPS-1, available only on molecular grounds, has important prognostic and treatment implications.
Collapse
|
Case Reports |
23 |
50 |
148
|
Richmond B, Huizing M, Knapp J, Koshoffer A, Zhao Y, Gahl WA, Boissy RE. Melanocytes derived from patients with Hermansky-Pudlak Syndrome types 1, 2, and 3 have distinct defects in cargo trafficking. J Invest Dermatol 2005; 124:420-7. [PMID: 15675963 PMCID: PMC1635963 DOI: 10.1111/j.0022-202x.2004.23585.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disorder in which mutations in one of several genes interrupts biogenesis of melanosomes, platelet dense bodies, and lysosomes. Affected patients have oculocutaneous albinism, a bleeding diathesis, and sometimes develop granulomatous colitis or pulmonary fibrosis. In order to assess the role of HPS genes in melanosome biogenesis, melanocytes cultured from patients with HPS subtypes 1, 2, or 3 were assessed for the localization of various melanocyte proteins. Tyrosinase, Tyrp1, and Dct/Tyrp2 were atypically and distinctly expressed in HPS-1 and HPS-3 melanocytes, whereas only tyrosinase showed an atypical distribution in HPS-2 melanocytes. The HPS1 and AP3B1 (i.e., HPS-2) gene products showed no expression in HPS-1 and HPS-2 melanocytes, respectively, whereas HPS-3 melanocytes exhibited normal expression for both proteins. In normal human melanocytes, the HPS1 protein was expressed as an approximately 80 kDa molecule with both granular and reticular intracellular profiles. In HPS-1, lysosome associated membrane protein 1 (LAMP1), and LAMP3 were localized to abnormal large granules; in HPS-2, all LAMPs exhibited a normal granular expression; and in HPS-3, LAMP1, and LAMP3 exhibited a distinct less granular and more floccular pattern. In contrast, the expressions of Rab 27, transferrin, and cKit were unaffected in all three HPS genotypes. These data demonstrate that the three initially identified subtypes of human HPS exhibit distinct defects in the trafficking of various melanocyte-specific proteins.
Collapse
|
research-article |
20 |
50 |
149
|
El-Chemaly S, Malide D, Yao J, Nathan SD, Rosas IO, Gahl WA, Moss J, Gochuico BR. Glucose transporter-1 distribution in fibrotic lung disease: association with [¹⁸F]-2-fluoro-2-deoxyglucose-PET scan uptake, inflammation, and neovascularization. Chest 2013; 143:1685-1691. [PMID: 23699745 DOI: 10.1378/chest.12-1359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND [¹⁸F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. METHODS We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. RESULTS In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. CONCLUSIONS Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis.
Collapse
|
Research Support, N.I.H., Intramural |
12 |
49 |
150
|
Benson LA, Li H, Henderson LA, Solomon IH, Soldatos A, Murphy J, Bielekova B, Kennedy AL, Rivkin MJ, Davies KJ, Hsu AP, Holland SM, Gahl WA, Sundel RP, Lehmann LE, Lee MA, Alexandrescu S, Degar BA, Duncan CN, Gorman MP. Pediatric CNS-isolated hemophagocytic lymphohistiocytosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e560. [PMID: 31044148 PMCID: PMC6467688 DOI: 10.1212/nxi.0000000000000560] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 11/15/2022]
Abstract
Objective To highlight a novel, treatable syndrome, we report 4 patients with CNS-isolated inflammation associated with familial hemophagocytic lymphohistiocytosis (FHL) gene mutations (CNS-FHL). Methods Retrospective chart review. Results Patients with CNS-FHL are characterized by chronic inflammation restricted to the CNS that is not attributable to any previously described neuroinflammatory etiology and have germline mutations in known FHL-associated genes with no signs of systemic inflammation. Hematopoietic stem cell transplantation (HCT) can be well tolerated and effective in achieving or maintaining disease remission in patients with CNS-FHL. Conclusions Early and accurate diagnosis followed by treatment with HCT can reduce morbidity and mortality in CNS-FHL, a novel, treatable syndrome. Classification of evidence This study provides Class IV evidence that HCT is well tolerated and effective in treating CNS-FHL.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
49 |