201
|
Santos-Carvalho A, Álvaro AR, Martins J, Ambrósio AF, Cavadas C. Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol 2013; 112:70-9. [PMID: 24184719 DOI: 10.1016/j.pneurobio.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the central nervous system, including the retina. Retinal cells, in particular neurons, astrocytes, and Müller, microglial and endothelial cells express this peptide and its receptors (Y1, Y2, Y4 and/or Y5). Several studies have shown that NPY is expressed in the retina of various mammalian and non-mammalian species. However, studies analyzing the distribution of NPY receptors in the retina are still scarce. Although the physiological roles of NPY in the retina have not been completely elucidated, its early expression strongly suggests that NPY may be involved in the development of retinal circuitry. NPY inhibits the increase in [Ca(2+)]i triggered by elevated KCl in retinal neurons, protects retinal neural cells against toxic insults and induces the proliferation of retinal progenitor cells. In this review, we will focus on the roles of NPY in the retina, specifically proliferation, neuromodulation and neuroprotection. Alterations in the NPY system in the retina might contribute to the pathogenesis of retinal degenerative diseases, such as diabetic retinopathy and glaucoma, and NPY and its receptors might be viewed as potentially novel therapeutic targets.
Collapse
|
202
|
NANOS2 promotes male germ cell development independent of meiosis suppression. Dev Biol 2013; 385:32-40. [PMID: 24183939 DOI: 10.1016/j.ydbio.2013.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/02/2013] [Accepted: 10/18/2013] [Indexed: 11/24/2022]
Abstract
NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.
Collapse
|
203
|
Menon VR, Peterson EJ, Valerie K, Farrell NP, Povirk LF. Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest. Biochem Pharmacol 2013; 86:1708-20. [PMID: 24161784 DOI: 10.1016/j.bcp.2013.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
Abstract
Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.
Collapse
|
204
|
Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransohoff RM, Herrup K, Lamb BT. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis 2013; 62:273-85. [PMID: 24141019 DOI: 10.1016/j.nbd.2013.10.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/06/2023] Open
Abstract
Massive neuronal loss is a key pathological hallmark of Alzheimer's disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (AβO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1.40-Tnfα(-/-)) failed to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD.
Collapse
|
205
|
Pan Y, Li M, Yi X, Zhao Q, Lieberwirth C, Wang Z, Zhang Z. Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks. Neuroscience 2013; 255:76-85. [PMID: 24121131 DOI: 10.1016/j.neuroscience.2013.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
Abstract
Food hoarding, especially scatter hoarding and retrieving food caches, requires spatial learning and memory and is an adaptive behavior important for an animal's survival and reproductive success. In the present study, we examined the effects of hoarding behavior on cell proliferation and survival in the hippocampus of male and female Siberian chipmunks (Tamias sibiricus). We found that chipmunks in a semi-natural enclosure displayed hoarding behavior with large individual variations. Males ate more scatter-hoarded seeds than females. In addition, the display of hoarding behavior was associated with increased cell proliferation in the hippocampus and this increase occurred in a brain region-specific manner. These data provide further evidence to support the notion that new cells in the adult hippocampus are affected by learning and memory tasks and may play an important role in adaptive behavior.
Collapse
|
206
|
Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 2013; 61:2000-8. [PMID: 24123473 DOI: 10.1002/glia.22571] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
We have examined satellite glial cell (SGC) proliferation in trigeminal ganglia following chronic constriction injury of the infraorbital nerve. Using BrdU labeling combined with immunohistochemistry for SGC specific proteins we positively confirmed proliferating cells to be SGCs. Proliferation peaks at approximately 4 days after injury and dividing SGCs are preferentially located around neurons that are immunopositive for ATF-3, a marker of nerve injury. After nerve injury there is an increase GFAP expression in SGCs associated with both ATF-3 immunopositive and immunonegative neurons throughout the ganglia. SGCs also express the non-glial proteins, CD45 and CD163, which label resident macrophages and circulating leukocytes, respectively. In addition to SGCs, we found some Schwann cells, endothelial cells, resident macrophages, and circulating leukocytes were BrdU immunopositive.
Collapse
|
207
|
Weng HL, Feng DC, Radaeva S, Kong XN, Wang L, Liu Y, Li Q, Shen H, Gao YP, Müllenbach R, Munker S, Huang T, Chen JL, Zimmer V, Lammert F, Mertens PR, Cai WM, Dooley S, Gao B. IFN-γ inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. J Hepatol 2013; 59:738-45. [PMID: 23747755 PMCID: PMC3779479 DOI: 10.1016/j.jhep.2013.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Proliferation of liver progenitor cells (LPCs) is associated with inflammation and fibrosis in chronic liver diseases. However, how inflammation and fibrosis affect LPCs remains obscure. METHODS We examined the role of interferon (IFN)-γ, an important pro-inflammatory and anti-fibrotic cytokine, in LPC expansion in HBV-infected patients and in mice challenged with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- or choline-deficient, ethionine-supplemented (CDE) diet as well as in primary LPCs and LPC cell line. RESULTS The CK19 staining scores correlated with inflammation and fibrosis grades in the livers from 110 HBV-infected patients. Nine-month IFN-γ treatment decreased LPC numbers, inflammation, and fibrosis in these HBV-infected patients. Similarly, a two-week IFN-γ treatment also decreased LPC activation in DDC-treated mice. Disruption of IFN-γ or its signaling components (e.g., IFNGR, STAT1, and IRF-1) increased LPC proliferation and liver fibrosis in DDC-fed mice. In contrast, deletion of IFN-γ did not increase, but rather slightly reduced LPC proliferation in CDE-fed mice. In vitro, IFN-γ attenuated proliferation of the LPC cell line BMOL and of primary LPCs from wild type mice, but not STAT1(-/-) or IRF-1(-/-) mice. Furthermore, co-culture assays suggest that IFN-γ can indirectly promote LPC proliferation via the activation of macrophages but attenuate it via the inhibition of hepatic stellate cells. CONCLUSIONS IFN-γ inhibits LPC expansion via the direct inhibition of LPC proliferation and indirect attenuation of liver fibrosis in the DDC model, but it may also enhance LPC expansion via the promotion of inflammation in the CDE model; thereby playing dual roles in regulating LPC proliferation in vivo.
Collapse
|
208
|
Melendez J, Liu M, Sampson L, Akunuru S, Han X, Vallance J, Witte D, Shroyer N, Zheng Y. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice. Gastroenterology 2013; 145:808-19. [PMID: 23792201 PMCID: PMC3876942 DOI: 10.1053/j.gastro.2013.06.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Cdc42 is a Rho GTPase that regulates diverse cellular functions, including proliferation, differentiation, migration, and polarity. In the intestinal epithelium, a balance among these events maintains homeostasis. We used genetic techniques to investigate the role of Cdc42 in intestinal homeostasis and its mechanisms. METHODS We disrupted Cdc42 specifically in intestinal epithelial cells by creating Cdc42flox/flox-villin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice. We collected intestinal and other tissues, and analyzed their cellular, molecular, morphologic, and physiologic features, compared with the respective heterozygous mice. RESULTS In all mutant mice studied, the intestinal epithelium had gross hyperplasia, crypt enlargement, microvilli inclusion, and abnormal epithelial permeability. Cdc42 deficiency resulted in defective Paneth cell differentiation and localization without affecting the differentiation of other cell lineages. In mutant intestinal crypts, proliferating stem and progenitor cells increased, compared with control mice, resulting in increased crypt depth. Cdc42 deficiency increased migration of stem and progenitor cells along the villi, caused a mild defect in the apical junction orientation, and impaired intestinal epithelium polarity, which can contribute to the observed defective intestinal permeability. The intestinal epithelium of the Cdc42flox/flox-villin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice appeared similar to that of patients with microvillus inclusion disease. In the digestive track, loss of Cdc42 also resulted in crypt hyperplasia in the colon, but not the stomach. CONCLUSIONS Cdc42 regulates proliferation, polarity, migration, and differentiation of intestinal epithelial cells in mice and maintains intestine epithelial barrier and homeostasis. Defects in Cdc42 signaling could be associated with microvillus inclusion disease.
Collapse
|
209
|
Jin G, Westphalen CB, Hayakawa Y, Worthley DL, Asfaha S, Yang X, Chen X, Si Y, Wang H, Tailor Y, Friedman RA, Wang TC. Progastrin stimulates colonic cell proliferation via CCK2R- and β-arrestin-dependent suppression of BMP2. Gastroenterology 2013; 145:820-30.e10. [PMID: 23891976 PMCID: PMC3829714 DOI: 10.1053/j.gastro.2013.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Progastrin stimulates colonic mucosal proliferation and carcinogenesis through the cholecystokinin 2 receptor (CCK2R)-partly by increasing the number of colonic progenitor cells. However, little is known about the mechanisms by which progastrin stimulates colonic cell proliferation. We investigated the role of bone morphogenetic proteins (BMPs) in progastrin induction of colonic cell proliferation via CCK2R. METHODS We performed microarray analysis to compare changes in gene expression in the colonic mucosa of mice that express a human progastrin transgene, gastrin knockout mice, and C57BL/6 mice (controls); the effects of progastrin were also determined on in vitro colonic crypt cultures from cholecystokinin 2 receptor knockout and wild-type mice. Human colorectal and gastric cancer cells that expressed CCK2R were incubated with progastrin or Bmp2; levels of β-arrestin 1 and 2 were knocked down using small interfering RNAs. Cells were analyzed for progastrin binding, proliferation, changes in gene expression, and symmetric cell division. RESULTS The BMP pathway was down-regulated in the colons of human progastrin mice compared with controls. Progastrin suppressed transcription of Bmp2 through a pathway that required CCK2R and was mediated by β-arrestin 1 and 2. In mouse colonic epithelial cells, down-regulation of Bmp2 led to decreased phosphorylation of Smads1/5/8 and suppression of inhibitor of DNA binding 4. In human gastric and colorectal cancer cell lines, CCK2R was necessary and sufficient for progastrin binding and induction of proliferation; these effects were blocked when cells were incubated with recombinant Bmp2. Incubation with progastrin increased the number of CD44(+), bromodeoxyuridine+, and NUMB(+) cells, indicating an increase in symmetric divisions of putative cancer stem cells. CONCLUSIONS Progastrin stimulates proliferation in colons of mice and cultured human cells via CCK2R- and β-arrestin 1 and 2-dependent suppression of Bmp2 signaling. This process promotes symmetric cell division.
Collapse
|
210
|
Skrzypski M, Sassek M, Abdelmessih S, Mergler S, Grötzinger C, Metzke D, Wojciechowicz T, Nowak KW, Strowski MZ. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell Signal 2013; 26:41-8. [PMID: 24075930 DOI: 10.1016/j.cellsig.2013.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022]
Abstract
Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo.
Collapse
|
211
|
Devaraju K, Barnabé-Heider F, Kokaia Z, Lindvall O. FoxJ1-expressing cells contribute to neurogenesis in forebrain of adult rats: evidence from in vivo electroporation combined with piggyBac transposon. Exp Cell Res 2013; 319:2790-800. [PMID: 24075965 DOI: 10.1016/j.yexcr.2013.08.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/03/2023]
Abstract
Ependymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb. The distribution and progeny of FoxJ1-expressing cells in rat forebrain are unknown. Here we show using immunohistochemistry that the overall majority of FoxJ1-expressing cells in the lateral ventricular wall of adult rats are ependymal cells with a minor population being astrocytes. To allow for long-term fate mapping of FoxJ1-derived cells, we used the piggyBac system for in vivo gene transfer with electroporation. Using this method, we found that FoxJ1-expressing cells, presumably the astrocytes, give rise to neuroblasts and mature neurons in the olfactory bulb both in intact and stroke-damaged brain of adult rats. No significant contribution of FoxJ1-derived cells to stroke-induced striatal neurogenesis was detected. These data indicate that in the adult rat brain, FoxJ1-expressing cells contribute to the formation of new neurons in the olfactory bulb but are not involved in the cellular repair after stroke.
Collapse
|
212
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
|
213
|
Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis. Neuroscience 2013; 254:324-34. [PMID: 24076087 DOI: 10.1016/j.neuroscience.2013.09.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/21/2022]
Abstract
Here we investigated whether changes in neurogenesis and brain-derived neurotrophic factor (BDNF) expression are possible mechanisms involved in the depression-like symptom during the withdrawal/abstinence period after chronic binge-pattern alcohol consumption given the limited number of studies addressing the link between these factors in the adolescent brain. Forty-seven male Sprague-Dawley rats were used in the study and the experimental protocol started when rats were 25-days old. Rats were assigned to either: (a) ethanol or (b) control group. Animals in each group were further randomized to receive either: BDNF receptor agonist or vehicle. Rats were trained to self-administer ethanol and the binge protocol consisted of daily 30-min experimental sessions 4h into the dark period for 12days. Two days after the last drinking session, rats were tested in the sucrose preference test to evaluate anhedonia and the open field test after habituation to evaluate behavioral despair. Our data showed that: (1) self-administration of alcohol in a binge-like pattern causes inebriation as defined by the National Institute on Alcohol Abuse and Alcoholism and this pattern of alcohol exposure is associated with the development of a depression-like symptom; (2) no significant difference in blood alcohol levels between the two ethanol groups; and (3) chronic binge drinking resulted in the development of a depressive phenotype, decreased survival and neuronal differentiation of neural progenitor cells in the hippocampus, and decreased BDNF effect during the withdrawal period. But the most important finding in our study is that augmenting BDNF actions through the use of tyrosine kinase B (TrkB, a BDNF receptor) agonist restored neurogenesis and abolished the alcohol-induced anhedonia and despair behaviors seen during the withdrawal/abstinence period. Our results suggest that BDNF might be a molecule that can be targeted for interventions in alcoholism-depression co-incidence.
Collapse
|
214
|
Bravo D, Martin G, David MM, Cailleau G, Verrecchia E, Junier P. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments. FEMS Microbiol Lett 2013; 348:103-11. [PMID: 24033776 DOI: 10.1111/1574-6968.12244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 11/30/2022] Open
Abstract
The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12 days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.
Collapse
|
215
|
Franklin JL, Rankin CR, Levy S, Snoddy JR, Zhang B, Washington MK, Thomson JM, Whitehead RH, Coffey RJ. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA. Biochem Biophys Res Commun 2013; 440:99-104. [PMID: 24045012 DOI: 10.1016/j.bbrc.2013.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022]
Abstract
Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation.
Collapse
|
216
|
Kosaka K, Kosaka T. Secretagogin-containing neurons in the mouse main olfactory bulb. Neurosci Res 2013; 77:16-32. [PMID: 24008127 DOI: 10.1016/j.neures.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/24/2022]
Abstract
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family. We studied the structural features of SCGN-positive neurons in the mouse main olfactory bulb (MOB). SCGN-positive neurons were localized throughout layers but clustered in the glomerular layer (GL), mitral cell layer (MCL) and granule cell layer (GCL). They were heterogeneous, including numerous juxtaglomerular neurons, granule cells, small to medium-sized neurons in the external plexiform layer (EPL), and a few small cells in the ependymal/subependymal layer. Calretinin and/or tyrosine hydroxylase occasionally colocalized in SCGN-positive juxtaglomerular neurons. Calretinin also frequently colocalized in SCGN-positive EPL and GCL neurons. Morphologically some of juxtaglomerular SCGN-positive neurons were classical periglomerular cells, whereas others were apparently different from those periglomerular cells, although they were further heterogeneous. Some extended one slender process into a glomerulus which passed the glomerulus and further penetrated into another nearby glomeruli, and thus their dendritic processes spanned two or three or more glomeruli. We named this type of juxtaglomerular neurons "transglomerular cells." With the stereological analysis we estimated total number of juxtaglomerular SCGN-positive neurons at about 80,000/single MOB. The present study revealed the diversity of SCGN-positive neurons in the mouse MOB and their particular structural properties hitherto unknown.
Collapse
|
217
|
Hase K, Nakatsu F, Ohmae M, Sugihara K, Shioda N, Takahashi D, Obata Y, Furusawa Y, Fujimura Y, Yamashita T, Fukuda S, Okamoto H, Asano M, Yonemura S, Ohno H. AP-1B-mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterology 2013; 145:625-35. [PMID: 23684748 DOI: 10.1053/j.gastro.2013.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS In epithelial cells, protein sorting mechanisms regulate localization of plasma membrane proteins that generate and maintain cell polarity. The clathrin-adaptor protein (AP) complex AP-1B is expressed specifically in polarized epithelial cells, where it regulates basolateral sorting of membrane proteins. However, little is known about its physiological significance. METHODS We analyzed the intestinal epithelia of mice deficient in Ap1m2 (Ap1m2(-/-) mice), which encodes the AP-1B μ1B subunit, and compared it with 129/B6/CD1 littermates (controls). Notch signaling was inhibited by intraperitoneal injection of dibenzazepine, and β-catenin signaling was inhibited by injection of IWR1. Intestinal tissue samples were collected and analyzed by immunofluorescence analysis. RESULTS Ap1m2(-/-) mice developed intestinal epithelial cell hyperplasia. The polarity of intestinal epithelial cells was disrupted, as indicated by the appearance of ectopic microvilli-like structures on the lateral plasma membrane and mislocalization of basolateral membrane proteins, including the low-density lipoprotein receptor and E-cadherin. The E-cadherin-β-catenin complex therefore was disrupted at the adherens junction, resulting in nuclear translocation of β-catenin. This resulted in up-regulation of genes regulated by β-catenin/transcription factor 4 (Tcf4) complex, and increased the proliferation of intestinal epithelial cells. CONCLUSIONS AP-1B is required for protein sorting and polarization of intestinal cells in mice. Loss of AP-1B in the intestinal epithelia results in mislocalization of E-cadherin, activation of β-catenin/Tcf4 complex, proliferation, and hyperplasia.
Collapse
|
218
|
Guo J, Wang J, Liang C, Yan J, Wang Y, Liu G, Jiang Z, Zhang L, Wang X, Wang Y, Zhou X, Liao H. proNGF inhibits proliferation and oligodendrogenesis of postnatal hippocampal neural stem/progenitor cells through p75NTR in vitro. Stem Cell Res 2013; 11:874-87. [PMID: 23838122 DOI: 10.1016/j.scr.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/23/2022] Open
Abstract
Neural stem/progenitor cells (NSCs) proliferate and differentiate under tight regulation by various factors in the stem cell niche. Recent studies have shown that the precursor of nerve growth factor (NGF), proNGF, abounds in the central nervous system (CNS) and that its expression level in the brain is substantially elevated with aging as well as in several types of CNS disorders. In this study, we found for the first time that proNGF inhibited the proliferation of NSCs isolated from postnatal mouse hippocampus and caused cell cycle arrest in the G0/G1 phase without affecting apoptosis. In addition, proNGF reduced the differentiation of NSCs to oligodendrocytes. The effects of proNGF were blocked by the fusion protein of p75 neurotrophin receptor extracellular domain and human IgG Fc fragment (p75NTR/Fc), and by p75NTR knockout, suggesting that proNGF/p75NTR interaction was involved in the effects of proNGF on NSC proliferation and differentiation. proNGF decreased the phosphorylation level of extracellular signal responsive kinase 1/2 (ERK 1/2) in a p75NTR-dependent manner under both self-renewal and differentiation conditions. The inhibition of ERK 1/2 phosphorylation by U0126 significantly reduced the proliferation and oligodendrogenesis of NSCs, indicating that ERK 1/2 inhibition by proNGF partially explains its effects on NSC proliferation and oligodendrogenesis. These results suggest that the proNGF/p75NTR signal plays a key role in the regulation of NSCs' behavior.
Collapse
|
219
|
Skardelly M, Glien A, Groba C, Schlichting N, Kamprad M, Meixensberger J, Milosevic J. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro. Exp Cell Res 2013; 319:3170-81. [PMID: 24001738 DOI: 10.1016/j.yexcr.2013.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/17/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment.
Collapse
|
220
|
Järlestedt K, Naylor AS, Dean J, Hagberg H, Mallard C. Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice. Neuroscience 2013; 253:21-8. [PMID: 23994184 PMCID: PMC3824076 DOI: 10.1016/j.neuroscience.2013.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022]
Abstract
Neonatal inflammation reduces the survival of dividing neurons and astrocytes. Neonatal inflammation does not affect the survival of post-mitotic cells. Decrease in cell survival was specific for the granule cells of the dorsal blade of the hippocampus.
Experimental studies show that inflammation reduces the regenerative capacity in the adult brain. Less is known about how early postnatal inflammation affects neurogenesis, stem cell proliferation, cell survival and learning and memory in young adulthood. In this study we examined if an early-life inflammatory challenge alters cell proliferation and survival in distinct anatomical regions of the hippocampus and whether learning and memory were affected. Lipopolysaccharide (LPS, 1 mg/kg) was administered to mice on postnatal day (P) 9 and proliferation and survival of hippocampal cells born either prior to (24 h before LPS), or during the inflammatory insult (48 h after LPS) was evaluated. Long-term cell survival of neurons and astrocytes was determined on P 41 and P 60 in the dorsal and ventral horns of the hippocampus. On day 50 the mice were tested in the trace fear conditioning (TFC) paradigm. There was no effect on the survival of neurons and astrocytes that were born before LPS injection. In contrast, the number of neurons and astrocytes that were born after LPS injection were reduced on P 41. The LPS-induced reduction in cell numbers was specific for the dorsal hippocampus. Neither early (48 h after LPS) or late (33 days after LPS) proliferation of cells was affected by neonatal inflammation and neonatal LPS did not alter the behavior of young adult mice in the TFC test. These data highlight that neonatal inflammation specifically affects survival of dividing neurons and astrocytes, but not post-mitotic cells. The reduction in cell survival could be attributed to less cell survival in the dorsal hippocampus, but had no effect on learning and memory in the young adult.
Collapse
|
221
|
Kuipers SD, Trentani A, van der Zee EA, den Boer JA. Chronic stress-induced changes in the rat brain: role of sex differences and effects of long-term tianeptine treatment. Neuropharmacology 2013; 75:426-36. [PMID: 23994757 DOI: 10.1016/j.neuropharm.2013.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 01/28/2023]
Abstract
Growing evidence suggests neuroplasticity changes are pivotal in both the occurrence and treatment of affective disorders. Abnormal expression and/or phosphorylation of numerous plasticity-related proteins have been observed in depression, while prolonged antidepressant treatment has been associated with the attenuation of stress-mediated effects on dendritic remodeling and adult hippocampal neurogenesis in experimental animals. This study explores the neurobiological adaptations induced by chronic stress and/or long-term tianeptine treatment. Male and female rats were studied to determine the potential contributory role of sex differences on stress-induced pathology and antidepressant-mediated actions. Our results confirm chronic stress-induced HPA axis disturbance and neuroplasticity impairment in both sexes (i.e. reduced CREB phosphorylation and hippocampal BrdU labeling). Commonly ensuing neurobiological alterations were accompanied by unique sex-specific adaptations. When the antidepressant tianeptine was administered, HPA axis hyperactivity was attenuated and specific neuronal defects were ameliorated in both sexes. These findings provide novel insight into sex-related influences on the neurobiological substrates mediating chronic stress-induced actions on neuroplasticity and the mechanisms underlying tianeptine-mediated therapeutic effects.
Collapse
|
222
|
Sarga L, Hart N, Koch LG, Britton SL, Hajas G, Boldogh I, Ba X, Radak Z. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair. Neuroscience 2013; 252:326-36. [PMID: 23973402 DOI: 10.1016/j.neuroscience.2013.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high-running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and post-translational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG.
Collapse
|
223
|
Mirza MA, Capozzi LA, Xu Y, McCullough LD, Liu F. Knockout of vascular early response gene worsens chronic stroke outcomes in neonatal mice. Brain Res Bull 2013; 98:111-21. [PMID: 23973431 DOI: 10.1016/j.brainresbull.2013.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 01/19/2023]
Abstract
Vascular early response gene (Verge) is a novel immediate early gene that is highly expressed during developmental angiogenesis and after ischemic insults in adult brain. However, the role of Verge after neonatal injury is not known. In the present study, we investigated the hypothesis that Verge contributes to vascular remodeling and tissue repair after neonatal ischemic injury. The Rice-Vanucci model (RVM) was employed to induce neonatal stroke in both Verge knockout (KO) and wild-type (WT) postnatal day 10 (P10) mice. Histological and behavioral outcomes at acute (24h), subacute (7 days) and chronic (30 days) phases were evaluated. Angiogenesis, neurogenesis, and glial scar formation were also examined in the ischemic brain. No significant differences in outcomes were found between WT and Verge mice at 24h or 7 days after stroke. However genetic deletion of Verge led to pronounced cystic cavitation, decreased angiogenensis and glial scar formation in the ischemic hemisphere compared to WT mice at 30 days. Verge KO mice also had significantly worse functional outcomes at 30 days which was accompanied by decreased neurogenesis and angiogenesis in the ischemic hemisphere. Our study suggests that Verge plays an important role in the induction of neurogenesis and angiogenesis after ischemia, contributes to improved tissue repair, and enhances chronic functional recovery.
Collapse
|
224
|
Klementiev B, Enevoldsen MN, Li S, Carlsson R, Liu Y, Issazadeh-Navikas S, Bock E, Berezin V. Antiinflammatory properties of a peptide derived from interleukin-4. Cytokine 2013; 64:112-21. [PMID: 23972727 DOI: 10.1016/j.cyto.2013.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/19/2013] [Accepted: 07/20/2013] [Indexed: 12/23/2022]
Abstract
Interleukin-4 (IL-4) is a potent antiinflammatory cytokine. However its use in the clinic is hampered by side effects. We here describe the identification of a novel synthetic peptide, termed Ph8, derived from α-helix C of IL-4, which interacts with IL-4 receptor α (IL-4Rα). Employing various cultured genetically engineered cell lines and primary lymphocytes, surface plasmon resonance, qPCR, ELISA and immunoblotting techniques we found that Ph8 bound IL-4Rα and mimicked the anti-inflammatory effects of IL-4 by inhibiting TNF-α production by macrophages in vitro. It induced phosphorylation of STAT6 65kD but inhibited phosphorylation of STAT6 110 kD induced by IL-4 in a B-cell line that expressed the type I receptor. It also inhibited the IL-4-stimulated expression of a STAT6-inducible reporter gene in cells that expressed the type II receptor. Ph8 inhibited the proliferation of Th1/2 cells and downregulated the production of IFN-γ in stimulated Th1 cells. Moreover, Ph8 did not induce any shift in Th1/Th2 profile. This is a favorable effect and it is indicating that Ph8 could block general T cell activation and inflammatory responses without further inducing the side effects generally associated with IL-4 signaling. These data collectively show that Ph8 is only a partial agonist of IL-4 mimicking its desirable properties. In agreement, Ph8 treatment of rats with collagen-induced arthritis, a Th1- and antibody- mediated disease of joint, delayed the manifestation of chronic inflammation and reduced acute inflammation in carrageenan-induced edema. Our findings indicate that Ph8 is a promising potential drug candidate for the treatment of inflammatory diseases.
Collapse
|
225
|
Cappella P, Giansanti V, Pulici M, Gasparri F. From "Click" to "Fenton" chemistry for 5-bromo-2'-deoxyuridine determination. Cytometry A 2013; 83:989-1000. [PMID: 23943293 DOI: 10.1002/cyto.a.22343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022]
Abstract
Ascorbic acid (AA) and copper have been increasingly employed in flow cytometry (FCM) and high content analysis (HCA) since the introduction of "click chemistry" as a non-destructive alternative to classical 5-bromo-2'-deoxyuridine (BrdU) immunodetection for DNA synthesis and proliferation assays. Mixtures of ascorbate and catalytic copper, under certain experimental conditions, act as oxidizing agent, catalyzing the formation of reactive hydroxyl radicals through hydrogen peroxides decomposition via Fenton reaction. We developed a procedure for BrdU incorporation detection based on the use of AA and cupric ions as DNA damaging agents. Optimal DNA damaging conditions were identified and found to provide results comparable with "click" 5-ethynyl-deoxyuridine (EdU) cycloaddition approach and classical BrdU immunodetection. Scavenger agents were found to prevent hydroxyl-induced DNA damages, providing the proof-of-concept for the use of this procedure for DNA denaturation prior to BrdU detection. We demonstrated hydroxyl radicals' reaction to be readily applicable to HCA and FCM assays, for both classical BrdU immunostaining and EdU cycloaddition procedure. This technique was successfully employed for BrdU pulse-chase experiments and in multiparametric immunofluorescence assays for the simultaneous detection of labile phosphoproteins in intact cells. The use of AA/Cu prior to immunodetection for BrdU incorporation assays is a viable alternative to chemical/physical DNA denaturing agents (acids or heat), since it allows preservation of labile epitopes such as phosphoproteins, and over enzymatic agents (digestion with DNases) for its lower cost.
Collapse
|