151
|
Søviknes AM, Chourrout D, Glover JC. Development of putative GABAergic neurons in the appendicularian urochordateOikopleura dioica. J Comp Neurol 2005; 490:12-28. [PMID: 16041716 DOI: 10.1002/cne.20629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studying the developing brain of urochordates can increase our understanding of brain evolution in the chordate lineage. To begin addressing regional patterns of neuronal differentiation in appendicularian urochordates, we examined the development of putative GABAergic neurons in Oikopleura dioica using GABA immunohistochemistry and in situ hybridization for the GABA-synthesizing enzyme GAD. First, we assessed the developmental dynamics of neuron number and organization in the cerebral and caudal ganglia. We then identified and mapped the positions of putative GABAergic neurons using confocal microscopy. We found GAD mRNA-positive and GABA-immunopositive neurons in the first brain nerves and the cerebral and caudal ganglia, but not in the caudal nerve cord. In both ganglia GAD mRNA-positive and GABA-immunopositive neurons are found in the same characteristic intraganglionic locations. The differentiation of these GABAergic markers occurs first in the first brain nerves and the cerebral ganglion and then with a several-hour delay in the caudal ganglion. In all three structures GAD mRNA expression appears 2-3 hours prior to GABA expression. In general, GABA is expressed by the same number of neurons as express GAD. Several discrepancies suggest differential regulation of the GABAergic phenotype in different neurons, however. Our results show that the GABAergic phenotype has a stereotyped pattern of expression along the anteroposterior axis of the CNS. Given recent genome sequencing and developmental patterning gene studies in this species, the GABAergic neurons in O. dioica provide a good model for assessing, at the invertebrate-vertebrate transition, the molecular mechanisms that specify the GABAergic phenotype.
Collapse
|
152
|
Spitzer N, Antonsen BL, Edwards DH. Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system. J Comp Neurol 2005; 484:261-82. [PMID: 15739232 DOI: 10.1002/cne.20456] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is an important neurotransmitter that is involved in modulation of sensory, motor, and higher functions in many species. In the crayfish, which has been developed as a model for nervous system function for over a century, serotonin modulates several identified circuits. Although the cellular and circuit effects of serotonin have been extensively studied, little is known about the receptors that mediate these signals. Physiological data indicate that identified crustacean cells and circuits are modulated via several different serotonin receptors. We describe the detailed immunocytochemical localization of the crustacean type 1 serotonin receptor, 5-HT1crust, throughout the crayfish nerve cord and on abdominal superficial flexor muscles. 5-HT1crust is widely distributed in somata, including those of several identified neurons, and neuropil, suggesting both synaptic and neurohormonal roles. Individual animals show very different levels of 5-HT1crust immunoreactivity (5-HT(1crust)ir) ranging from preparations with hundreds of labeled cells per ganglion to some containing only a handful of 5-HT(1crust)ir cells in the entire nerve cord. The interanimal variability in 5-HT(1crust)ir is great, but individual nerve cords show a consistent level of labeling between ganglia. Quantitative RT-PCR shows that 5-HT1crust mRNA levels between animals are also variable but do not directly correlate with 5-HT(1crust)ir levels. Although there is no correlation of 5-HT1crust expression with gender, social status, molting or feeding, dominant animals show significantly greater variability than subordinates. Functional analysis of 5-HT1crust in combination with this immunocytochemical map will aid further understanding of this receptor's role in the actions of serotonin on identified circuits and cells.
Collapse
|
153
|
Fonseca DB, Sheehy MRJ, Blackman N, Shelton PMJ, Prior AE. Reversal of a hallmark of brain ageing: lipofuscin accumulation. Neurobiol Aging 2005; 26:69-76. [PMID: 15585347 DOI: 10.1016/j.neurobiolaging.2004.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 01/15/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The prospect of removing cellular deposits of lipofuscin is of considerable interest because they may contribute to age related functional decline and disease. Here, we use a decapod crustacean model to circumvent a number of problems inherent in previous studies on lipofuscin loss. We employ (a) validated lipofuscin quantification methods, (b) an in vivo context, (c) essentially natural environmental conditions and (d) a situation without accelerated production of residual material or (e) application of pharmacological compounds. We use a novel CNS biopsy technique that produces both an anti-ageing effect and also permits longitudinal sampling of individuals, thus (f) avoiding conventional purely cross-sectional population data that may suffer from selective mortality biases. We quantitatively demonstrate that lipofuscin, accrued through normal ageing, can be lost from neural tissue. The mechanism of loss probably involves exocytosis and possibly blood transport. If non-disruptive ways to accelerate lipofuscin removal can be found, our results suggest that therapeutic reversal of this most universal manifestation of cellular ageing may be possible.
Collapse
|
154
|
Jezzini SH, Moroz LL. Identification and distribution of a two-pore domain potassium channel in the CNS of Aplysia californica. ACTA ACUST UNITED AC 2004; 127:27-38. [PMID: 15306118 DOI: 10.1016/j.molbrainres.2004.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 11/26/2022]
Abstract
A cDNA encoding a potassium channel of the two-pore domain family (K2p) of leak channels was cloned from the CNS of the marine opisthobranch Aplysia californica. This is the first sequence of the K2p family identified in molluscs and has been named AcK2p1. The deduced amino acid sequence is homologous to channels of the mammalian two-pore domain halothane inhibited (THIK) subfamily, bearing 46% identity to THIK-1 (KCNK 13) and 48% to THIK-2 (KCNK12). We used in-situ hybridization to analyze the distribution of this class of channels in the CNS. AcK2p1 is specifically expressed in many central neurons of all major ganglia including the largest identified neurons MCC, R2 and LP1. The highest expression of AcK2p1 was detected in an asymmetrical and distinct cluster of up to 30 cells located at the dorsal-medial region of the right pleural ganglion. The neuron-specific distribution seen in the molluscan CNS is consistent with data from mammals that indicate THIK is only expressed in restricted neuronal populations, suggesting its involvement in both the maintenance of neuronal phenotype and in the specific functional role of these neurons in their respective networks.
Collapse
|
155
|
Mekhtiev AA, Kozyrev SA, Nikitin VP, Sherstnev VV. Selective effects of antibodies to protein SMP-69 on the activity of defensive behavior command neurons in the common snail. ACTA ACUST UNITED AC 2004; 34:791-6. [PMID: 15587807 DOI: 10.1023/b:neab.0000038129.66735.ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of antibodies to the serotonin-modulated protein SMP-69 on the activity of defensive behavior command neurons LP11 and RP11 in semi-intact preparations from common snails were studied. Antibody to SMP-69 increased membrane excitability and facilitated neuron responses to chemical sensory stimulation by application of dilute quinine solution to the animal's head, these effects being seen at 1-1.5 h. The synaptic effects of the antibodies were specific, as they had no influence on responses induced by tactile stimulation of the head. The neuronal effects of antibody SMP-69 were similar to changes in the activity of cells LP11 and RP11 induced by serotonin and cAMP, and to changes seen when snails acquired nociceptive sensitization. It seems likely that a protein homologous to mammalian SMP-69 is involved in the mechanisms controlling excitability and long-term specific plasticity of the synaptic inputs to neurons LP11 and RP11 from chemoreceptors on the snail's head.
Collapse
|
156
|
Berger C, Pallavi SK, Prasad M, Shashidhara LS, Technau GM. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat Cell Biol 2004; 7:56-62. [PMID: 15580266 DOI: 10.1038/ncb1203] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 11/11/2004] [Indexed: 11/08/2022]
Abstract
We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes abd-A and Abd-B. They specify the NB6-4a lineage by down-regulating levels of the G1 cyclin, DmCycE (CycE). CycE, which is asymmetrically expressed after the first division of NB6-4t, functions upstream of pros and gcm to specify the neuronal sublineage. Loss of CycE function causes homeotic transformation of NB6-4t to NB6-4a, whereas ectopic CycE induces reverse transformations. However, other components of the cell cycle seem to have a minor role in this process, suggesting a critical role for CycE in regulating cell fate in segment-specific neural lineages.
Collapse
|
157
|
Wei ZJ, Zhang TY, Sun JS, Xu AY, Xu WH, Denlinger DL. Molecular cloning, developmental expression, and tissue distribution of the gene encoding DH, PBAN and other FXPRL neuropeptides in Samia cynthia ricini. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:1151-1161. [PMID: 15670862 DOI: 10.1016/j.jinsphys.2004.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Revised: 10/13/2004] [Accepted: 10/20/2004] [Indexed: 05/24/2023]
Abstract
We obtained a full-length cDNA encoding diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN) in Samia cynthia ricini based on both reverse transciptase-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) strategies. The open reading frame (ORF) of this cDNA encodes a 198-amino acid precursor protein that contains a 33-aa PBAN, a 24-aa DH-like peptide, and three other neuropeptides, all of which share a common C-terminal pentapeptide motif FXPR/KL (X = G, T, S). Samia DH-like and PBAN show high homology to their counterpart in other Lepidoptera. Northern blots demonstrate the presence of a 0.8-kb transcript in the suboesophageal ganglion (SG). The DH-PBAN mRNA was detectable at much lower levels in other neural tissues, such as brain and thoracic ganglia (TG), but not in non-neural tissue, such as the midgut, silk gland, fat body or epidermis. The DH-PBAN mRNA content in the SG was measured using the combined method of quantitative RT-PCR and Southern blotting and was shown to vary with developmental stage. Using an antiserum against Helicoverpa armigera PBAN, PBAN-like immunoreactivity was detected in the SG, TG and terminal abdomen ganglion of S. cynthia ricini by whole-mount immunocytochemistry. The changes of PBAN-like immunoreactivity in the hemolymph are consistent with PBAN transcripts in the SG during pupal development. PBAN increases quickly at adult eclosion, an observation that is consistent with PBAN's key role in pheromone biosynthesis, and synthetic PBAN or brain-SG extracts successfully stimulates pheromone biosynthesis in decapitated moths.
Collapse
|
158
|
Pollák E, Eckert M, Molnár L, Predel R. Differential sorting and packaging of capa-gene related products in an insect. J Comp Neurol 2004; 481:84-95. [PMID: 15558719 DOI: 10.1002/cne.20364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A unique costorage of neuropeptides was recently found in the abdominal perisympathetic organs (PSOs) of the American cockroach, Periplaneta americana. Having specific antisera directed against all peptides belonging to this neurosecretory system, we examined the sorting of PSO-peptides in the soma of the median neurosecretory cells of abdominal ganglia by using immunoelectron microscopic double stainings. The data indicate that all six abundant neuropeptides of this neurohormonal system, which includes three capa-gene related products, are primarily incorporated into separate vesicles. These vesicles fuse with each other in the cytoplasm and become translucent on their way to the axon hillock. By means of light microscopy and MALDI-TOF mass spectrometry, an identical population of neuropeptides was found in interneurons of the brain. As revealed by subsequent immunoelectron microscopic analysis, the peptides of these cells are separately packed into dense core vesicles but do not fuse with each other. Thus, hitherto unknown cell-type-specific sorting mechanisms occur in neurosecretory cells and interneurons, respectively.
Collapse
|
159
|
Borges E, Vuaden FC, Cognato GDP, Fauth MDG, Bonan CD, Turcato G, Rossi ICDC, Dias RD. Effects of starvation on haemolymphatic glucose levels, glycogen contents and nucleotidase activities in different tissues ofHelix aspersa(Müller, 1774) (mollusca, gastropoda). ACTA ACUST UNITED AC 2004; 301:891-7. [PMID: 15673110 DOI: 10.1002/jez.a.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, the glucose concentration in the haemolymph and glycogen levels were determined in the various body parts of the Helix aspersa snail after feeding lettuce ad libitum and after various periods of starvation. To characterize the effect of starvation on nucleotidase activity, enzyme assays were performed on membranes of the nervous ganglia and digestive gland. Results demonstrated the maintenance of the haemolymph glucose concentration for up to 30 days of starvation, probably due to the consumption of glycogen from the mantle. In the nervous ganglia, depletion of glycogen occurs progressively during the different periods of starvation. No significant changes were observed on ATP and ADP hydrolysis in the membranes of nervous ganglia and no alterations in Ca2+ -ATPase and Mg2+ -ATPase occurred in the membranes of the digestive gland of H. aspersa during the different periods of starvation. Although there were no changes in the enzyme activities during starvation, they could be modulated by effectors in situ with concomitant changes in products/reactants during starvation.
Collapse
|
160
|
Zapara TA, Simonova OG, Zharkikh AA, Balestrino M, Ratushniak AS. Seasonal differences and protection by creatine or arginine pretreatment in ischemia of mammalian and molluscan neurons in vitro. Brain Res 2004; 1015:41-9. [PMID: 15223365 DOI: 10.1016/j.brainres.2004.03.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
We investigated the dose-response relationship of protection by creatine against ischemic damage, and we asked whether or not such protection may be observed in invertebrate neurons that might provide a simpler experimental model. Rat isolated pyramidal neurons from the CA3 region of hippocampus subjected to ischemia ("in vitro ischemia") showed anoxic depolarization (AD) after 3-7 min of incubation in anoxic medium. Membrane potential (MP) was reduced 25-78% from preanoxic value. Inward current was decreased by an average 49%. Supplementation with creatine protected against these changes, with 1 mM being the minimal effective concentration, 2 mM providing a near-maximal protection, a maximal effect being obtained with 5 mM creatine. No additional protection was provided by up to 20 mM creatine. Isolated giant neurons of Lymnaea stagnalis showed a similar response to in vitro ischemia. However, a clear seasonal dependence of sensitivity of these cells was detected. In cells obtained during summertime (May-August), AD latency ranged from 3 to 10 min; during wintertime (December-March), this response did not occur even after 25-50 min. The addition of creatine to the medium did not cause changes in AD latency, probably because these neurons rely on a phosphoarginine/arginine energy system. However, treatment of the cells, harvested during summertime, with 2 mM arginine did provide clear protection against anoxic-aglycaemic changes. Summing up, besides confirming previous findings on creatine protection in mammalian neurons, we (1) better characterized their dose-response relationship and extended the findings to the CA3 region and to isolated neurons, (2) found that invertebrate neurons are not protected by creatine but by arginine supplementation and (3) reported a novel mechanism of seasonal dependence in sensitivity of in vitro ischemia by invertebrate neurons.
Collapse
|
161
|
Iwakoshi-Ukena E, Ukena K, Takuwa-Kuroda K, Kanda A, Tsutsui K, Minakata H. Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry. J Comp Neurol 2004; 477:310-23. [PMID: 15305367 DOI: 10.1002/cne.20260] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We recently purified a peptide with structural features similar to vertebrate gonadotropin-releasing hormone (GnRH) from the brain of Octopus vulgaris, cloned a cDNA encoding the precursor protein, and named it oct-GnRH. In the current study, we investigated the expression and distribution of oct-GnRH throughout the central nervous system (CNS) and peripheral organs of Octopus by in situ hybridization on the basis of the cDNA sequence and by immunohistochemistry using a specific antiserum against oct-GnRH. Oct-GnRH mRNA-expressing cell bodies were located in 10 of 19 lobes in the supraesophageal and subesophageal parts of the CNS. Several oct-GnRH-like immunoreactive fibers were seen in all the neuropils of the CNS lobes. The sites of oct-GnRH mRNA expression and the mature peptide distribution were consistent with each other as judged by in situ hybridization and immunohistochemistry. In addition, many immunoreactive fibers were distributed in peripheral organs such as the heart, the oviduct, and the oviducal gland. Modulatory effects of oct-GnRH on the contractions of the heart and the oviduct were demonstrated. The results suggested that, in the context of reproduction, oct-GnRH is a key peptide in the subpedunculate lobe and/or posterior olfactory lobe-optic gland-gonadal axis, an octopus analogue of the hypothalamo-hypophysial-gonadal axis. It may also act as a modulatory factor in controlling higher brain functions such as feeding, memory, movement, maturation, and autonomic functions
Collapse
|
162
|
Hatakeyama D, Fujito Y, Sakakibara M, Ito E. Expression and distribution of transcription factor CCAAT/enhancer-binding protein in the central nervous system of Lymnaea stagnalis. Cell Tissue Res 2004; 318:631-41. [PMID: 15578275 DOI: 10.1007/s00441-004-0965-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/28/2004] [Indexed: 11/30/2022]
Abstract
The transcription factor, CCAAT/enhancer-binding protein (C/EBP), is involved in important physiological processes, such as cellular proliferation and differentiation, homeostasis, and higher-order functions of the brain. In the present study, we investigated the distribution of mRNA and protein of C/EBP in the central nervous system of the pond snail, Lymnaea stagnalis, by in situ hybridization and immunohistochemistry. Specificity of the anti-mammalian C/EBP antibody against Lymnaea C/EBP (LymC/EBP) was confirmed by combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis or isoelectric focusing and immunoblotting. Cells positive for in situ hybridization were immunoreactive for LymC/EBP in all 11 ganglia. The motoneurons (B1, B2, B4, and B4 clusters) in the buccal ganglia and interneurons (cerebral giant cell, CGC) in the cerebral ganglia were positive for in situ hybridization and were immunopositive. In the pedal ganglion, the right pedal dorsal 1 (RPeD1), pedal A, and pedal C clusters exhibited positive signals of in situ hybridization and immunohistochemistry for LymC/EBP. CGC and RPeD1 are key neurons for associative learning. In addition, the neuropeptidergic cells in the cerebral, pleural, parietal, and visceral ganglia were positive for in situ hybridization and immunoreactive. Interestingly, although the cytoplasm of almost all immunopositive cells was stained, some neuropeptidergic cells located in the light parietal and visceral ganglia exhibited immunoreactivity in nuclei. Our results suggest that LymC/EBP is involved in learning and memory and in the expression and/or secretion of neuropeptides in Lymnaea.
Collapse
|
163
|
Reischig T, Petri B, Stengl M. Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res 2004; 318:553-64. [PMID: 15578273 DOI: 10.1007/s00441-004-0927-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Circadian locomotor activity rhythms of the cockroach Leucophaea maderae are driven by two bilaterally paired and mutually coupled pacemakers that reside in the optic lobes of the brain. Transplantation studies have shown that this circadian pacemaker is located in the accessory medulla (AMe), a small neuropil of the medulla of the optic lobe. The AMe is densely innervated by about 12 anterior pigment-dispersing-hormone-immunoreactive (PDH-ir) medulla (PDHMe) neurons. PDH-ir neurons are circadian pacemaker candidates in the fruitfly and cockroach. A subpopulation of these neurons also appears to connect both optic lobes and may constitute at least one of the circadian coupling pathways. To determine whether PDHMe neurons directly connect both accessory medullae, we injected rhodamine-labeled dextran as neuronal tracer into one AMe and performed PDH immunocytochemistry. Double-labeled fibers in the anterior, shell, and internodular neuropil of the AMe contralaterally to the injection site showed that PDH-ir fibers directly connect both accessory medullae. This connection is formed by three anterior PDHMe neurons of each optic lobe, which, thus, fulfill morphological criteria for a direct circadian coupling pathway. Our double-label studies also showed that all except one of the midbrain projection areas of anterior PDHMe neurons were innervated ipsilaterally and contralaterally. Thus, anterior PDHMe neurons seem to play multiple roles in generating circadian rhythms. They also deliver timing information output and perform mutual pacemaker coupling in L. maderae.
Collapse
|
164
|
Yamanaka A, Imai H, Adachi M, Komatsu M, Islam ATMF, Kodama I, Kitazawa C, Endo K. Hormonal Control of the Orange Coloration of Diapause Pupae in the Swallowtail Butterfly, Papilio xuthus L. (Lepidoptera: Papilionidae). Zoolog Sci 2004; 21:1049-55. [PMID: 15514474 DOI: 10.2108/zsj.21.1049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diapause pupae of Papilio xuthus show color polymorphism, represented by diapause-green, orange, and brownish-orange types that are each associated with specific pupation sites. We investigated the role of the site of pupation on the induction of the development of orange types (or brownish-orange types), and the endocrine mechanism underlying the control of color polymorphism in short-day pupae. All short-day larvae of the wandering stage developed into orange or brownish-orange type pupae when they were placed in rough-surfaced containers after gut-purge. Utilizing a pharate pupal ligation between the thorax and abdomen, the endocrine mechanism underlying the control of color polymorphism was shown to involve a head-thorax factor (Orange-Pupa-Inducing Factor: OPIF) that induced orange types in short-day pupae. OPIF was bioassayed using the ligated abdomens of short-day pharate pupae. OPIF was extractable with 2% NaCl solution from 5th-instar larval ganglia complexes following the mesothoracic complex (TG(2,3)-AG(1-7)), but it could not be extracted with either acetone or 80% ethanol solution. OPIF may not exist in the brains of day-0 pupae or in brain-subesophageal ganglion and prothoracic ganglion complexes of 5th-instar larvae. The short-day pharate pupae responded to OPIF in a dose-dependent manner.
Collapse
|
165
|
Zhu W, Mantione KJ, Stefano GB. Reticuline exposure to invertebrate ganglia increases endogenous morphine levels. NEURO ENDOCRINOLOGY LETTERS 2004; 25:323-30. [PMID: 15580165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 09/12/2004] [Indexed: 05/01/2023]
Abstract
OBJECTIVES Given the presence of morphine, its metabolites and precursors in mammalian and invertebrate tissues, it became important to determine if exposing tissues to an opiate alkaloid precursor, reticuline, would result in increasing endogenous morphine levels. METHOD Endogenous morphine levels were determined by high pressure liquid chromatography coupled to electrochemical detection and radioimmunoassay following incubation of Mytilus edulis pedal ganglia with reticuline. Nitric oxide (NO) release was determined in real-time via an amperometric probe. Mu opiate receptor affinity for opiate alkaloid precursors was determined by a receptor displacement assay. RESULTS Morphine is present in the pedal ganglia of Mytilus edulis (1.43 +/- 0.41 ng/mg +/- SEM ganglionic wet weight). Ganglia incubated with 50 ng of reticuline, a morphine precursor in plants, for 1 hour exhibited a statistical increase in their endogenous morphine levels (6.7 +/- 0.7 ng/mg tissue wet weight; P<0.01). This phenomenon is concentration dependent. The increase in ganglionic morphine levels occurs gradually over the 60 min incubation period, beginning 10 minutes post reticuline addition. We show that reticuline (10(-6) M) does not stimulate ganglionic NO release in a manner resembling that of morphine (10(-6) M), which releases NO seconds after its exposure to the ganglia and lasts for 5 minutes. With reticuline, there is a 3 minute delay, which is followed by an extended release period. Furthermore, in binding displacement experiments both reticuline and salutaridine (another morphine precursor) exhibit no binding affinity for the pedal ganglia mu opiate receptor subtype. This finding is further substantiated using the positive control of human monocytes where the mu3 opiate receptor subtype has been cloned. CONCLUSION Taken together, we surmise that the morphine's precursors are being converted to morphine. The experiments strongly indicate that pedal ganglia can synthesize morphine from reticuline.
Collapse
|
166
|
Geddis MS, Tornieri K, Giesecke A, Rehder V. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones. ACTA ACUST UNITED AC 2004; 57:53-67. [PMID: 14648557 DOI: 10.1002/cm.10156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neuronal growth cone provides the sensory and motor structure that guides neuronal processes to their target. The ability of a growth cone to navigate correctly depends on its filopodia, which sample the environment by continually extending and retracting as the growth cone advances. Several second messengers systems that are activated upon contact with extracellular cues have been reported to affect growth cone morphology by changing the length and number of filopodia. Because recent studies have suggested that guidance cues can signal via G-protein coupled receptors to regulate phospholipases, we here investigated whether phospholipase A2 (PLA2) may control filopodial dynamics and could thereby affect neuronal pathfinding. Employing identified Helisoma neurons in vitro, we demonstrate that inhibition of PLA2 with 2 microM BPB caused a 40.3% increase in average filopodial length, as well as a 37.3% reduction in the number of filopodia on a growth cone. The effect of PLA2 inhibition on filopodial length was mimicked by the inhibition of G-proteins with 500 ng/ml pertussis toxin and was partially blocked by the simultaneous activation of PLA2 with 50 nM melittin. We provide evidence that PLA2 acts via production of arachidonic acid (AA), because (1) the effect of inhibition of PLA2 could be counteracted by supplying AA exogenously, and (2) the inhibition of cyclooxygenase, which metabolizes AA into prostaglandins, also increased filopodial length. We conclude that filopodial contact with extracellular signals that alter the activity of PLA2 can control growth cone morphology and may affect neuronal pathfinding by regulating the sensory radius of navigating growth cones.
Collapse
|
167
|
Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci U S A 2004; 101:14294-9. [PMID: 15381765 PMCID: PMC521149 DOI: 10.1073/pnas.0405968101] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Indexed: 11/18/2022] Open
Abstract
Migratory birds can use a magnetic compass for orientation during their migratory journeys covering thousands of kilometers. But how do they sense the reference direction provided by the Earth's magnetic field? Behavioral evidence and theoretical considerations have suggested that radical-pair processes in differently oriented, light-sensitive molecules of the retina could enable migratory birds to perceive the magnetic field as visual patterns. The cryptochromes (CRYs) have been suggested as the most likely candidate class of molecules, but do CRYs exist in the retina of migratory birds? Here, we show that at least one CRY1 and one CRY2 exist in the retina of migratory garden warblers and that garden-warbler CRY1 (gwCRY1) is cytosolic. We also show that gwCRY1 is concentrated in specific cells, particularly in ganglion cells and in large displaced ganglion cells, which also showed high levels of neuronal activity at night, when our garden warblers performed magnetic orientation. In addition, there seem to be striking differences in CRY1 expression between migratory and nonmigratory songbirds at night. The difference in CRY1 expression between migrants and nonmigrants is particularly pronounced in the large displaced ganglion cells known to project exclusively to a brain area where magnetically sensitive neurons have been reported. Consequently, cytosolic gwCRY1 is well placed to possibly be the primary magnetic-sensory molecule required for light-mediated magnetoreception.
Collapse
|
168
|
Stuart JN, Ebaugh JD, Copes AL, Hatcher NG, Gillette R, Sweedler JV. Systemic serotonin sulfate in opisthobranch mollusks. J Neurochem 2004; 90:734-42. [PMID: 15255952 DOI: 10.1111/j.1471-4159.2004.02538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous modulatory neurotransmitter with roles as a neurohormone and neurotransmitter. However, few studies have been performed characterizing this molecule and its related metabolites in circulating fluids. Here, we demonstrate native 5-HT sulfate, but much lower levels of 5-HT, in hemolymph of the marine mollusk Pleurobranchaea californica. The metabolite 5-HT sulfate forms from 5-HT uptake and metabolism in central ganglia of Aplysia californica and in the visceral nerve and eye of Pleurobranchaea, but not in hemolymph itself. In addition, 5-hydroxyindole acetic acid (5-HIAA), while not detected in hemolymph, forms in higher quantities than does 5-HT sulfate in the eye and visceral nerve, and gamma-glu-5-HT is also observed in this area but never in hemolymph. As systemic 5-HT sulfate appears not to originate from the optic region or from systemic 5-HT, 5-HT sulfate likely derives from the nervous system. Circulating 5-HT sulfate is at least 10-fold higher during the light portion of a 12 : 12-h light/dark cycle than during the dark portion (p < 0.0007), but there is no obvious trend for free systemic tryptophan (Trp) (p > 0.3) in Pleurobranchaea. 5-HT in mollusks is associated with general arousal state; thus, diurnal systemic changes in a 5-HT catabolite may reflect a regulatory role for indole catabolism in behavioral rhythms.
Collapse
|
169
|
Verleyen P, Clynen E, Huybrechts J, Van Lommel A, Vanden Bosch L, De Loof A, Zdarek J, Schoofs L. Fraenkel's pupariation factor identified at last. Dev Biol 2004; 273:38-47. [PMID: 15302596 DOI: 10.1016/j.ydbio.2004.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/06/2004] [Indexed: 11/30/2022]
Abstract
Thirty-five years ago, Zdarek and Fraenkel demonstrated that nervous tissue extracts influenced development by accelerating pupariation in the grey flesh fly, Neobellieria bullata. We have now identified this pupariation factor as SVQFKPRLamide, designated Neb-pyrokinin-2 (Neb-PK-2). To achieve this, the central nervous system of N. bullata wandering stage larvae, that is, preceding pupariation, were dissected and extracted before HPLC separation. Chromatographic fractions were screened with a bioassay for pupariation accelerating activity. Only one fraction showed huge pupariation activity. Mass spectrometry revealed the presence of a pyrokinin, whose primary sequence could not be unequivocally determined by tandem mass spectrometry. However, this Neb-pyrokinin appeared to be very prominent in the ring gland from which it was subsequently purified and identified. Synthetic Neb-PK-2 accelerates pupariation with a threshold dose of only 0.2 pmol and therefore, Neb-pyrokinin is considered to be the genuine pupariation factor. The immunohistochemical distribution pattern of Neb-PK-2 is very similar to that of Drosophila pyrokinin-2, from which it differs by only one amino acid residue. Hence, the recently identified G-protein coupled receptors (CG8784, CG8795) for Drosophila pyrokinin-2 might play an important role in puparium formation.
Collapse
|
170
|
Na SY, Sung DK, Kim KK, Kim KM, Kim JH, Park HH, Lee SM, Seong SI, Chang JS, Hwang JS, Kang SW, Kim HR, Lee BH. FMRFamide-Expressing Efferent Neurons in Eighth Abdominal Ganglion Innervate Hindgut in the Silkworm, Bombyx mori. Zoolog Sci 2004; 21:805-11. [PMID: 15333991 DOI: 10.2108/zsj.21.805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tetrapeptide FMRFamide is known to affect both neural function and gut contraction in a wide variety of invertebrates and vertebrates, including insect species. This study aimed to find a pattern of innervation of specific FMRFamide-labeled neurons from the abdominal ganglia to the hindgut of the silkworm Bombyx mori using the immunocytochemical method. In the 1st to the 7th abdominal ganglia, labeled efferent neurons that would innervate the hindgut could not be found. However, in the 8th abdominal ganglion, three pairs of labeled specific efferent neurons projected axons into the central neuropil to eventually innervate the hindgut. Both axons of two pairs of labeled cell bodies in the lateral rind and axons of one pair of labeled cell bodies in the posterior rind extended to the central neuropil and formed contralateral tracts of a labeled neural tract with a semi-circular shape. These labeled axons ran out to one pair of bilateral cercal nerves that extended out from the posterior end of the 8th abdominal ganglion and finally to the innervated hindgut. These results provide valuable information for detecting the novel function of FMRFamide-related peptides in metamorphic insect species.
Collapse
|
171
|
Sakai M, Kumashiro M. Auto-spermatophore extrusion reveals that the reproductive timer functions in the separated terminal abdominal ganglion in the male cricket. ACTA BIOLOGICA HUNGARICA 2004; 55:113-20. [PMID: 15270224 DOI: 10.1556/abiol.55.2004.1-4.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Auto-spermatophore extrusion is a kind of spermatophore extrusion without genital coupling in the male cricket. It rarely occurred in intact males paired with a female, while it frequently occurred in all the males with the connectives cut under restraint and dissection. The time interval (SPaSE) between spermatophore preparation and auto-spermatophore extrusion was found to be comparable to that (RS2) of the time-fixed sexually refractory stage measured by the calling song. According to extracellular spike recording, the dorsal pouch motoneuron (mDP), which singly innervates the dorsal pouch muscles and is responsible for spermatophore extrusion, showed a burst discharge in association with auto-spermatophore extrusion with an interval similar to RS2 in males with the connectives transected between the 6th abdominal ganglion and the terminal abdominal ganglion (TAG) after spermatophore preparation. These results strengthened our previous conclusion that the reproductive timer for RS2 is located in the TAG, and demonstrated that it functions normally even in the TAG separated from the rest of the central nervous system.
Collapse
|
172
|
Kim HW, Batista LA, Hoppes JL, Lee KJ, Mykles DL. A crustacean nitric oxide synthase expressed in nerve ganglia, Y-organ,gill and gonad of the tropical land crab,Gecarcinus lateralis. J Exp Biol 2004; 207:2845-57. [PMID: 15235013 DOI: 10.1242/jeb.01117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYNO signaling is involved in many physiological processes in invertebrates. In crustaceans, it plays a role in the regulation of the nervous system and muscle contraction. Nested reverse transcription-polymerase chain reaction(RT-PCR) and 5′ and 3′ rapid amplification of cDNA ends (RACE) PCR generated a full-length cDNA sequence (3982 bp) of land crab NO synthase(Gl-NOS) from molting gland (Y-organ) and thoracic ganglion mRNA. The open reading frame encoded a protein of 1199 amino acids with an estimated mass of 135 624 Da. Gl-NOS had the highest sequence identity with insect NOS. The amino acid sequences for binding heme and tetrahydrobiopterin in the oxygenase domain, binding calmodulin and binding FMN, FAD and NADPH in the reductase domain were highly conserved. Gl-NOS had single amino acid differences in all three highly conserved FAD-binding sequences, which distinguished it from other NOS sequences. RT-PCR showed that the Gl-NOS mRNA was present in testis,ovary, gill, eyestalk neural ganglia, thoracic ganglion and Y-organ. NOS mRNA varied between preparations of Y-organ, thoracic ganglion and gill, while NOS mRNA was at consistently high levels in the ovary, testis and eyestalk ganglia. Immunohistochemistry confirmed that the Gl-NOS protein was expressed in Y-organ, ovary and gill. These results suggest that NOS has functions in addition to neuromodulation in adults, such as regulating or modulating ecdysteroid synthesis in the Y-organ.
Collapse
|
173
|
Cohen-Armon M, Visochek L, Katzoff A, Levitan D, Susswein AJ, Klein R, Valbrun M, Schwartz JH. Long-Term Memory Requires PolyADP-ribosylation. Science 2004; 304:1820-2. [PMID: 15205535 DOI: 10.1126/science.1096775] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PolyADP-ribose-polymerase 1 is activated in neurons that mediate several forms of long-term memory in Aplysia. Because polyADP-ribosylation of nuclear proteins is a response to DNA damage in virtually all eukaryotic cells, it is surprising that activation of the polymerase occurs during learning and is required for long-term memory. We suggest that fast and transient decondensation of chromatin structure by polyADP-ribosylation enables the transcription needed to form long-term memory without strand breaks in DNA.
Collapse
|
174
|
Zhang TY, Sun JS, Zhang QR, Xu J, Jiang RJ, Xu WH. The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:547-554. [PMID: 15183284 DOI: 10.1016/j.jinsphys.2004.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 03/10/2004] [Accepted: 03/15/2004] [Indexed: 05/24/2023]
Abstract
FXPRLamide peptides encoded by the DH-PBAN (diapause hormone-pheromone biosynthesis activating neuropeptide) gene induce embryonic diapause in Bombyx mori, but terminate pupal diapause in Helicoverpa armigera (Har). Here, we explore the mechanisms of terminating pupal diapause by the FXPRLamide peptides. Using quantitative RT-PCR, we observed that expression of Har-DH-PBAN mRNA in the SG of nondiapause-type pupae was significantly higher than in diapause-type pupae. Immunocytochemical results indicated that the level of FXPRLamide peptides and axonal release are related to the diapause decision. Ecdysteroidogenesis in prothoracic glands (PGs) was stimulated by synthetic Har-DH in vivo and in vitro, and labeled Har-DH bound to the membrane of the PG, thus suggesting that DH breaks diapause by activating the PG to synthesize ecdysone. Furthermore, the response of DH in terminating diapause was temperature dependent. Decerebration experiments showed that the brain can control pupal development through the regulation of DH, and DH can terminate diapause and promote development without the brain. This result suggests a possible mechanism of response for the signals of DH and other FXPRLamide peptides in H. armigera.
Collapse
|
175
|
Liu J, Hu JY, Schacher S, Schwartz JH. The two regulatory subunits of aplysia cAMP-dependent protein kinase mediate distinct functions in producing synaptic plasticity. J Neurosci 2004; 24:2465-74. [PMID: 15014122 PMCID: PMC6729487 DOI: 10.1523/jneurosci.4331-03.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the cAMP-dependent protein kinase (PKA) is critical for both short- and long-term facilitation in Aplysia sensory neurons. There are two types of the kinase, I and II, differing in their regulatory (R) subunits. We cloned Aplysia RII; RI was cloned previously. Type I PKA is mostly soluble in the cell body whereas type II is enriched at nerve endings where it is bound to two prominent A kinase-anchoring-proteins (AKAPs). Disruption of the binding of RII to AKAPs by Ht31, an inhibitory peptide derived from a human thyroid AKAP, prevents both the short- and the long-term facilitation produced by serotonin (5-HT). During long-term facilitation, RII is transcriptionally upregulated; in contrast, the amount of RI subunits decreases, and previous studies have indicated that the decrease is through ubiquitin-proteosome-mediated proteolysis. Experiments with antisense oligonucleotides injected into the sensory neuron cell body show that the increase in RII protein is essential for the production of long-term facilitation. Using synaptosomes, we found that 5-HT treatment causes RII protein to increase at nerve endings. In addition, using reverse transcription-PCR, we found that RII mRNA is transported from the cell body to nerve terminals. Our results suggest that type I operates in the nucleus to maintain cAMP response element-binding protein-dependent gene expression, and type II PKA acts at sensory neuron synapses phosphorylating proteins to enhance release of neurotransmitter. Thus, the two types of the kinase have distinct but complementary functions in the production of facilitation at synapses of an identified neuron.
Collapse
|