126
|
Nielsen VG. Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin-fibrinogen interactions. Acta Anaesthesiol Scand 2005; 49:1163-71. [PMID: 16095459 DOI: 10.1111/j.1399-6576.2005.00733.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloid-mediated hypocoagulability is clinically important, but the mechanisms responsible for coagulopathy have been incompletely defined. Thus, my goal was to elucidate how colloids decrease plasma coagulation function. Plasma was diluted 0% or 40% with 0.9% NaCl, three different hydroxyethyl starches (HES, mean molecular weight 450, 220 or 130 kDa), or 5% human albumin. Samples (n=6 per condition) were activated with celite, and diluted samples had either no additions or addition of fibrinogen (FI), thrombin (FIIa) or activated Factor XIII (FXIIIa) to restore protein function to prediluted values. Thrombelastographic variables measured included clot propagation (angle, alpha), and clot strength (amplitude, A; or shear elastic modulus, G). Dilution with 0.9% NaCl significantly decreased alpha, A and G-values compared to undiluted samples. Supplementation with FI, but not FIIa or FXIIIa, resulted in 0.9% NaCl-diluted thrombelastographic variable values not different from those of undiluted samples. FI supplementation of HES 450, HES 220, HES 130 and albumin-diluted samples only partially restored alpha, A and G-values compared to undiluted samples. FIIa addition only improved clot propagation and strength in albumin-diluted samples. FXIIIa supplementation improved propagation in samples diluted with HES 450, HES 220 and albumin, and clot strength improved in HES 450 and albumin-diluted plasma. Considered as a whole, these data support compromise of FIIa-FI and FXIIIa--fibrin polymer interactions as the mechanisms by which colloids compromise plasma coagulation. Investigation to determine if clinical enhancement of FXIII activity and/or FI concentration (e.g. fresh-frozen plasma, cryoprecipitate) can attenuate colloid-mediated decreases in hemostasis is warranted.
Collapse
|
|
20 |
95 |
127
|
Knappe S, Wu F, Masikat MR, Morser J, Wu Q. Functional analysis of the transmembrane domain and activation cleavage of human corin: design and characterization of a soluble corin. J Biol Chem 2003; 278:52363-70. [PMID: 14559895 DOI: 10.1074/jbc.m309991200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corin is a cardiac transmembrane serine protease. In cell-based studies, corin converted pro-atrial natriuretic peptide (pro-ANP) to mature ANP, suggesting that corin is potentially the pro-ANP convertase. In this study, we evaluated the importance of the transmembrane domain and activation cleavage in human corin. We showed that a soluble corin that consists of only the extracellular domain was capable of processing recombinant human pro-ANP in cell-based assays. In contrast, a mutation at the conserved activation cleavage site, R801A, abolished the function of corin, demonstrating that the activation cleavage is essential for corin activity. These results allowed us to design, express, and purify a mutant soluble corin, EKsolCorin, that contains an enterokinase recognition sequence at the activation cleavage site. Purified EKsolCorin was activated by enterokinase in a dose-dependent manner. Activated EK-solCorin had hydrolytic activity toward peptide substrates with a preference for Arg and Lys residues in the P-1 position. This activity of EKsolCorin was inhibited by trypsin-like serine protease inhibitors but not inhibitors of chymotrypsin-like, cysteine-, or metallo-proteases. In pro-ANP processing assays, purified active EKsolCorin converted recombinant human pro-ANP to biologically active ANP in a highly sequence-specific manner. The pro-ANP processing activity of EKsolCorin was not inhibited by human plasma. Together, our data indicate that the transmembrane domain is not necessary for the biological activity of corin but may be a mechanism to localize corin at specific sites, whereas the proteolytic cleavage at the activation site is an essential step in controlling the activity of corin.
Collapse
|
Journal Article |
22 |
95 |
128
|
Abstract
When Na+ binds to thrombin, a conformational change is induced that renders the enzyme kinetically faster and more specific in the activation of fibrinogen. Two Na+ binding sites have here been identified crystallographically by exchanging Na+ with Rb+. One is intermolecular, found on the surface between two symmetry-related thrombin molecules. Since it is not present in thrombin crystal structures having different crystal systems, the other Na+ site is the functionally relevant one. The second site has octahedral coordination with the carbonyl oxygen atoms of Arg221A and Lys224 and four conserved water molecules. It is located near Asp189 of the S1 specificity site in an elongated solvent channel (8 x 18 A) formed by four antiparallel beta-strands between Cys182-Cys191 and Val213-Tyr228. This channel, extending from the active site to the opposite surface of the enzyme, was first noted in the hirudin-thrombin structure and contains about 20 conserved water molecules linked together by a hydrogen bonding network that connects to the main chain of thrombin. Although the antiparallel beta-strand interactions of the functional Na+ binding site are the same in prethrombin2, the loops between the strands are very different, so that Asp189 and Arg221A are not positioned properly for either substrate or Na+ binding in prethrombin2. A water molecule with octahedral coordination has also been identified in factor Xa at the topologically equivalent Na+ site position of thrombin. Since activated protein C shows enhanced activity with monovalant cation binding, the same position is probably utilized by Na+. Since thrombin crystals could not be grown in the absence of Na+, the cation was leached from Na(+)-bound thrombin crystals by diffusion/exchange. Although both Na+ and their coordinating water molecules were removed from the Na+ binding sites, the remainder of the thrombin structure was, unexpectedly, the same. The lack of an allosteric change is most likely attributable to crystal packing effects. Thus, the structure of the slow form remains to be established crystallographically.
Collapse
|
|
28 |
93 |
129
|
Vairamani M, Gross ML. G-quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry. J Am Chem Soc 2003; 125:42-3. [PMID: 12515502 DOI: 10.1021/ja0284299] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospray ionization mass spectrometry detected the formation of the G-quadruplex structure of the thrombin-binding aptamer, d(GGTTGGTGTGGTTGG), and established its specific interaction with metal ions. One piece of evidence that the bonding in the gas phase is via the G-quadruplex form is the enhanced binding, with respect to other metal ions, of the aptamer with Sr2+, Pb2+, Ba2+, and K+, which are of similar size. Another is the lack of specific binding with controls in which the G's are replaced with A's. The most convincing evidence is the extent of H/D exchange of the gas-phase aptamer as compared to that bound to K+ and Sr2+. The latter two complexes exchange six and nine fewer H's, indicating a significant increase in protection upon binding to the metals. Mass spectrometry will be an important tool in understanding G-quadruplexes, which are particularly important in DNA telomers.
Collapse
|
|
22 |
93 |
130
|
Zhou Z, Meyerhoff ME. Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials 2005; 26:6506-17. [PMID: 15941584 DOI: 10.1016/j.biomaterials.2005.04.046] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 04/07/2005] [Indexed: 11/20/2022]
Abstract
A new dual acting polymeric coating is described that combines nitric oxide (NO) release with surface-bound active heparin, with the aim of mimicking the nonthrombogenic properties of the endothelial cell (EC) layer that lines the inner wall of healthy blood vessels. A trilayer membrane configuration is employed to create the proposed blood compatible coating. A given polymeric substrate (e.g., the outer surface of a catheter sleeve, etc.) is first coated with a dense polymer layer, followed by a plasticized poly(vinyl chloride) (PVC) or polyurethane (PU) layer doped with a lipophilic N-diazeniumdiolate as the NO donor species. Finally, an outer aminated polymer layer is applied. Porcine heparin is then covalently linked to the outer layer via formation of amide bonds. The surface-bound heparin is shown to possess anti-coagulant activity in the range of 4.80-6.39 mIU/cm2 as determined by a chromogenic anti-Factor Xa assay. Further, the surface NO flux from the underlying polymer layer containing the diazeniumdiolate species can be controlled and maintained at various levels (from 0.5 to 60 x 10(-10) mol cm(-2)min(-1)) for at least 24 h and up to 1 week (depending on the flux level desired) by changing the chemical/polymer composition of the NO release layer. The proposed polymeric coatings are capable of functioning by two complementary anti-thrombotic mechanisms, one based on the potent anti-platelet activity of NO, and the other the result of the ability of immobilized heparin to inhibit Factor Xa and thrombin (Factor IIa). Thus, the proposed polymeric coatings are expected to exhibit greatly enhanced thromboresistivity compared to polymers that utilize either immobilized heparin or NO release alone.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
92 |
131
|
Hedberg EL, Tang A, Crowther RS, Carney DH, Mikos AG. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J Control Release 2002; 84:137-50. [PMID: 12468217 DOI: 10.1016/s0168-3659(02)00261-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Poly(D,L-lactic-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) blend microparticles loaded with the osteogenic peptide TP508 were added to a mixture of poly(propylene fumarate) (PPF), poly(propylene fumarate)-diacrylate (PPF-DA), and sodium chloride (NaCl) for the fabrication of PPF composite scaffolds that could allow for tissue ingrowth as well as for the controlled release of TP508 when implanted in an orthopedic defect site. In this study, PPF composites were fabricated and the in vitro release kinetics of TP508 were determined. TP508 loading within the PLGA/PEG microparticles, PEG content within the PLGA/PEG microparticles, the microparticle content of the PPF composite polymer component, and the leachable porogen initial mass percent of the PPF composites were varied according to a fractional factorial design and the effect of each variable on the release kinetics was determined for up to 28 days. Each composite formulation released TP508 with a unique release profile. The initial release (release through day 1) of the PLGA/PEG microparticles was reduced upon inclusion in the PPF composite formulations. Day 1 normalized cumulative mass release from PPF composites ranged from 0.14+/-0.01 to 0.41+/-0.01, whereas the release from PLGA/PEG microparticles ranged from 0.31+/-0.02 to 0.58+/-0.01. After 28 days, PPF composites released 53+/-4% to 86+/-2% of the entrapped peptide resulting in cumulative mass releases ranging from 0.14+/-0.01 microg TP508/mm(3) scaffold to 2.46+/-0.05 microg TP508/mm(3) scaffold. The results presented here demonstrate that PPF composites can be used for the controlled release of TP508 and that alterations in the composite's composition can lead to modulation of the TP508 release kinetics. These composites can be used to explore the effects varied release kinetics and dosages on the formation of bone in vivo.
Collapse
|
|
23 |
92 |
132
|
Fogelson AL, Tania N. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 34:91-108. [PMID: 16432311 DOI: 10.1159/000089930] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
92 |
133
|
Tucker TJ, Brady SF, Lumma WC, Lewis SD, Gardell SJ, Naylor-Olsen AM, Yan Y, Sisko JT, Stauffer KJ, Lucas BJ, Lynch JJ, Cook JJ, Stranieri MT, Holahan MA, Lyle EA, Baskin EP, Chen IW, Dancheck KB, Krueger JA, Cooper CM, Vacca JP. Design and synthesis of a series of potent and orally bioavailable noncovalent thrombin inhibitors that utilize nonbasic groups in the P1 position. J Med Chem 1998; 41:3210-9. [PMID: 9703466 DOI: 10.1021/jm9801713] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As part of an ongoing effort to prepare therapeutically useful orally active thrombin inhibitors, we have synthesized a series of compounds that utilize nonbasic groups in the P1 position. The work is based on our previously reported lead structure, compound 1, which was discovered via a resin-based approach to varying P1. By minimizing the size and lipophilicity of the P3 group and by incorporating hydrogen-bonding groups on the N-terminus or on the 2-position of the P1 aromatic ring, we have prepared a number of derivatives in this series that exhibit subnanomolar enzyme potency combined with good in vivo antithrombotic and bioavailability profiles. The oxyacetic amide compound 14b exhibited the best overall profile of in vitro and in vivo activity, and crystallographic studies indicate a unique mode of binding in the thrombin active site.
Collapse
|
|
27 |
91 |
134
|
Mandell JG, Baerga-Ortiz A, Akashi S, Takio K, Komives EA. Solvent accessibility of the thrombin-thrombomodulin interface. J Mol Biol 2001; 306:575-89. [PMID: 11178915 DOI: 10.1006/jmbi.2000.4416] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetics of solvent accessibility at the protein-protein interface between thrombin and a fragment of thrombomodulin, TMEGF45, have been monitored by amide hydrogen/deuterium (H/2H) exchange detected by MALDI-TOF mass spectrometry. The interaction is rapid and reversible, requiring development of theory and experimental methods to distinguish H/2H exchange due to solvent accessibility at the interface from H/2H exchange due to complex dissociation. Association and dissociation rate constants were measured by surface plasmon resonance and amide H/2H exchange rates were measured at different pH values and concentrations of TMEGF45. When essentially 100% of the thrombin was bound to TMEGF45, two segments of thrombin became completely solvent-inaccessible, as evidenced by the pH insensitivity of the amide H/2H exchange rates. These segments form part of anion-binding exosite I and contain the residues for which alanine substitution abolishes TM binding. Several other regions of thrombin showed slowing of amide exchange upon TMEGF45 binding, but the exchange remained pH-dependent, suggesting that these regions of thrombin were rendered only partially solvent-inaccessible by TMEGF45 binding. These partially inaccessible regions of thrombin form both surface and buried contacts into the active site of thrombin and contain residues implicated in allosteric changes in thrombin upon TM binding.
Collapse
|
|
24 |
91 |
135
|
Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, Di Cera E. Molecular mapping of thrombin-receptor interactions. Proteins 2001; 45:107-16. [PMID: 11562940 DOI: 10.1002/prot.1130] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In addition to its procoagulant and anticoagulant roles in the blood coagulation cascade, thrombin works as a signaling molecule when it interacts with the G-protein coupled receptors PAR1, PAR3, and PAR4. We have mapped the thrombin epitopes responsible for these interactions using enzymatic assays and Ala scanning mutagenesis. The epitopes overlap considerably, and are almost identical to those of fibrinogen and fibrin, but a few unanticipated differences are uncovered that help explain the higher (90-fold) specificity of PAR1 relative to PAR3 and PAR4. The most critical residues for the interaction with the PARs are located around the active site where mutations affect recognition in the order PAR4 > PAR3 > PAR1. Other important residues for PAR binding cluster in a small area of exosite I where mutations affect recognition in the order PAR1 > PAR3 > PAR4. Owing to this hierarchy of effects, the mutation W215A selectively compromises PAR4 cleavage, whereas the mutation R67A abrogates the higher specificity of PAR1 relative to PAR3 and PAR4. 3D models of thrombin complexed with PAR1, PAR3, and PAR4 are constructed and account for the perturbations documented by the mutagenesis studies.
Collapse
|
|
24 |
91 |
136
|
Bayless KJ, Davis GE. Identification of dual alpha 4beta1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J Biol Chem 2001; 276:13483-9. [PMID: 11278897 DOI: 10.1074/jbc.m011392200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory demonstrates that the alpha(4)beta(1) integrin is an adhesion receptor for OPN and that alpha(4)beta(1) binding site(s) are present in the N-terminal thrombin fragment of osteopontin (OPN) (Bayless, K. J., Meininger, G. A., Scholtz, J. M., and Davis, G. E. (1998) J. Cell Sci. 111, 1165-1174). The work presented here identifies two alpha(4)beta(1) binding sites within a recombinantly produced N-terminal thrombin fragment of human OPN. Initial experiments, using wild-type OPN containing an RGD sequence or an OPN-RGE mutant, showed identical alpha(4)beta(1)-dependent cell adhesive activity. A strategy to localize alpha(4)beta(1) binding sites within the thrombin fragment of osteopontin involved performing a series of truncation analyses. Removal of the last 39 amino acids (130) completely eliminated adhesion, indicating all binding activity was present within that portion of the molecule. Combined mutation and deletion analyses of this region revealed the involvement of dual alpha(4)beta(1) binding sites. Synthetic peptides for both regions in OPN, ELVTDFPTDLPAT (131) and SVVYGLR (162), were found to block alpha(4)beta(1)-dependent adhesion. The first peptide when coupled to Sepharose bound the alpha(4)beta(1) integrin directly whereas a mutated ELVTEFPTELPAT peptide showed a dramatically reduced ability to bind. These data collectively demonstrate that dual alpha(4)beta(1) integrin binding sites are present in a 38 amino acid domain within the N-terminal thrombin fragment of OPN.
Collapse
|
|
24 |
90 |
137
|
Schärer K, Morgenthaler M, Paulini R, Obst-Sander U, Banner DW, Schlatter D, Benz J, Stihle M, Diederich F. Quantification of cation-pi interactions in protein-ligand complexes: crystal-structure analysis of Factor Xa bound to a quaternary ammonium ion ligand. Angew Chem Int Ed Engl 2006; 44:4400-4. [PMID: 15952226 DOI: 10.1002/anie.200500883] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
Research Support, Non-U.S. Gov't |
19 |
90 |
138
|
Maryanoff BE, Qiu X, Padmanabhan KP, Tulinsky A, Almond HR, Andrade-Gordon P, Greco MN, Kauffman JA, Nicolaou KC, Liu A. Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Proc Natl Acad Sci U S A 1993; 90:8048-52. [PMID: 8367461 PMCID: PMC47285 DOI: 10.1073/pnas.90.17.8048] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The macrocyclic peptide cyclotheonamide A (CtA), isolated from the marine sponge Theonella sp., represents an unusual class of serine protease inhibitor. A complex of this inhibitor with human alpha-thrombin, a protease central to the bioregulation of thrombosis and hemostasis, was studied by x-ray crystallography. This work (2.3-A resolution) confirms the structure of CtA and reveals intimate details about its molecular recognition within the enzyme active site. Interactions due to the "Pro-Arg motif" (Arg occupancy of the S1 specificity pocket; formation of a hydrogen-bonded two-strand antiparallel beta-sheet with Ser214-Gly216) and the alpha-keto amide group of CtA are primarily responsible for binding to thrombin, with the alpha-keto amide serving as a transition-state analogue. A special interaction with the "insertion loop" of thrombin (Tyr60A-Thr60I) is manifested through engagement of the hydroxyphenyl group of CtA with Trp60D as part of an "aromatic stacking chain." Biochemical inhibition data (Ki values at 37 degrees C) were obtained for CtA with thrombin and a diverse collection of serine proteases. Thus, CtA is just a moderate inhibitor of human alpha-thrombin (Ki = 0.18 microM) but a potent inhibitor of trypsin (Ki = 0.023 microM) and streptokinase (Ki = 0.035 microM). The relative lack of potency of CtA as a thrombin inhibitor is discussed with respect to certain structural features of the enzyme complex. We also report the total synthesis of CtA, by a convergent [2 + 3] fragment-condensation approach, to serve the preparation of cyclotheonamide analogues for structure-function studies.
Collapse
|
research-article |
32 |
89 |
139
|
Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L. Crystal structure of the complex between thrombin and the central "E" region of fibrin. Proc Natl Acad Sci U S A 2004; 101:2718-23. [PMID: 14978285 PMCID: PMC365687 DOI: 10.1073/pnas.0303440101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonsubstrate interactions of thrombin with fibrin play an important role in modulating its procoagulant activity. To establish the structural basis for these interactions, we crystallized d-Phe-Pro-Arg-chloromethyl ketone-inhibited human thrombin in complex with a fragment, E(ht), corresponding to the central region of human fibrin, and solved its structure at 3.65-A resolution. The structure revealed that the complex consists of two thrombin molecules bound to opposite sides of the central part of E(ht) in a way that seems to provide proper orientation of their catalytic triads for cleavage of fibrinogen fibrinopeptides. As expected, binding occurs through thrombin's anion-binding exosite I. However, only part of it is involved in forming an interface with the complementary negatively charged surface of E(ht). Among residues constituting the interface, Phe-34, Ser-36A, Leu-65, Tyr-76, Arg-77A, Ile-82, and Lys-110 of thrombin and the A alpha chain Trp-33, Phe-35, Asp-38, Glu-39, the B beta chain Ala-68 and Asp-69, and the gamma chain Asp-27 and Ser-30 of E(ht) form a net of polar contacts surrounding a well defined hydrophobic interior. Thus, despite the highly charged nature of the interacting surfaces, hydrophobic contacts make a substantial contribution to the interaction.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
87 |
140
|
Esmon CT, Lollar P. Involvement of thrombin anion-binding exosites 1 and 2 in the activation of factor V and factor VIII. J Biol Chem 1996; 271:13882-7. [PMID: 8662922 DOI: 10.1074/jbc.271.23.13882] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of anion-binding exosites of thrombin in the activation of factor V and factor VIII was studied using thrombin Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala (thrombin RA), a recombinant exosite 2 defective mutant, and a synthetic N-acetylated dodecapeptide, Ac-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-O-SO4Leu (hirugen), which competitively inhibits binding of macromolecules to exosite 1. The catalytic efficiency of the activation of factor VIII or of the first step of factor V activation by thrombin RA was approximately 10% that of wild-type thrombin. The overall rate of conversion to factor Va was not influenced by the mutation. In contrast to factor V, the slow activation of factor VIII by thrombin RA was associated with a decreased rate of cleavage at all three proteolytic sites (Arg372, Arg740, and Arg1689). Hirugen inhibited factor V and factor VIII activation. These results indicate that both anion-binding exosites of thrombin are involved in the recognition of factor V and factor VIII.
Collapse
|
|
29 |
87 |
141
|
Francischetti IM, Valenzuela JG, Ribeiro JM. Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 1999; 38:16678-85. [PMID: 10600131 DOI: 10.1021/bi991231p] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anophelin is a 6.5-kDa peptide isolated from the salivary gland of Anopheles albimanus that behaves as an alpha-thrombin inhibitor. In this paper, kinetic analyses and the study of mechanism of alpha-thrombin inhibition by anophelin were performed. Anophelin was determined to be a reversible, slow, tight-binding inhibitor of alpha-thrombin, displaying a competitive type of inhibition. The binding of anophelin to alpha-thrombin is stoichiometric with a dissociation constant (K(i)) of 5.87 +/- 1.46 pM, a calculated association rate constant (k(1)) of 2.11 +/- 0.06 x 10(8) M(-1) s(-1), and a dissociation rate constant (k(-1)) of 4.05 +/- 0.97 x 10(-4) s(-1). In the presence of 0.15 and 0.4 M NaCl, a 17.6- and 207-fold increase in the K(i) of anophelin-alpha-thrombin complex was observed, respectively, indicating that ionic interactions are important in anophelin-alpha-thrombin complex formation. Incubation of alpha-thrombin with C-terminal hirudin fragment 54-65 that binds to alpha-thrombin anion binding exosite 1 (TABE1) attenuates alpha-thrombin inhibition by anophelin; anophelin also blocks TABE1-dependent trypsin-mediated proteolysis of alpha-thrombin. Using gamma-thrombin, an alpha-thrombin derivative where the anion binding exosite has been disrupted, anophelin behaves as a fast and classical competitive inhibitor of gamma-thrombin hydrolysis of small chromogenic substrate (K(i) = 0. 694 +/- 0.063 nM). In addition, anophelin-gamma-thrombin complex formation is prevented by treatment of the enzyme with D-Phe-Pro-Arg-chloromethyl ketone (PPACK), a reagent that irreversibly blocks the catalytic site of thrombin. It is concluded that anophelin is a potent dual inhibitor of alpha-thrombin because it binds both to TABE1 and to the catalytic site, optimal binding being dependent on the availability of both domains. Finally, anophelin inhibits clot-bound alpha-thrombin with an IC(50) of 45 nM and increases the lag phase that precedes explosive in vitro alpha-thrombin generation after activation of intrinsic pathway of blood coagulation. Because of its unique primary sequence, anophelin may be used as a novel reagent to study the structure and function of alpha-thrombin.
Collapse
|
|
26 |
87 |
142
|
Centi S, Messina G, Tombelli S, Palchetti I, Mascini M. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 2008; 23:1602-9. [PMID: 18313283 DOI: 10.1016/j.bios.2008.01.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
Abstract
Different assay formats based on the coupling of magnetic beads with electrochemical transduction were compared here for the detection of thrombin by using a thrombin specific aptamer. By using the thrombin-binding aptamer, a direct and an indirect competitive assay for thrombin have been developed by immobilising the aptamer or the protein, respectively. Moreover, another strategy was based on the direct measurement of the enzymatic product of thrombin captured by the immobilised aptamer. All the assays were developed by coupling the electrochemical transduction with the innovative and advantageous use of magnetic beads. The assays based on the immobilisation of the protein were not successful since no binding was recorded between thrombin and its aptamer. With the direct competitive assay, when the aptamer was immobilised onto the magnetic beads, a detection limit of 430nM for thrombin was achieved. A lower detection limit for the protein (175nM) was instead obtained by detecting the product of the enzymatic reaction catalysed by thrombin. All these assays were finally compared with a sandwich assay which reached a detection limit of 0.45nM of thrombin demonstrating the best analytical performances. With this comparison the importance of a deep study on the different analytical approaches for thrombin detection to reach the performances of the best assay configuration has been demonstrated.
Collapse
|
Journal Article |
17 |
86 |
143
|
Koh CY, Kazimirova M, Trimnell A, Takac P, Labuda M, Nuttall PA, Kini RM. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. J Biol Chem 2007; 282:29101-13. [PMID: 17684009 DOI: 10.1074/jbc.m705600200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tick saliva contains potent antihemostatic molecules that help ticks obtain their enormous blood meal during prolonged feeding. We isolated thrombin inhibitors present in the salivary gland extract from partially fed female Amblyomma variegatum, the tropical bont tick, and characterized the most potent, variegin, one of the smallest (32 residues) thrombin inhibitors found in nature. Full-length variegin and two truncated variants were chemically synthesized. Despite its small size and flexible structure, variegin binds thrombin with strong affinity (K(i) approximately 10.4 pM) and high specificity. Results using the truncated variants indicated that the seven residues at the N terminus affected the binding kinetics; when removed, the binding characteristics changed from fast to slow. Further, the thrombin active site binding moiety of variegin is in the region of residues 8-14, and the exosite-I binding moiety is within residues 15-32. Our results show that variegin is structurally and functionally similar to the rationally designed thrombin inhibitor, hirulog. However, compared with hirulog, variegin is a more potent inhibitor, and its inhibitory activity is largely retained after cleavage by thrombin.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
86 |
144
|
Abstract
Molecular docking is widely used to predict novel lead compounds for drug discovery. Success depends on the quality of the docking scoring function, among other factors. An imperfect scoring function can mislead by predicting incorrect ligand geometries or by selecting nonbinding molecules over true ligands. These false-positive hits may be considered "decoys". Although these decoys are frustrating, they potentially provide important tests for a docking algorithm; the more subtle the decoy, the more rigorous the test. Indeed, decoy databases have been used to improve protein structure prediction algorithms and protein-protein docking algorithms. Here, we describe 20 geometric decoys in five enzymes and 166 "hit list" decoys-i.e., molecules predicted to bind by our docking program that were tested and found not to do so-for beta-lactamase and two cavity sites in lysozyme. Especially in the cavity sites, which are very simple, these decoys highlight particular weaknesses in our scoring function. We also consider the performance of five other widely used docking scoring functions against our geometric and hit list decoys. Intriguingly, whereas many of these other scoring functions performed better on the geometric decoys, they typically performed worse on the hit list decoys, often highly ranking molecules that seemed to poorly complement the model sites. Several of these "hits"from the other scoring functions were tested experimentally and found, in fact, to be decoys. Collectively, these decoys provide a tool for the development and improvement of molecular docking scoring functions. Such improvements may, in turn, be rapidly tested experimentally against these and related experimental systems, which are well-behaved in assays and for structure determination.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
85 |
145
|
Dang QD, Guinto ER, di Cera E. Rational engineering of activity and specificity in a serine protease. Nat Biotechnol 1997; 15:146-9. [PMID: 9035139 DOI: 10.1038/nbt0297-146] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The discovery of the Na(+)-dependent allosteric regulation in serine proteases makes it possible to control catalytic activity and specificity in this class of enzymes in a way never considered before. We demonstrate that rational site-directed mutagenesis of residues controlling Na+ binding can profoundly after the properties of a serine protease. By suppressing Na+ binding to thrombin, we shift the balance between procoagulant and anticoagulant activities of the enzyme. Those mutants, compared to wild-type, have reduced specificity toward fibrinogen, but enhanced or slightly reduced specificity toward protein C. Because this engineering strategy targets a fundamental regulatory mechanism, it is amenable of extension to other enzymes of biological and pharmacological importance.
Collapse
|
|
28 |
84 |
146
|
Miller MD, Sheridan RP, Kearsley SK. SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions. J Med Chem 1999; 42:1505-14. [PMID: 10229621 DOI: 10.1021/jm9806143] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method SQ has been developed to provide fast, automatic, and objective pairwise three-dimensional molecular alignments. SQ uses an atom-based clique-matching step followed by an alignment scoring function that has been parametrized to recognize pharmacologically relevant atomic properties. Molecular alignments from SQ are consistent with known drug-receptor interactions. We demonstrate this with six pairs of receptor-ligand complexes from the Brookhaven Protein Data Bank. The SQ-generated alignment of one isolated ligand onto another is shown to approximate the alignment of the ligands when the receptors are superimposed. SQ appears to be better than its predecessor SEAL (Kearsley and Smith, Tetrahedron Comput. Methodol. 1990, 3, 615-633) in this regard. SQ has been tailored so that, given one molecule as a probe, it can be used to routinely scan large chemical databases for which precomputed conformations have been stored. The SQ score, a measure of 3D similarity of each candidate molecule to the probe, can be used to rank compounds for the purposes of chemical screening. We demonstrate this with three probes (a thrombin inhibitor, an HIV protease inhibitor, and a model for angiotensin II). In each case SQ can preferentially select from the MDDR database other compounds with the same activity as the probe. We further show, using the angiotensin example, how SQ can identify topologically diverse compounds with the same activity.
Collapse
|
|
26 |
84 |
147
|
Zamolodchikov D, Renné T, Strickland S. The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost 2016; 14:995-1007. [PMID: 26613657 PMCID: PMC4870142 DOI: 10.1111/jth.13209] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Essentials How the Alzheimer's disease (AD) peptide β-amyloid (Aβ) disrupts neuronal function in the disease is unclear. Factor (F) XII initiates blood clotting via FXI, and thrombosis has been implicated in AD. Aβ triggers FXII-dependent FXI and thrombin activation, evidence of which is seen in AD plasma. Aβ-triggered clotting could contribute to neuronal dysfunction in AD and be a novel therapeutic target. SUMMARY Background β-Amyloid (Aβ) is a key pathologic element in Alzheimer's disease (AD), but the mechanisms by which it disrupts neuronal function in vivo are not completely understood. AD is characterized by a prothrombotic state, which could contribute to neuronal dysfunction by affecting cerebral blood flow and inducing inflammation. The plasma protein factor XII triggers clot formation via the intrinsic coagulation cascade, and has been implicated in thrombosis. Objectives To investigate the potential for Aβ to contribute to a prothrombotic state. Methods and results We show that Aβ activates FXII, resulting in FXI activation and thrombin generation in human plasma, thereby establishing Aβ as a possible driver of prothrombotic states. We provide evidence for this process in AD by demonstrating decreased levels of FXI and its inhibitor C1 esterase inhibitor in AD patient plasma, suggesting chronic activation, inhibition and clearance of FXI in AD. Activation of the intrinsic coagulation pathway in AD is further supported by elevated fibrin levels in AD patient plasma. Conclusions The ability of Aβ to promote coagulation via the FXII-driven contact system identifies new mechanisms by which it could contribute to neuronal dysfunction and suggests potential new therapeutic targets in AD.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
84 |
148
|
Stürzebecher J, Prasa D, Hauptmann J, Vieweg H, Wikström P. Synthesis and structure-activity relationships of potent thrombin inhibitors: piperazides of 3-amidinophenylalanine. J Med Chem 1997; 40:3091-9. [PMID: 9301673 DOI: 10.1021/jm960668h] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thrombin is the key enzyme in the blood coagulation system, and inhibitors of its proteolytic activity are of therapeutic interest since they are potential anticoagulants. The most potent inhibitor of the benzamidine type is N alpha-[(2-naphthylsulfonyl)glycyl]-4-amidinophenylalanylpiperid ide (NAPAP). However, NAPAP and other benzamidine derivatives do not show favorable pharmacological properties; above all, they have very low systemic bioavailability after oral administration. The goal of designing new compounds was to obtain potent inhibitors with improved pharmacokinetic properties. Piperazide derivatives of 3-amidinophenylalanine as the key building block were synthesized. The piperazine moiety opened the possibility to introduce quite different substituents on the second nitrogen using common synthetic procedures. Some of the newly synthesized compounds are potent inhibitors of thrombin and offer an approach to study structure-function relationships for inhibition of thrombin and related enzymes and for the improvement of their pharmacokinetic properties.
Collapse
|
|
28 |
84 |
149
|
Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W. Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design. Structure 1996; 4:1353-62. [PMID: 8939759 DOI: 10.1016/s0969-2126(96)00142-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The explosive growth in the rate of X-ray determination of protein structures is fuelled largely by the expectation that structural information will be useful for pharmacological and biotechnological applications. For example, there have been intensive efforts to develop orally administrable antithrombotic drugs using information about the crystal structures of blood coagulation factors, including thrombin. Most of the low molecular weight thrombin inhibitors studied so far are based on arginine and benzamidine. We sought to expand the database of information on thrombin-inhibitor binding by studying new classes of inhibitors. RESULTS We report the structures of three new inhibitors complexed with thrombin, two based on 4-aminopyridine and one based on naphthamidine. We observe several geometry changes in the protein main chain and side chains which accompany inhibitor binding. The two inhibitors based on 4-aminopyridine bind in notably different ways: one forms a water-mediated hydrogen bond to the active site Ser195, the other induces a rotation of the Ser214-Trp215 peptide plane that is unprecedented in thrombin structures. These binding modes also differ in their 'weak' interactions, including CH-O hydrogen bonds and interactions between water molecules and aromatic pi-clouds. Induced-fit structural changes were also seen in the structure of the naphthamidine inhibitor complex. CONCLUSIONS Protein flexibility and variable water structures are essential elements in protein-ligand interactions. Ligand design strategies that fail to take this into account may overlook or underestimate the potential of lead structures. Further, the significance of 'weak' interactions must be considered both in crystallographic refinement and in analysis of binding mechanisms.
Collapse
|
|
29 |
83 |
150
|
Huang CC, Cao Z, Chang HT, Tan W. Protein−Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis. Anal Chem 2004; 76:6973-81. [PMID: 15571349 DOI: 10.1021/ac049158i] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The aptamer-based competitive ACE assay has also been applied to quantify thrombin-anti-thrombin III interaction and to monitor this reaction in real time. The addition of poly(ethylene glycol) to the sample matrix stabilized the complex of the G-Aptthrombin. This assay can be used to study the interactions between thrombin and proteins that do not disrupt G-Apt binding property at Exosit I site of the thrombin. Our aptamer-based ACE assay can be an effective approach for studying protein-protein interactions and for analyzing binding site and binding constant information in protein-protein and protein-DNA interaction studies.
Collapse
|
|
21 |
83 |