176
|
Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288:2379-81. [PMID: 10875926 DOI: 10.1126/science.288.5475.2379] [Citation(s) in RCA: 702] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the escalation of obesity-related disease, there is great interest in defining the mechanisms that control appetite and body weight. We have identified a link between anabolic energy metabolism and appetite control. Both systemic and intracerebroventricular treatment of mice with fatty acid synthase (FAS) inhibitors (cerulenin and a synthetic compound C75) led to inhibition of feeding and dramatic weight loss. C75 inhibited expression of the prophagic signal neuropeptide Y in the hypothalamus and acted in a leptin-independent manner that appears to be mediated by malonyl-coenzyme A. Thus, FAS may represent an important link in feeding regulation and may be a potential therapeutic target.
Collapse
|
177
|
Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 2000; 97:3450-4. [PMID: 10716717 PMCID: PMC16260 DOI: 10.1073/pnas.97.7.3450] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Compared to normal human tissues, many common human cancers, including carcinoma of the colon, prostate, ovary, breast, and endometrium, express high levels of fatty acid synthase (FAS, EC ), the primary enzyme responsible for the synthesis of fatty acids. This differential expression of FAS between normal tissues and cancer has led to the notion that FAS is a target for anticancer drug development. Recent studies with C75, an inhibitor of fatty acid synthesis, have shown significant antitumor activity with concomitant inhibition of fatty acid synthesis in tumor tissue and normal liver. Importantly, histopathological analysis of normal tissues after C75 treatment showed no adverse effects on proliferating cellular compartments, such as bone marrow, gastrointestinal tract, skin, or lymphoid tissues. In this study, we describe the de novo synthesis of C75 based on the known mechanism of action of cerulenin and the theoretical reaction intermediates of the beta-ketoacyl synthase moiety of FAS. In addition, we demonstrate that C75 is a synthetic, chemically stable inhibitor of FAS. C75 inhibits purified mammalian FAS with characteristics of a slow-binding inhibitor and also inhibits fatty acid synthesis in human cancer cells. Treatment of human breast cancer cells with [5-(3)H]C75 demonstrates that C75 reacts preferentially with FAS in whole cells. Therefore, we have shown that the primary mechanism of the antitumor activity of C75 is likely mediated through its interaction with, and inhibition of, FAS. This development will enable the in vivo study of FAS inhibition in human cancer and other metabolic diseases.
Collapse
|
178
|
Challis GL, Ravel J, Townsend CA. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. CHEMISTRY & BIOLOGY 2000; 7:211-24. [PMID: 10712928 DOI: 10.1016/s1074-5521(00)00091-0] [Citation(s) in RCA: 641] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large modular proteins that selectively bind, activate and condense amino acids in an ordered manner. Substrate recognition and activation occurs by reaction with ATP within the adenylation (A) domain of each module. Recently, the crystal structure of the A domain from the gramicidin synthetase (GrsA) with L-phenylalanine and adenosine monophosphate bound has been determined. RESULTS Critical residues in all known NRPS A domains have been identified that align with eight binding-pocket residues in the GrsA A domain and define sets of remarkably conserved recognition templates. Phylogenetic relationships among these sets and the likely specificity determinants for polar and nonpolar amino acids were determined in light of extensive published biochemical data for these enzymes. The binding specificity of greater than 80% of the known NRPS A domains has been correlated with more than 30 amino acid substrates. CONCLUSIONS The analysis presented allows the specificity of A domains of unknown function (e.g. from polymerase chain reaction amplification or genome sequencing) to be predicted. Furthermore, it provides a rational framework for altering of A domain specificity by site-directed mutagenesis, which has significant potential for engineering the biosynthesis of novel natural products.
Collapse
|
179
|
Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA, Kuhajda FP. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 2000; 60:213-8. [PMID: 10667561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
A biologically aggressive subset of human breast cancers and other malignancies is characterized by elevated fatty-acid synthase (FAS) enzyme expression, elevated fatty acid (FA) synthesis, and selective sensitivity to pharmacological inhibition of FAS activity by cerulenin or the novel compound C75. In this study, inhibition of FA synthesis at the physiologically regulated step of carboxylation of acetyl-CoA to malonyl-CoA by 5-(tetradecyloxy)-2-furoic acid (TOFA) was not cytotoxic to breast cancer cells in clonogenic assays. FAS inhibitors induced a rapid increase in intracellular malonyl-CoA to several fold above control levels, whereas TOFA reduced intracellular malonyl-CoA by 60%. Simultaneous exposure of breast cancer cells to TOFA and an FAS inhibitor resulted in significantly reduced cytotoxicity and apoptosis. Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with C75 showed FA synthesis inhibition, apoptosis, and inhibition of tumor growth to less than 1/8 of control volumes, without comparable toxicity in normal tissues. The data suggest that differences in intermediary metabolism render tumor cells susceptible to toxic fluxes in malonyl-CoA, both in vitro and in vivo.
Collapse
|
180
|
Keller NP, Watanabe CM, Kelkar HS, Adams TH, Townsend CA. Requirement of monooxygenase-mediated steps for sterigmatocystin biosynthesis by Aspergillus nidulans. Appl Environ Microbiol 2000; 66:359-62. [PMID: 10618248 PMCID: PMC91830 DOI: 10.1128/aem.66.1.359-362.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterigmatocystin (ST) and aflatoxin B(1) (AFB(1)) are two polyketide-derived Aspergillus mycotoxins synthesized by functionally identical sets of enzymes. ST, the compound produced by Aspergillus nidulans, is a late intermediate in the AFB(1) pathway of A. parasiticus and A. flavus. Previous biochemical studies predicted that five oxygenase steps are required for the formation of ST. A 60-kb ST gene cluster in A. nidulans contains five genes, stcB, stcF, stcL, stcS, and stcW, encoding putative monooxygenase activities. Prior research showed that stcL and stcS mutants accumulated versicolorins B and A, respectively. We now show that strains disrupted at stcF, encoding a P-450 monooxygenase similar to A. parasiticus avnA, accumulate averantin. Disruption of either StcB (a putative P-450 monooxygenase) or StcW (a putative flavin-requiring monooxygenase) led to the accumulation of averufin as determined by radiolabeled feeding and extraction studies.
Collapse
|
181
|
Iwata-Reuyl D, Basak A, Townsend CA. β-Secondary Kinetic Isotope Effects in the Clavaminate Synthase-Catalyzed Oxidative Cyclization of Proclavaminic Acid and in Related Azetidinone Model Reactions. J Am Chem Soc 1999. [DOI: 10.1021/ja992649d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
182
|
Khaleeli N, Li R, Townsend CA. Origin of the β-Lactam Carbons in Clavulanic Acid from an Unusual Thiamine Pyrophosphate-Mediated Reaction. J Am Chem Soc 1999. [DOI: 10.1021/ja9923134] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
183
|
Graybill TL, Casillas EG, Pal K, Townsend CA. Silyl Triflate-Mediated Ring-Closure and Rearrangement in the Synthesis of Potential Bisfuran-Containing Intermediates of Aflatoxin Biosynthesis. J Am Chem Soc 1999. [DOI: 10.1021/ja990591x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
184
|
Casillas LK, Townsend CA. Total Synthesis of O-Methylsterigmatocystin Using N-Alkylnitrilium Salts and Carbonyl−Alkene Interconversion in a New Xanthone Synthesis. J Org Chem 1999. [DOI: 10.1021/jo990099w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
185
|
Zhou J, Gunsior M, Bachmann BO, Townsend CA, Solomon EI. Substrate Binding to the α-Ketoglutarate-Dependent Non-Heme Iron Enzyme Clavaminate Synthase 2: Coupling Mechanism of Oxidative Decarboxylation and Hydroxylation. J Am Chem Soc 1998. [DOI: 10.1021/ja983534x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
186
|
Pitlik J, Townsend CA. Efficient syntheses of multiply 2H- and 13C-labeled acrylic acid, glyceric acid, glycidic acid and glycerol. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199712)39:12<999::aid-jlcr45>3.0.co;2-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
187
|
|
188
|
Reeve AM, Breazeale SD, Townsend CA. Purification, characterization, and cloning of an S-adenosylmethionine-dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis. J Biol Chem 1998; 273:30695-703. [PMID: 9804844 DOI: 10.1074/jbc.273.46.30695] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine:nocardicin 3-amino-3-carboxypropyltransferase catalyzes the biosynthetically rare transfer of the 3-amino-3-carboxypropyl moiety from S-adenosylmethionine to a phenolic site in the beta-lactam substrates nocardicin E, F, and G, a late step of the biosynthesis of the monocyclic beta-lactam antibiotic nocardicin A. Whereas a number of conventional methods were ineffective in purifying the transferase, it was successfully obtained by two complementary affinity chromatography steps that took advantage of the two substrate-two product reaction scheme. S-Adenosylhomocysteine-agarose selected enzymes that utilize S-adenosylmethionine, and a second column, nocardicin A-agarose, specifically bound the desired transferase to yield the enzyme as a single band of 38 kDa on a silver-stained SDS-polyacrylamide gel. The transferase is active as a monomer and exhibits sequential kinetics. Further kinetic characterization of this protein is described and its role in the biosynthesis of nocardicin A discussed. The gene encoding this transferase was cloned from a sublibrary of Nocardia uniformis DNA. Translation gave a protein of deduced mass 32,386 Da which showed weak homology to small molecule methyltransferases. However, three correctly disposed signature motifs characteristic of these enzymes were observed.
Collapse
|
189
|
Bachmann BO, Li R, Townsend CA. beta-Lactam synthetase: a new biosynthetic enzyme. Proc Natl Acad Sci U S A 1998; 95:9082-6. [PMID: 9689037 PMCID: PMC21295 DOI: 10.1073/pnas.95.16.9082] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1998] [Accepted: 06/04/1998] [Indexed: 02/08/2023] Open
Abstract
The principal cause of bacterial resistance to penicillin and other beta-lactam antibiotics is the acquisition of plasmid-encoded beta-lactamases, enzymes that catalyze hydrolysis of the beta-lactam bond and render these antibiotics inactive. Clavulanic acid is a potent inhibitor of beta-lactamases and has proven clinically effective in combating resistant infections. Although clavulanic acid and penicillin share marked structural similarities, the biosyntheses of their bicyclic nuclei are wholly dissimilar. In contrast to the efficient iron-mediated oxidative cyclization of a tripeptide to isopenicillin N, the critical beta-lactam ring of clavulanic acid is demonstrated to form by intramolecular closure catalyzed by a new type of ATP/Mg2+-dependent enzyme, a beta-lactam synthetase (beta-LS). Insertional inactivation of its encoding gene in wild-type Streptomyces clavuligerus resulted in complete loss of clavulanic acid production and the accumulation of N2-(carboxyethyl)-L-arginine (CEA). Chemical complementation of this blocked mutant with authentic deoxyguanidinoproclavaminic acid (DGPC), the expected product of the beta-LS, restored clavulanic acid synthesis. Finally, overexpression of this gene gave the beta-LS, which was shown to mediate the conversion of CEA to DGPC in the presence of ATP/Mg2+. Primary amino acid sequence comparisons suggest that this mode of beta-lactam formation could be more widely spread in nature and mechanistically related to asparagine synthesis.
Collapse
|
190
|
Watanabe CMH, Townsend CA. The in Vitro Conversion of Norsolorinic Acid to Aflatoxin B1. An Improved Method of Cell-Free Enzyme Preparation and Stabilization. J Am Chem Soc 1998. [DOI: 10.1021/ja974367o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
191
|
Pavel EG, Zhou J, Busby RW, Gunsior M, Townsend CA, Solomon EI. Circular Dichroism and Magnetic Circular Dichroism Spectroscopic Studies of the Non-Heme Ferrous Active Site in Clavaminate Synthase and Its Interaction with α-Ketoglutarate Cosubstrate. J Am Chem Soc 1998. [DOI: 10.1021/ja972408a] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Pitlik J, Townsend CA. Solution-phase synthesis of a combinatorial monocyclic β-lactam library: Potential protease inhibitors. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)10170-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
193
|
Minto RE, Townsend CA. Enzymology and Molecular Biology of Aflatoxin Biosynthesis. Chem Rev 1997; 97:2537-2556. [PMID: 11851470 DOI: 10.1021/cr960032y] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
194
|
Abstract
The first high-resolution structures of key proteins involved in the biosynthesis of several natural product classes are now appearing. In some cases, they have resulted in a significantly improved mechanistic understanding of the often complex processes catalyzed by these enzymes, and they have also opened the way for more rational efforts to modify the products made.
Collapse
|
195
|
Egan LA, Busby RW, Iwata-Reuyl D, Townsend CA. Probable Role of Clavaminic Acid as the Terminal Intermediate in the Common Pathway to Clavulanic Acid and the Antipodal Clavam Metabolites. J Am Chem Soc 1997. [DOI: 10.1021/ja963107o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
196
|
Miller AF, Egan LA, Townsend CA. Measurement of the degree of coupled isotopic enrichment of different positions in an antibiotic peptide by NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1997; 125:120-131. [PMID: 9245367 DOI: 10.1006/jmre.1997.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An experimental strategy for determining the extent to which multiply isotopically labeled fragments are incorporated intact into relatively complicated compounds of interest is presented. The NMR methods employed are based on isotope-filtered one-dimensional spectra and difference HSQC spectra incorporating a spin echo designed to report on the presence of a second NMR active isotope at a coupled site. They supplement existing methods for determining the extent of isotopic incorporation at individual sites to reveal whether two coupled labeled sites in a precursor are incorporated as an intact unit into products. The methods described also circumvent 1H signal overlap and distinguish between the effects of different nitrogens coupled to individual carbons. The somewhat complicated case of valclavam illustrates the method's utility in measuring the J coupling constants between 13C and nearby sites that are only fractionally labeled with 15N, and measuring the fraction of molecules in which 13C is coupled to 15N, at each of several sites. The 15N of [2-13C, 15N]-labeled glycine is found to be incorporated into all three N positions of valclavam but most heavily into the N11 position. Specifically, 15N and 13C are incorporated into the N11 and C10 positions together as an 15N13C fragment approximately 8% of the time, whereas 15N is incorporated largely independently at the other positions.
Collapse
|
197
|
Mani NS, Townsend CA. A Concise Synthesis of (+)-Cerulenin from a Chiral Oxiranyllithium. J Org Chem 1997; 62:636-640. [PMID: 11671457 DOI: 10.1021/jo9618177] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(+)-Cerulenin, a potent fungal inactivator of fatty acid synthases, has been prepared in optically pure form by a sequence involving reaction of a chiral oxiranyllithium with (4E,7E)-nonadienal. Synthesis of the former takes advantage of a particularly favorable Sharpless epoxidation and metalation to a configurationally stable organolithium, while the latter is available in quantity by a direct and improved route.
Collapse
|
198
|
Silva JC, Townsend CA. Heterologous expression, isolation, and characterization of versicolorin B synthase from Aspergillus parasiticus. A key enzyme in the aflatoxin B1 biosynthetic pathway. J Biol Chem 1997; 272:804-13. [PMID: 8995367 DOI: 10.1074/jbc.272.2.804] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aflatoxin B1 is a potent environmental carcinogen produced by certain strains of Aspergillus. Central to the biosynthesis of this mycotoxin is the reaction catalyzed by versicolorin B synthase (VBS) in which a racemic substrate, versiconal hemiacetal, is cyclized to an optically active product whose absolute configuration is crucial to the interaction of aflatoxin B1 with DNA. Attempted over-production of VBS in Escherichia coli led principally to protein aggregated into inclusion bodies but also small amounts of soluble but catalytically inactive enzyme. Comparisons to wild-type VBS by SDS-polyacrylamide gel electrophoresis and after N-glycosidase F treatment revealed that extensive glycosylation accounted for the mass discrepancy (7,000+/-1,500 Da) between the native and bacterially expressed proteins. Several over-expression systems in Saccharomyces cerevisiae were surveyed in which one that incorporated a secretion signal was found most successful. VBS of indistinguishable mass on SDS-polyacrylamide gel electrophoresis and kinetic properties from the wild-type enzyme could be obtained in 50-100-fold greater amounts and whose catalytic behavior has been examined. The translated protein sequence of VBS showed three potential N-glycosylation sites (Asn-Xaa-Ser/Thr) consistent with the modifications observed above and unexpectedly revealed extensive homology to the ADP-binding region prominently conserved in the glucose-methanol-choline (GMC) family of flavoenzymes. Over-production of VBS in yeast marks the first aflatoxin biosynthetic enzyme to be so obtained and opens the way to direct study of the enzymology of this complex biosynthetic pathway.
Collapse
|
199
|
Pitlik J, Townsend CA. The fate of [2,3,3-2H3, 1,2-13C2]-d,l-glycerate in clavulanic acid biosynthesis. Chem Commun (Camb) 1997. [DOI: 10.1039/a607078g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
200
|
McGuire SM, Silva JC, Casillas EG, Townsend CA. Purification and characterization of versicolorin B synthase from Aspergillus parasiticus. Catalysis of the stereodifferentiating cyclization in aflatoxin biosynthesis essential to DNA interaction. Biochemistry 1996; 35:11470-86. [PMID: 8784203 DOI: 10.1021/bi960924s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The absolute configuration of the dihydrobisfuran ring system characteristic of aflatoxin B1 is essential to the covalent reaction of its metabolically activated form with double-stranded DNA. The biosynthesis of this potent mycotoxin proceeds through three configurationally labile intermediates to racemic versiconal hemiacetal. Subsequent enzymatic cyclization establishes the stereochemistry of this, critical ring fusion in (-)-versicolorin B and is catalyzed by versicolorin B synthase (VBS). The isolation and purification of VBS from Aspergillus parasiticus (SU-1, ATCC 56775) and its kinetic characterization and attempted inactivation are described. Initial purification trials were plagued both by a chromophoric impurity which was difficult to remove and by low recoveries of active protein. The discovery of a remarkably broad pH range of enzyme stability and catalytic activity led to an efficient procedure involving preparative isoelectric focusing and ion exchange FPLC chromatography. The enzyme behaved as a dimer upon gel filtration and migrated with M(r) 78000 Da during denaturing gel electrophoresis. The UV spectrum of pure VBS gave no evidence of a bound chromophore. Detailed kinetic analysis of VBS revealed that this protein selects from two equilibrating enantiomers of versiconal hemiacetal to cyclize the appropriate antipode to optically pure versicolorin B. By varying the amount of enzyme to a fixed concentration of substrate, the rate of enzymic cyclization could be limited by the intrinsic rate of enantiomerization of the substrate under the conditions of reaction. It was possible to quantitate the dynamics of this substrate enantiomerization/cyclization process, to establish the role played by VBS, and to evaluate the significance of each to the overall biosynthesis of aflatoxin. The potential role of an acidic residue of the enzyme in catalysis was supported by analysis of the pH-rate profile of VBS and chemical labeling studies. Successful demonstration of competitive inhibition of VBS by a simple substrate analogue led to the design and synthesis of a potential mechanism-based inactivator of the protein.
Collapse
|