201
|
Rodenburg LA, Meng Q, Yee D, Greenfield BK. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. CHEMOSPHERE 2014; 106:36-43. [PMID: 24485321 DOI: 10.1016/j.chemosphere.2013.12.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Brominated diphenyl ethers (BDEs) are flame retardant compounds that have been classified as persistent organic pollutants under the Stockholm Convention and targeted for phase-out. Despite their classification as persistent, PBDEs undergo debromination in the environment, via both microbial and photochemical pathways. We examined concentrations of 24 PBDE congeners in 233 sediment samples from San Francisco Bay using Positive Matrix Factorization (PMF). PMF analysis revealed five factors, two of which contained high proportions of congeners with two or three bromines, indicating that they are related to debromination processes. One of the factors included PBDE 15 (4,4'-dibromo diphenyl ether, comprising 20% of the factor); the other included PBDE 7 (2,4-dibromo diphenyl ether; 12%) and PBDE 17 (2,2',4-tribromo diphenyl ether; 16%). The debromination processes that produce these congeners are probably photochemical debromination and anaerobic microbial debromination, although other processes could also be responsible. Together, these two debromination factors represent about 8% of the mass and 13% of the moles of PBDEs in the data matrix, suggesting that PBDEs undergo measurable degradation in the environment.
Collapse
|
202
|
Kim UJ, Yen NTH, Oh JE. Hydroxylated, methoxylated, and parent polybrominated diphenyl ethers (PBDEs) in the inland environment, Korea, and potential OH- and MeO-BDE source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7245-7253. [PMID: 24911666 DOI: 10.1021/es5006972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concentrations, congener profiles, and phase-specific distribution profiles of 27 polybrominated diphenyl ethers and 10 hydroxylated and 18 methoxylated brominated diphenyl ethers (OH- and MeO-BDEs; later called structural analogues of PBDEs) were determined in surface soil, water, air, and vegetation from the southeastern city of Busan, Korea for 2010-2011. The total PBDE concentrations were 0.18-7.7 ng/g in soil, 6.3-87 pg/L [corrected] in water, 5.3-16 pg/m(3) in air, and 0.06-0.22 ng/g in vegetation. The OH- and MeO-BDE concentrations were lower than the parent PBDE concentrations in soil samples but OH-BDEs were much greater in the water samples and MeO-BDEs were much greater in the air samples. The relative concentrations of the PBDEs and their structural analogues varied depending on the type and homologue of the degradation product, the substituent position, and the characteristics of the environmental medium. In particular, the OH-BDEs were not found in air samples and the OH-penta BDEs were not detected in any of the matrices. The dominance of the ortho-substituted structural analogues found in water and vegetation suggested that they may have natural sources, but different substituent patterns were found in the air and soil samples, suggesting that the structural analogues had different formation mechanisms in these media.
Collapse
|
203
|
Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:363-370. [PMID: 24742544 DOI: 10.1016/j.scitotenv.2014.03.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used as additive flame retardants in all kinds of electronic products. PBDEs are now ubiquitous in the environment, with soil as a major sink, especially in e-waste recycling sites. This study investigated the degradation of decabromodiphenyl ether (BDE209) in a spiked soil using Ni/Fe bimetallic nanoparticles. The results indicated that Ni/Fe bimetallic nanoparticles are able to degrade BDE209 in soil at ambient temperature and the removal efficiency can reach 72% when an initial pH of 5.6 and at a Ni/Fe dosage of 0.03 g/g. A declining trend in degradation was noticed with decreasing Ni loading and increasing of initial BDE209 concentration. The degradation products of BDE209 were analyzed by GC-MS, which showed that the degradation of BDE209 was a process of stepwise debromination from nBr to (n-1)Br. And a possible debromination pathway was proposed. At last, the degradation process was analyzed as two-step mechanism, mass transfer and reaction. This current study shows the potential ability of Ni/Fe nanoparticles to be used for removal of PBDEs in contaminated soil.
Collapse
|
204
|
Drage DS, Aries E, Harrad S. Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:497-507. [PMID: 24742560 DOI: 10.1016/j.scitotenv.2014.03.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/24/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) were detected in stack emissions from UK sinter plants. The sum of 36 PBDE congeners was measured at a mean concentration of 295 ng/N m(3) with a standard deviation of 96 ng/N m(3). The mean PBDD/F concentrations were 0.14 ng WHO-TEQ/m(3) (range=0.03-0.39). PBDD/F emission concentrations were approximately ten times lower than their PCDD/F homologues. To understand the possible formation mechanisms of brominated organic species in iron ore sintering, both full-scale and laboratory experiments using an experimental sintering process were carried out. A complete PBDE mass balance was undertaken for a full scale sinter plant showing that PBDEs were already present in the raw materials such as iron ores and coke breeze and that a significant proportion of the PBDE inputs were actually destroyed during the process. A number of controlled experiments were conducted using a laboratory-scale sintering apparatus (sinter pot). These were designed to investigate: (a) mass balance of PBDEs during sintering, (b) the relationship between the availability of bromide (as KBr) and PBDE emissions, and (c) the influence of the availability of both bromide and PBDEs on PBDD/F formation. As observed in the full scale plant, the PBDEs already present in the raw materials were mostly destroyed during the process (79-96%) for all sinter pot experiments. Increasing amounts of KBr in the raw sinter mix did not result in a significant increase in PBDE formation suggesting that there was no PBDE formation in sintering via de novo synthesis. No relationship was observed between PBDE inputs and PBDD/F emissions indicating that PBDEs did not act as precursors for PBDD/Fs formation. Finally, PBDD/F formation was enhanced substantially with increasing amounts of KBr suggesting that their formation mechanism was similar to that of PCDD/Fs via de novo synthesis.
Collapse
|
205
|
Wei H, Zhang S, Wang Y, Wang Y, Li A, Negrusz A, Yu G. Dependence of mass spectrometric fragmentation on the bromine substitution pattern of polybrominated diphenyl ethers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1058-1067. [PMID: 24692043 DOI: 10.1007/s13361-014-0860-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the link between the bromine substitution and the mass spectrometric fragmentation of polybrominated diphenyl ethers (PBDEs). The mass spectra of 180 PBDEs were obtained in both electron impact (EI) and electron capture negative ionization (ECNI) modes using a single quadrupole mass spectrometer (MS) as well as EI using a tandem MS (MS/MS). The major ions are M(+), [M-2Br](+), [M-2Br](2+) and [M-nBr-28](+) in EI, and Br(-), [HBr2](-) and [C6BrnO](-) in ECNI. In EI-MS, congeners without ortho bromine or having 2,3 substitution on one ring and no ortho bromines on the other were more robust than the others in each homolog. These congeners generated low [M-2Br](+) but relatively high [M-2Br](2+) in EI-MS and negligible [HBr2](-) in ECNI-MS. In EI-MS/MS, the molecular ions of these congeners required higher collision energy to debrominate, and produced additional ions of [M-nBr](+) and [M-nBr-28](+). Full ortho substitution promotes C-O cleavage forming [C6BrnO](-) in ECNI for congeners with >5 bromines. The relationship between the abundance of M(+) and collision energy of the EI-MS/MS was well characterized with a logistic regression model. Principle component analysis found associations between the inflection point collision energy and a few molecular descriptors. Quantum chemistry simulations revealed different EI-induced fragmentation mechanisms among four dibrominated congeners, supporting the hypothesized formation of a stable dibenzofuran-like intermediate during the fragmentation of some congeners but not of others.
Collapse
|
206
|
Su G, Yu H, Lam MHW, Giesy JP, Zhang X. Mechanisms of toxicity of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) determined by toxicogenomic analysis with a live cell array coupled with mutagenesis in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5929-5937. [PMID: 24717064 DOI: 10.1021/es5003023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Results of previous studies have indicated that 6-HO-BDE-47, the addition of the hydroxyl (HO) group to the backbone of BDE-47, significantly increased the toxicity of the chemical compared to its postulated precursor analogues, BDE-47 and 6-MeO-BDE-47. However, whether such a result is conserved across polybrominated diphenyl ether (PBDE) congeners was unknown. Here, cytotoxicity of 32 PBDE analogues (17 HO-PBDEs and 15 MeO-PBDEs) was further tested and the underlying molecular mechanism was investigated. A total of 14 of the 17 HO-PBDEs inhibited growth of Escherichia coli during 4 or 24 h durations of exposure, but none of the MeO-PBDEs was cytotoxic at the concentrations tested. 6-HO-BDE-47 and 2-HO-BDE-28 were most potent with 4 h median effect concentrations (EC50) of 12.13 and 6.25 mg/L, respectively, which trended to be lesser with a longer exposure time (24 h). Expression of 30 modulated and validated genes by 6-HO-BDE-47 in a previous study was also observed after exposure to other HO-PBDE analogues. For instance, uhpT was upregulated by 13 HO-PBDEs, and three rRNA operons (rrnA, rrnB, and rrnC) were downregulated by 8 HO-PBDEs. These unanimous responses suggested a potential common molecular signaling modulated by HO-PBDEs. To explore new information on mechanisms of action, this work was extended by testing the increased susceptibility of 182 mutations of transcriptional factors (TFs) and 22 mutations as genes modulated by 6-HO-BDE-47 after exposure to 6-HO-BDE-47 at the 4 h IC50 concentration. Although a unanimous upregulation of uhpT was observed after exposure to HO-PBDEs, no significant shift in sensitivity was observed in uhpT-defective mutants. The 54 genes, selected by cut-offs of 0.35 and 0.65, were determined to be responsible for "organic acid/oxoacid/carboxylic acid metabolic process" pathways, which supported a previous finding.
Collapse
|
207
|
Zhu H, Wang Y, Wang X, Luan T, Tam NFY. Intrinsic debromination potential of polybrominated diphenyl ethers in different sediment slurries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4724-4731. [PMID: 24679249 DOI: 10.1021/es4053818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fate of BDE-153 (BDE = brominated diphenyl ethers) in different mangrove, fresh water pond, and marine subsurface sediments collected from Hong Kong SAR was investigated. Under anaerobic conditions, all sediments showed good intrinsic abilities to reductively debrominate BDE-153, producing debromination products ranging from hexa- to mono-BDEs in 90 days. The half-lives of BDE-153 in eight different sediments varied from 7.6 to 165 days, with higher debromination in mangrove than marine and fresh water pond sediments. All sediments exhibited the preference in removing the bromine in para, followed by meta, and the lowest in ortho positions; however, fresh water pond sediments had relatively higher fractions of meta (BDE-99) and ortho substitution (BDE-118) of the three penta-BDE products. Mai Po mangrove and fresh water pond subsurface sediments were also capable of debrominating BDE-47 in 90 days of anaerobic incubation with half-lives of 76.2 and 56.9 days, respectively; but not BDE-209. BDE-47, -153, and -209 in Mai Po surface sediment were not transformed under 30 day aerobic incubation. This study demonstrated that the microbial-mediated debromination of BDE-47 and -153 occurred in natural subsurface sediments under anaerobic conditions although the rates and pathways varied among the sediment types.
Collapse
|
208
|
Feo ML, Gonzalez O, Baron E, Casado M, Piña B, Esplugas S, Eljarrat E, Barceló D. Advanced UV/H₂O₂ oxidation of deca-bromo diphenyl ether in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:17-20. [PMID: 24534697 DOI: 10.1016/j.scitotenv.2014.01.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Removal of BDE-209 from contaminated sediments by UV/H2O2 treatment was investigated under different reaction conditions (different UV irradiance and H2O2 concentrations). After 10h of UV/H2O2 treatment, 90% of BDE-209 was removed with a half-life time (t1/2) of 3.5h and a kinetic constant (k) of 0.22 h(-1). Possible formation of OH-PBDEs and debrominated polybromodiphenyl ethers was investigated by GC-MS and LC-MS/MS. None of the abovementioned BDE-209 by-products was found after 2.5, 5.5 and 10h of UV/H2O2 treatment. Toxicity experiments carried out with zebrafish embryos exposed to the sediment before and after the UV/H2O2 treatment did not show any morphological or behavioural alterations, suggesting that no putative debrominated or oxidation products were originated by the treatment in concentrations high enough to elicit significant toxic effects in zebrafish embryos.
Collapse
|
209
|
Rawat S, Bruce ED. Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:527-549. [PMID: 24738916 DOI: 10.1080/1062936x.2014.899512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are known as effective flame retardants and have vast industrial application in products like plastics, building materials and textiles. They are found to be structurally similar to thyroid hormones that are responsible for regulating metabolism in the body. Structural similarity with the hormones poses a threat to human health because, once in the system, PBDEs have the potential to affect thyroid hormone transport and metabolism. This study was aimed at designing quantitative structure-activity relationship (QSAR) models for predicting toxic endpoints, namely cell viability and apoptosis, elicited by PBDEs in mammalian cells. Cell viability was evaluated quantitatively using a general cytotoxicity bioassay using Janus Green dye and apoptosis was evaluated using a caspase assay. This study has thus modelled the overall cytotoxic influence of PBDEs at an early and a late endpoint by the Genetic Function Approximation method. This research was a twofold process including running in vitro bioassays to collect data on the toxic endpoints and modeling the evaluated endpoints using QSARs. Cell viability and apoptosis responses for Hep G2 cells exposed to PBDEs were successfully modelled with an r(2) of 0.97 and 0.94, respectively.
Collapse
|
210
|
Waszak I, Dabrowska H, Komar-Szymczak K. Comparison of common persistent organic pollutants (POPs) in flounder (Platichthys flesus) from the Vistula (Poland) and Douro (Portugal) River estuaries. MARINE POLLUTION BULLETIN 2014; 81:225-233. [PMID: 24492155 DOI: 10.1016/j.marpolbul.2014.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Groups of flounder (Platichthys flesus) females were collected in 2011 from the Vistula River and the Duoro River estuaries and corresponding reference sites in the southern Baltic Sea and Portuguese coast of the Atlantic Ocean to measure and compare the levels and profiles of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). The estuaries' sediments were also investigated. Several differences were found in the POPs between the estuaries and between the two marine regions, which were highlighted by PCA. The Vistula River estuary POPs, significantly higher than in the Douro River estuary, were dominated by DDTs followed by PCBs. PBDEs levels, indifferent between the estuaries, were relatively low. The POP levels in flounder and sediment evaluated against environmental assessment criteria (EACs) indicated that none of the measured contaminants for which EAC had been established exceeded the criterion, except for CB-118 in flounder from the Vistula River estuary.
Collapse
|
211
|
Chen X, Chen G, Qiu M, Sun G, Guo J, Xu M. Synergistic degradation of deca-BDE by an enrichment culture and zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7856-7862. [PMID: 24643388 DOI: 10.1007/s11356-014-2734-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.
Collapse
|
212
|
Winnberg U, Rydén A, Löfstrand K, Asplund L, Bignert A, Marsh G. Novel octabrominated phenolic diphenyl ether identified in blue mussels from the Swedish West Coast. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3319-3326. [PMID: 24559155 DOI: 10.1021/es404969e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDEs) are compounds present in the marine environment and OH-PBDEs are of toxicological concern and are therefore of interest to monitor in the environment. A phenolic octaBDE was tentatively identified in the phenolic fraction of previously analyzed mussel samples after methylation of the halogenated phenolic compounds (HPCs). The aim of the present study was to confirm the identity of this compound in blue mussels and investigate whether the analyte is diOH- and/or OH-MeO-octaBDE. Two reference standards, 6,6'-dimethoxy-2,2',3,3',4,4',5,5'-octabromodiphenyl ether (6,6'-diMeO-BDE194) and 6-ethoxy-6'-methoxy-2,2',3,3',4,4',5,5'-octabromodiphenyl ether (6-EtO-6'-MeO-BDE194) were prepared via O-arylation of 2,3,4,5-tetrabromo-6-methoxyphenol and 2,3,4,5-tetrabromo-6-ethoxyphenol, respectively, with a novel unsymmetrical diaryliodonium salt, 2,3,4,5-tetrabromo-6-methoxydiphenyliodonium triflate. The GC retention time and GC/MS spectrum of the synthesized 6,6'-diMeO-BDE194 correspond well with the analyte in the methylated phenolic fraction of a mussel extract from a previous study. Structural analysis performed in this study indicate that the synthesized 6,6'-diMeO-BDE194 and 6-EtO-6'-MeO-BDE194 correspond well with 6-hydroxy-6'-methoxy-2,2',3,3',4,4',5,5'-octabromodiphenyl ether (6-OH-6'-MeO-BDE194) after methylation and ethylation, respectively, of the HPCs in the mussel extracts. The compound 6-OH-6'-MeO-BDE194 was identified and quantified in new mussels, sampled in 2012 from two locations on the Swedish west coast, with geometric mean concentrations of 3700 and 410 ng/g fat, respectively.
Collapse
|
213
|
Lu Q, Cai Z, Fu J, Luo S, Liu C, Li X, Zhao D. Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:83-89. [PMID: 24507131 DOI: 10.1016/j.ecoenv.2013.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
Environmental estrogens have attracted great concerns. Recent studies have indicated that some hydroxylated polybrominated diphenyl ethers (HO-PBDEs) can interact with estrogen receptor (ER), and exhibit estrogenic activity. However, interactions between HO-PBDEs and ER are not well understood. In this work, molecular docking and molecular dynamics (MD) simulations were performed to characterize interactions of two HO-PBDEs (4'-HO-BDE30 and 4'-HO-BDE121) with ERα. Surflex-Dock was employed to reveal the probable binding conformations of the compounds at the active site of ERα; MD simulation was used to determine the detailed binding process. The driving forces of the binding between HO-PBDEs and ERα were van der Waals and electrostatic interactions. The decomposition of the binding free energy indicated that the hydrogen bonds between the residues Glu353, Gly521 and ligands were crucial for anchoring the ligands into the active site of ERα and stabilizing their conformations. The results showed that different interaction modes and different specific interactions with some residues were responsible for the different estrogenic activities of the two HO-PBDEs.
Collapse
|
214
|
Yang YH, Xu WW, Peng SK, Lu SF, Xiang Y, Liang DW. [Reductive debromination of polybrominated diphenyl ethers in aquifier by nano zero-valent iron: debromination kinetics and pathway]. HUAN JING KE XUE= HUANJING KEXUE 2014; 35:964-971. [PMID: 24881384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nano-zerovalent iron (nZVI) approach is effective in the debromination of polybrominated biphenyl ethers (PBDEs). The kinetics and degradation pathway are the key issues to understand the PBDEs degradation mechanisms. In this study, nZVI, synthesized through liquid phase reduction method, coupled with Triton X-100, could completely debrominate the highly brominated congeners of a commercial octa-BDEs mixture within 46 h. The debromination of octa-BDEs could be described by means of pseudo-first-order kinetics with the reaction constant (k) of 0.106 h(-1). In case of lacking the PBDE standards, an effective approach has been developed to determine the unknown PBDE congeners using the quantitative-structure retention relationship (QSRR) model. The retention time of all 39 PBDE congeners in a standard mixture was firstly analyzed with gas chromatography coupled with an electron capture detector (GC-ECD), and the relative retention time (RRT) for each standard was obtained after normalizing the RT by the average RT of BDE47 and BDE183. Then a QSRR model was developed by fitting the RRT of each PBDE congener and its specific RRT index. The debromination products of octa-BDEs were identified using this QSRR model and the degradation pathway of octa-BDEs was elucidated. The results showed that in the stepwise reductive debromination process of PBDEs by nZVI, meta-debromin was facile to be degraded.
Collapse
|
215
|
Kim EJ, Kim JH, Kim JH, Bokare V, Chang YS. Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1553-1557. [PMID: 23928371 DOI: 10.1016/j.scitotenv.2013.07.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/12/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
The reductive debromination of polybrominated diphenyl ethers (PBDEs) by nanoscale zerovalent iron (nZVI) has proven to be a successful remediation approach. This study simulates the congener profiles and overall ecotoxicological impact of PBDE debromination by nZVI. The relationship between the calculated redox potential values and PBDE debromination rates was sufficiently strong to generate a satisfactory predictive capacity, which was further used to develop a quantitative structure-activity relationship (QSAR) model for the determination of the PBDE debromination patterns and dominant pathways. The predicted results of deca-BDE debromination showed that it would completely disappear within 30 days, but its lower brominated products, particularly tri- to penta-homologues, could exist in the environment even after 5 years. Formation and accumulation of more toxic, low brominated congeners through deca-BDE debromination suggest that deca-BDE may pose prolonged environmental risks. Changes in the toxic equivalent (TEQ) values during deca-BDE debromination parallel the occurrence and transformation of specific low brominated congeners with dioxin-like potency.
Collapse
|
216
|
Pang Z, Yan M, Jia X, Wang Z, Chen J. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: preparation, characterization and influence factors. J Environ Sci (China) 2014; 26:483-491. [PMID: 25076541 DOI: 10.1016/s1001-0742(13)60419-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmorillonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased.
Collapse
|
217
|
Jia F, Gan J. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:131-7. [PMID: 24047549 PMCID: PMC3915297 DOI: 10.1016/j.envpol.2013.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 05/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (Cfree) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), Cfree of six PBDEs was reduced by 47.5-78.0%, 47.3-77.5%, and 94.1-98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation.
Collapse
|
218
|
Roszko M, Szymczyk K, Rzepkowska M, Jędrzejczak R. Seasonal variability of polychlorinated biphenyls (PCBs) and polychlorinated diphenyl ethers (PBDEs) congener profiles in butter in Poland: dietary risk evaluation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:182-199. [PMID: 24380619 DOI: 10.1080/03601234.2014.858514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Various statistical methods have been employed to analyse in details seasonal diversification of polychlorinated biphenyl (PCB)/polybrominated diphenyl ether (PBDE) congener profiles found in butter fat. The variability of the PCB/PBDE congener profiles indicates the presence of various sources of the milk fat contamination. The obtained results suggest that the environmental chemical background has the highest share in the contamination sources pattern. Ion trap mass spectrometry coupled to high-resolution gas chromatography with semi-permeable membrane dialysis sample cleanup was used for determination of PCBs and PBDEs in milk fat. Determined butter fat PCB profiles were similar to the profiles characteristic for Aroclor 1254 technical mixture. Our data indicate that dietary intake of PCB/PBDE with milk and milk products may be estimated to be about 717.5 pg kg b.w.(-1) day(-1) for six-indicator PCBs, 0.329 (equivalent toxicity, TEQ) pg kg b.w.(-1) day(-1) for 12 DL PCBs and 50 pg kg b.w.(-1) day(-1) for PBDEs (sum of 14 congeners).
Collapse
|
219
|
Zhou S, Buchar A, Siddique S, Takser L, Abdelouahab N, Zhu J. Measurements of selected brominated flame retardants in nursing women: implications for human exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8873-80. [PMID: 24992303 PMCID: PMC4124063 DOI: 10.1021/es5016839] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 05/18/2023]
Abstract
We have examined several emerging brominated flame retardants (BFRs) including 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-indane (OBIND), and decabromodiphenyl ethane (DBDPE) in paired human maternal serum (n = 102) and breast milk (n = 105) collected in 2008-2009 in the Sherbrooke region in Canada. Three legacy BFRs were also included in the study for comparison: decabromobiphenyl (BB-209), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), and 2,2',4,4',5,5'-hexabromodiphenyl ethers (BDE-153). TBB, BB-153, and BDE-153 had detection frequencies greater than 55% in both serum and milk samples. Their lipid weight (lw) adjusted median concentrations (ng g(-1) lw) in serum and milk were 1.6 and 0.41 for TBB, 0.48 and 0.31 for BB-153, and 1.5 and 4.4 for BDE-153, respectively. The detection frequencies for the other BFRs measured in serum and milk were 16.7% and 32.4% for TBPH, 3.9% and 0.0% for BTBPE, 2.0% and 0.0% for BB-209, 9.8% and 1.0% for OBIND, and 5.9% and 8.6% for DBDPE. The ratio of TBB over the sum of TBB and TBPH (fTBB) in serum (0.23) was lower than that in milk (0.46), indicating TBB has a larger tendency than TBPH to be redistributed from blood to milk. Overall, these data confirm the presence of non-PBDE BFRs in humans, and the need to better understand their sources, routes of exposure, and potential human health effects.
Collapse
|
220
|
Painter K, McConnell ER, Sahasrabudhe S, Burgoon L, Powers CM. What do the data show? Knowledge map development for comprehensive environmental assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2014; 10:37-47. [PMID: 24327299 DOI: 10.1002/ieam.1486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/20/2013] [Accepted: 10/07/2013] [Indexed: 06/03/2023]
Abstract
Environmental and human health risk assessments benefit from using data that cross multiple scientific domains. Although individual data points may often be readily understood, the total picture can be difficult to envision. This is especially true with gaps in the data (e.g., with emerging substances such as engineered nanomaterials [ENM]), such that simply presenting only known information can result in a skewed picture. This study describes a method for building knowledge maps (KM) to visually summarize factors relevant to risk assessment in a relatively easy to interpret format. The KMs were created in the context of the comprehensive environmental assessment (CEA) approach for research planning and risk management of environmental contaminants. Recent applications of CEA to emerging substances such as engineered nanomaterials that have numerous data gaps have suggested that a more visually based depiction of information would improve the approach. We developed KM templates as a pilot project, to represent pertinent aspects of conceptual domains, and to highlight gaps in available information for one particular portion of a specific CEA application: the comparison of environmental transport, transformation, and fate of multiwalled carbon nanotubes (MWCNTs) and decabromodiphenyl ether as flame retardants. The results are 3 KM templates representing Physical Properties, Transport, and Transformation. The 3 templates were applied to both substances, resulting in a total of 6 KMs. In addition to presenting the KMs, this paper details the process used to generate them, to aid KM development for other sections of CEA applied to MWCNTs, or to apply the process to new CEA applications.
Collapse
|
221
|
Leal JF, Esteves VI, Santos EBH. BDE-209: kinetic studies and effect of humic substances on photodegradation in water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14010-14017. [PMID: 24245794 DOI: 10.1021/es4035254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BDE-209 is a brominated flame retardant and a priority contaminant, which has been found in several environmental matrices, namely, in water. To date, there are no quantum yield data for BDE-209 photodegradation by sunlight in water, to allow predicting half-life times in aquatic systems. In this work, the kinetics of BDE-209 photodegradation in water was studied and the influence of different fractions of aquatic humic substances (HS) was evaluated. Aqueous solutions of BDE-209 exposed for different periods of time to simulated sunlight were analyzed by HPLC-UV after being concentrated using dispersive liquid-liquid microextraction (DLLME) or solid-phase extraction (SPE). The photodegradation of BDE-209 in aqueous solution followed pseudo-first-order kinetics. The average quantum yield obtained of 0.010 ± 0.001 (about 20-fold lower than the quantum yield determined in ethanol) allow to predict an outdoor half-life time of 3.5 h. The photodegradation percentage of BDE-209 was not significantly affected by the XAD-4 fraction of HS, but it decreased substantially in the presence of humic and fulvic acids. Light screening by the humic substances could not explain this delay, which is probably the result of the association of the compound with the hydrophobic sites of the humic material.
Collapse
|
222
|
Wang JZ, Hou Y, Zhang J, Zhu J, Feng YL. Transformation of 2,2',4,4'-tetrabromodiphenyl ether under UV irradiation: potential sources of the secondary pollutants. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:778-783. [PMID: 24225586 DOI: 10.1016/j.jhazmat.2013.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
A commercial brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was used as the model chemical to investigate the degradation and transformation of polybrominated diphenyl ethers (PBDEs) in gas and liquid phases, respectively, under ultraviolet (UV) irradiation. The results showed that BDE-47 can be transformed to less-brominated BDE analogs. A total of six compounds that are less-brominated BDEs and two brominated phenols were observed as transformation products in the reaction mixtures. Different degradation rates of BDE-47 in n-nonane and in isooctane in the same chamber system were observed. Degradation rate of BDE-47 in n-nonane was faster than in isooctane. Under UV irradiation, the bromine on the ortho positions of the phenyl rings was lost first to form 2,4,4'-tribromodiphenyl ether (BDE-28), which then progressively lead to 4,4'-dibromodiphenyl ether (BDE-15) or 2,4'-dibromodiphenyl ether (BDE-8). An airborne transformation pathway has been proposed according to observed transformation products. The more volatile less-brominated BDEs from transformation of BDE-47 are easily evaporated into air to be a source of secondary pollutants in the environment.
Collapse
|
223
|
Lin K, Yan C, Gan J. Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:263-271. [PMID: 24266690 DOI: 10.1021/es403583b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of significant concern because of their enhanced toxicological effects compared to PBDEs. Research to date has attributed the origin of OH-PBDEs to biological metabolism of PBDEs and natural production in the environment. However, it is unclear how OH-PBDEs are formed naturally. In this study, we explored the formation of OH-PBDEs via the oxidative transformation of simple bromophenols (BPs, e.g., 4-BP, 2,4-DBP, and 2,4,6-TBP) by birnessite (δ-MnO2). Results showed that OH-PBDEs were readily produced by δ-MnO2 with BPs as precursors. For example, oxidation of 2,4-DBP by δ-MnO2 yielded 2'-OH-BDE-68 and 2',5'-OH-BDE-25. Other OH-PBDEs, such as 6-OH-BDE-13, 2',5'-OH-BDE-3, 4'-OH-BDE-121, and 2',5'-OH-BDE-69, were detected from the reaction with 4-BP and 2,4,6-TBP. The formation of OH-PBDEs likely resulted from the oxidative coupling of bromophenoxy radicals. Mild acidic conditions enhanced while coexisting cations (e.g., Na(+), Mg(2+), and Ca(2+)) suppressed the transformation. Given the ubiquity of BPs and δ-MnO2, oxidation of BPs by δ-MnO2 and other metal oxides is likely an abiotic route for the formation of OH-PBDEs in the environment.
Collapse
|
224
|
Lu M, Zhang ZZ, Wu XJ, Xu YX, Su XL, Zhang M, Wang JX. Biodegradation of decabromodiphenyl ether (BDE-209) by a metal resistant strain, Bacillus cereus JP12. BIORESOURCE TECHNOLOGY 2013; 149:8-15. [PMID: 24084199 DOI: 10.1016/j.biortech.2013.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 06/02/2023]
Abstract
A metal resistant bacterial strain, Bacillus cereus JP12, could use decabromodiphenyl ether (BDE-209) as the sole carbon and energy source for growth in mineral salt medium. Under the conditions of pH 6.0, 30°C, 150 rpm and an inoculum of OD600=0.6, more than 88% of the initial BDE-209 (1mg/L) was degraded after 12 days. The addition of appropriate surfactants and additional carbon sources could enhance the biodegradation efficiency of BDE-209. The presence of Cu(2+) (≤ 8 mg/L) and Zn(2+) (≤ 15 mg/L) provided a slight stimulating effect on BDE-209 removal. However, BDE-209 biodegradation efficiency was decreased when adding higher levels of metals due to reduced substrate availability caused by excess metal adsorption into the cell surface. Biosorption of heavy metals by JP12 led to release of light metals such as K(+) and Na(+). A BDE-209 biodegradation pathway was proposed on the basis of metabolite identification.
Collapse
|
225
|
Ma Y, Salamova A, Venier M, Hites RA. Has the phase-out of PBDEs affected their atmospheric levels? Trends of PBDEs and their replacements in the Great Lakes atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11457-64. [PMID: 24059785 DOI: 10.1021/es403029m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Air and precipitation samples were collected every 12 days at five sites near the North American Great Lakes from 2005 to 2011 (inclusive) by the Integrated Atmospheric Deposition Network (IADN). The concentrations of polybrominated diphenyl ethers (PBDEs) and selected alternative brominated flame retardants [pentabromoethyl benzene (PBEB), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (TBE or BTBPE), decabromodiphenylethane (DBDPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), and bis(2-ethylhexyl)-tetrabromo-phthalate (TBPH)] were measured in these samples. The concentrations of almost all of these flame retardants were related to the number of people within a 25 km radius of the sampling site, except for HBB, the concentrations of which were relatively high at Sturgeon Point, and PBEB, the concentrations of which were relatively high at Eagle Harbor. The temporal trends of all of these concentrations were variable. For example, BDE-47 vapor phase concentrations were increasing with doubling times of 5-10 years at Sturgeon Point, Sleeping Bear Dunes, and Eagle Harbor, but these concentrations were slowly decreasing in all phases at Chicago. The most consistent trend was for TBE, which showed concentrations that were unchanging or decreasing in all phases at all sites. TBPH concentrations in particles and HBB concentrations in precipitation were rapidly increasing at most sites with doubling times of ~2 years. The concentrations of DBDPE and BDE-209 were strongly and positively correlated, and the concentrations of TBB and TBPH were also strongly and positively correlated. The concentrations of TBB plus TBPH (representing Firemaster 550) and BDE-47, 85, 99, 100, 153, plus 154 (representing the withdrawn penta-BDE commercial mixture) were also strongly and positively correlated. These positive relationships indicate that the replacement of the deca-BDE commercial product by DBDPE and the penta-BDE product by Firemaster 550 have not yet become evident in the Great Lakes' atmospheric environment.
Collapse
|