1
|
Chen Y, Zhu X, Lin C, Xu R, Xu P, Xin L, Li L, Zhang L. circKCNQ5 promotes the proliferation of DNA-methyltransferase 3A R882 mutated acute myeloid leukemia cells by elevating high-mobility group box 1 expression. Ann Med 2025; 57:2478309. [PMID: 40130394 PMCID: PMC11938305 DOI: 10.1080/07853890.2025.2478309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/18/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Patients with acute myeloid leukemia (AML) harboring the DNA-methyltransferase 3 A (DNMT3A) R882 mutation (DR882MUT) usually have a high recurrence rate and poor prognosis. circKCNQ5 levels were aberrantly elevated in patients with AML according to the microarray platform. Therefore, the purpose of this study is to investigate the effect and mechanism of circKCNQ5 on DR882MUT AML cell proliferation. METHODS A DR882MUT cell line model was established. circKCNQ5 expression in AML cells expressing wild-type DNMT3A (DNMT3A-WT) or DR882MUT was analyzed using RT-qPCR. The proliferation of DNMT3A-WT and DR882MUT AML cells after transfection was measured using a CCK-8 assay. High-mobility group box 1 (HMGB1) protein expression was assessed by western blotting. The regulatory mechanism of circKCNQ5 on HMGB1 expression was studied using RNA pull-down and co-immunoprecipitation assays. RESULTS circKCNQ5 expression increased gradually in HS-5, DNMT3A-WT, and DR882MUT AML cells. circKCNQ5 overexpression facilitated the proliferation of DNMT3A-WT KG-1a and HL-60 cells, whereas circKCNQ5 silencing blocked DR882MUT KG-1a and HL-60 cell proliferation. CircKCNQ5 interacts with HMGB1 and enhanced HMGB1 protein levels by inhibiting HMGB1 ubiquitination. HMGB1 protein levels increased gradually in HS-5, DNMT3A-WT, and DR882MUT AML cells. Furthermore, circKCNQ5 overexpression elevated HMGB1 protein levels in DNMT3A-WT KG-1a and HL-60 cells, whereas circKCNQ5 silencing reduced HMGB1 protein levels in DR882MUT KG-1a and HL-60 cells. HMGB1 overexpression remarkably increased the proliferative ability of DR882MUT KG-1a and HL-60 cells and circKCNQ5 silencing. CONCLUSIONS These findings verified that circKCNQ5 promotes the proliferation of DR882MUT AML cells by increasing HMGB1 expression.
Collapse
Affiliation(s)
- Yijian Chen
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Xiaodan Zhu
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Chuanming Lin
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Rong Xu
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Pengxiang Xu
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Liuyan Xin
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Lin Li
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| | - Liqun Zhang
- Quality Control Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P. R. China
| |
Collapse
|
2
|
Aspatwar A, Parkkinen J, Parkkila S. Physiological role of bicarbonate in microbes: A double-edged sword? Virulence 2025; 16:2474865. [PMID: 40047280 PMCID: PMC11901407 DOI: 10.1080/21505594.2025.2474865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
HCO3- is involved in pH homoeostasis and plays a multifaceted role in human health. HCO3- has been recognized for its antimicrobial properties and is pivotal in bacterial antibiotic susceptibility. Notably, the interconversion between CO2 and HCO3-, facilitated by the enzyme carbonic anhydrase (CA), is crucial in tissues infected by pathogens. Studies have highlighted the antimicrobial potency of CA inhibitors, emphasizing the importance of this enzyme in this area. The potential of HCO3- as an antibiotic adjuvant is evident; its ability to increase virulence in pathogens such as Enterococcus faecalis and Mycobacterium tuberculosis requires meticulous scrutiny. HCO3- modulates bacterial behaviours in diverse manners: it promotes Escherichia coli O157:H7 colonization in the human gut by altering specific gene expression and, with Pseudomonas aeruginosa, amplifies the effect of tobramycin on planktonic cells while promoting biofilm formation. These multifaceted effects necessitate profound mechanistic exploration before HCO3- can be considered a promising clinical adjuvant.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Li D, Shen S, Liu C, Guo T, Liu Y, Pan P, Zhao X, Ma Y, Li L, Huang S, Shen W, YoupingZhang, Jiang B, Wang W, Yin Q, Zhang Y. Discovery of novel and highly potent anticancer agents enabled by selenium scanning of noscapine. Eur J Med Chem 2025; 293:117714. [PMID: 40339472 DOI: 10.1016/j.ejmech.2025.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Herein, the structural modification of noscapine via an elegant selenium scanning strategy has been demonstrated, which enables the production of three classes of novel seleno-containing noscapinoids, namely 6', 7', and 9'-seleno-substituted noscapines. Among them, 9'-seleno-substituted noscapines exhibited superior in vitro anti-proliferative activity, and 9'-cycloheptylselenomethyl-noscapine 17a16 with a large hydrophobic cycloheptyl group showed the most potent activity and good selectivity. Unlike most of the reported noscapinoids that induce G2/M phase arrest by targeting microtubules, 17a16 exhibited a distinct ability to induce S-phase arrest and displayed superior potency in inducing apoptosis, which attribute to the activation of two parallel checkpoint pathways orchestrating DNA damage response, including DNA-PKcs-dependent p53 stabilization and ATR-Chk1 axis activation. Dissecting the upstream mechanism revealed that 17a16 targets mitochondria and induces mitochondrial dysfunction. This study elucidates the interplay of mitochondrial stress, DNA damage response, p53 and ATR-Chk1 checkpoint activation in mediating the anticancer effects of 17a16. Furthermore, 17a16 treatment significantly suppressed tumor growth in p53-deficient JeKo-1 subcutaneous xenograft model in vivo, without inducing systemic toxicity. Overall, our findings highlight 17a16 as a promising lead compound in cancer therapy and demonstrate the potential of selenium scanning as a valuable strategy for anticancer drug discovery.
Collapse
Affiliation(s)
- Defeng Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuting Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Chuanxu Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Tingyu Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuhuan Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Peng Pan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyi Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Shitao Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wenhao Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - YoupingZhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
4
|
Matsumoto H, Wang TC, Taniguchi H, Nishioka Y, Hatakeyama M, Kinoshita T, Sawa M. Identification of small molecule activators targeting TYK2 pseudokinase domain. Bioorg Med Chem Lett 2025; 123:130233. [PMID: 40209917 DOI: 10.1016/j.bmcl.2025.130233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Tyrosine kinase 2 (TYK2) plays a crucial role in both adaptive and innate immune responses. The catalytic activity of the TYK2 JH1 kinase domain is controlled by the TYK2 JH2 pseudokinase domain and stabilized to maintain its inactive state until the upstream receptor activations. Here, we report the discovery of aminopyridine analogs as novel TYK2 activators through structural modification of a known JH2 binder. Compound 16b demonstrated a dose-dependent increase in TYK2 enzymatic activity.
Collapse
Affiliation(s)
| | | | | | - Yu Nishioka
- Carna Biosciences, Inc., Kobe 650-0047, Japan
| | | | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Metropolitan University, Osaka 599-8570, Japan
| | | |
Collapse
|
5
|
Li X, Mendez Q, Chapados C, Acca F, Driscoll H, Oliveira J, Liu J, Jones K, Ferguson M, Wallace RL, Bibikov S, Lionberger T, Harvey KJ, Weiner MP, Mirando G. Site-directed antibodies targeting driver mutations of the KRAS protein. N Biotechnol 2025; 87:112-120. [PMID: 40252917 DOI: 10.1016/j.nbt.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most mutated oncogene in human cancers, found in approximately 30 % of tumors. These mutations primarily consist of single-base missense alterations in codon G12. While extensive efforts have focused on developing allele-specific inhibitors for KRAS mutations, mutation-specific antibodies (Abs) remain largely unexplored, with only a few research-use-only catalog Abs available. In this study, we employed the proprietary Epivolve technology to develop site-directed monoclonal Abs (mAbs) that target KRAS oncogenic driver mutation KRAS G12D. These site-directed mAbs demonstrate high binding affinity, with equilibrium dissociation constants (KD) in the nanomolar range, showing over 1,000-fold greater affinity for KRAS G12D compared to wild-type KRAS. Western blot analyses using both purified KRAS protein variants and tumor cell lines harboring G12D mutations confirmed the high specificity of these mAbs. Furthermore, immunocytochemistry analysis revealed co-localization of the site-directed mAbs with endogenously expressed KRAS in cancer cells bearing G12D mutations. The validated high affinity and specificity of these site-directed mAbs highlight their potential for diagnostic applications and therapeutic development targeting KRAS driver mutations.
Collapse
Affiliation(s)
- Xiaofeng Li
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA.
| | - Qiana Mendez
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | | | - Felicity Acca
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Holly Driscoll
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Jason Oliveira
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Jun Liu
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Kezzia Jones
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Mary Ferguson
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Ryan L Wallace
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Sergei Bibikov
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Troy Lionberger
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Kevin J Harvey
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Michael P Weiner
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Greg Mirando
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| |
Collapse
|
6
|
Kakavand G, Arabzadeh S, Mohebbi S, Saeedfar K, Abedini A, Mardani M. Impact of remdesivir treatment on factor VIII gene expression and hematological parameters in COVID-19 patients. Microb Pathog 2025; 204:107536. [PMID: 40187577 DOI: 10.1016/j.micpath.2025.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The novel coronavirus, COVID-19, which was first identified in December 2019 rapidly spread worldwide and was declared a global pandemic. Beyond respiratory symptoms, COVID-19 often results in coagulation and vascular endothelium disorders, causing increased clotting and bleeding, which are closely linked to the acute phase of the infection. Factor VIII is a crucial protein in the blood coagulation cascade, and elevated FVIII levels have been linked to thrombotic events in COVID-19, highlighting the need to understand its behavior during treatment. Remdesivir is an antiviral drug that has shown promise in reducing recovery time and mortality rates in COVID-19 patients. This study aims to examine the changes in blood factors and the expression of the factor VIII gene in patients treated with Remdesivir. Blood samples were collected from 30 COVID-19 patients before and after Remdesivir treatment and from 20 healthy individuals. Patients with underlying diseases were excluded from the study. RNA was extracted from these samples, followed by cDNA synthesis. The expression of the factor VIII gene was analyzed using Real-Time PCR. The results indicated that blood factors such as Urea, ALK, AST, WBC, and CRP were elevated in the patient group compared to the control group. At the same time, FBS, Urea, ALK, AST, WBC, RDW, INR, and K levels increased in the Remdesivir treatment group (P < 0.001). Conversely, MCHC, RBC, and Ca levels decreased in both patient and treatment groups compared to the control group (P < 0.001). The expression of the FVIII gene was upregulated approaching 2 times in COVID-19 patients and 1.5-fold in the treatment group compared to the control group (P < 0.001). However, no significant changes were observed in FVIII expression before and after Remdesivir treatment. However, a positive correlation between RBC, FBS, and Urea in the patient group and a negative correlation between RDW and FVIII expression levels was observed. In the treatment group, FVIII expression level correlated negatively with Urea, P, and RDW. These findings suggest that elevated FVIII levels are associated with disease severity and excessive coagulation in COVID-19 patients. Additionally, Remdesivir does not appear to exacerbate the coagulation process.
Collapse
Affiliation(s)
- Ghazal Kakavand
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Sohameh Mohebbi
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran.
| | - Kayvan Saeedfar
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mardani
- Shahid Beheshti University of Medical Sciences, Infectious Disease Department, Loghman Hakim Hospital, Tehran, Iran
| |
Collapse
|
7
|
Khan A, Anicet G, Asdullah HU, Hassan MA, Song Y. RNA modification: A contemporary review of pseudouridine (Ψ) and its role in functional plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112522. [PMID: 40287098 DOI: 10.1016/j.plantsci.2025.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/14/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Pseudouridine (Ψ) is a modified nucleoside present in diverse RNA species, including mRNA (messenger RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA) and tRNA (transfer RNA). In plants, Ψ serves a critical function in RNA modification, supporting the stability, structural integrity, and functionality of RNA molecules. This review provides the various roles that Ψ fulfils in the modification of plant RNA biology, encompassing effects on biosynthesis pathways, regulatory mechanisms, stability, and translation efficiency. Additionally, we discuss recent advancements in the dynamic regulation of Ψ deposition in response to environmental stimuli and stressors. Elucidating Ψ's roles contributes to the comprehension of plant biology and may facilitate developments in biotechnology and crop improvement.
Collapse
Affiliation(s)
- Ahsan Khan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Gatera Anicet
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Hafiz Umair Asdullah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| | - Muhammad Ahmad Hassan
- College of Resource and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| |
Collapse
|
8
|
Gheybi E, Hosseinzadeh P, Tayebi-Khorrami V, Rostami M, Soukhtanloo M. Proteomics in decoding cancer: A review. Clin Chim Acta 2025; 574:120302. [PMID: 40220985 DOI: 10.1016/j.cca.2025.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Cancer remains the second leading cause of death worldwide, posing a significant global health challenge. Extensive research has revealed common biological characteristics across cancer cells, forming the foundation for developing innovative diagnostic and therapeutic strategies. To better understand these shared traits, advanced measurement technologies are critical. Proteomics, the large-scale study of proteins and their functions, has emerged as a transformative tool for uncovering the complexities of cancer biology. This approach provides an in-depth view of cellular activities and protein interactions, offering unprecedented insights into cancer progression and treatment. Unlike traditional methods that investigate specific pathways in isolation, proteomics enables simultaneous analysis of thousands of proteins, generating a comprehensive understanding of cancer biology. This review explores the mechanisms underlying proteomics, its application to understanding cancer hallmarks, and its potential to transform clinical approaches. By examining proteomics' role in metastasis, angiogenesis, proliferation, and resistance mechanisms, this study highlights its contributions to cancer diagnosis, treatment, and personalized medicine. Additionally, prospects in integrating proteomics with other -omics fields and advancements in computational analysis will be discussed. This work aims to illuminate the path toward more effective, precise, and individualized cancer care through proteomics innovations.
Collapse
Affiliation(s)
- Elaheh Gheybi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pejman Hosseinzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Denisenko TV, Ivanova AE, Koval A, Silachev DN, Jia L, Sukhikh GT, Katanaev VL. Signalomics for molecular tumor boards and precision oncology of breast and gynecological cancers. Mol Syst Biol 2025:10.1038/s44320-025-00125-1. [PMID: 40490498 DOI: 10.1038/s44320-025-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/08/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025] Open
Abstract
Precision oncology led to the establishment and widespread application of molecular tumor boards (MTBs)-multidisciplinary units combining molecular and clinical assessment of individual cancer cases for swift selection of personalized treatments. Whole-exome or gene panel sequencing, combined with transcriptomic, immunohistochemical, and other molecular analyses, often permits dissection of molecular drivers of a tumor and identification of its potential targetable vulnerabilities, instructing clinical oncologists on sometimes unconventional treatment options. However, cancer drivers are often unleashed mutation-independently, especially in breast and gynecological cancers, and deleterious mutations are not always pathogenic. To complement the MTB arsenal, we chart here the molecular toolset we call Signalomics that permits fast and robust assessment of a panel of oncogenic signaling pathways in fresh tumor samples. Using transcriptional reporters introduced in primary tumor cells, this approach identifies the pathways overactivated in a given tumor and validates their sensitivity to targeted therapies, providing actionable insights for personalized treatment strategies. Integration of Signalomics into MTB workflows bridges the gap between molecular profiling and functional pathway analysis, refining clinical treatment decisions and advancing precision oncology.
Collapse
Affiliation(s)
- Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow, 117997, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow, 117997, Russia
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
| | - Denis N Silachev
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow, 117997, Russia
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow, 117997, Russia
| | - Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland.
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Michaels JR, Iyyanar PPR, Husami A, Vontell AM, Brugmann SA, Stottmann RW. Genetic analysis and functional assessment of a TGFBR2 variant in micrognathia and cleft palate. PLoS One 2025; 20:e0324803. [PMID: 40489498 DOI: 10.1371/journal.pone.0324803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/30/2025] [Indexed: 06/11/2025] Open
Abstract
Cleft lip and cleft palate are among the most common congenital anomalies and are the result of incomplete fusion of embryonic craniofacial processes or palatal shelves, respectively. We know that genetics play a large role in these anomalies but the list of known causal genes is far from complete. As part of a larger sequencing effort of patients with congenital craniofacial anomalies, we identified a rare candidate variant in transforming growth factor beta receptor 2 (TGFBR2). This variant alters a highly conserved amino acid and is predicted to be pathogenic by a number of metrics. The family history and population genetics suggest that this specific variant would be incompletely penetrant, but this gene has been convincingly implicated in craniofacial development. In order to test the hypothesis this might be a causal variant, we used genome editing to create the orthologous variant in a new mouse model. Surprisingly, Tgfbr2V387M mice did not exhibit craniofacial anomalies or have reduced survival, suggesting Tgfbr2V387M is not a causal variant for cleft palate/ micrognathia. The discrepancy between in silico predictions and mouse phenotypes highlights the complexity of translating human genetic findings to mouse models. We expect these findings will aid in interpretation of future variants seen in TGFBR2 from ongoing sequencing of patients with congenital craniofacial anomalies.
Collapse
Affiliation(s)
- Jes-Rite Michaels
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Paul P R Iyyanar
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Andrew M Vontell
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Samantha A Brugmann
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
11
|
Van den Ackerveken P, Hannart C, Pamart D, Varsebroucq R, Wargnies M, Thiry O, Lurkin M, Vincent S, Chapelier M, Rommelaere G, Herzog M. High-Throughput Epigenetic Profiling Immunoassays for Accelerated Disease Research and Clinical Development. J Biol Chem 2025:110352. [PMID: 40490138 DOI: 10.1016/j.jbc.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025] Open
Abstract
Epigenetics, which examines the regulation of genes without modification of the DNA sequence, plays a crucial role in various biological processes and disease mechanisms. Among the different forms of epigenetic modifications, histone post-translational modifications (PTMs) are important for modulating chromatin structure and gene expression. Aberrant levels of histone PTMs are implicated in a wide range of diseases, including cancer, making them promising targets for biomarker discovery and therapeutic intervention. In this context, blood, tissues, or cells serve as valuable resources for epigenetic research and analysis. Traditional methods such as mass spectrometry and western blotting are widely used to study histone PTMs, providing qualitative and (semi)quantitative information. However, these techniques often face limitations that could include throughput and scalability, particularly when applied to clinical samples. To overcome these challenges, we developed and validated 13 Nu.Q® immunoassays to detect and quantify specific histone PTM-nucleosomes from K2EDTA plasma samples. Then, we tested these assays on other types of samples, including chromatin extracts from frozen tissues, as well as cell lines and white blood cells Our findings demonstrate that the Nu.Q® assays offer high specificity, sensitivity, precision and linearity, making them effective tools for epigenetic profiling. A comparative analysis of HeLa cells using mass spectrometry, Western blot, and Nu.Q® immunoassays revealed a consistent histone PTMs signature, further validating the effectiveness of these assays. Additionally, we successfully applied Nu.Q® assays across various biological samples, including human tissues from different organs and specific white blood cell subtypes, highlighting their versatility and applicability in diverse biological contexts.
Collapse
Affiliation(s)
| | - Clotilde Hannart
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Dorian Pamart
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Robin Varsebroucq
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Marion Wargnies
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Olivia Thiry
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Marie Lurkin
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Séverine Vincent
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Muriel Chapelier
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Guillaume Rommelaere
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium
| |
Collapse
|
12
|
Sharma A, Balde A, Nazeer RA. A review on animal venom-based matrix metalloproteinase modulators and their therapeutic implications. Int Immunopharmacol 2025; 157:114703. [PMID: 40300352 DOI: 10.1016/j.intimp.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Matrix Metalloproteinases (MMPs) belong to a family of proteolytic enzymes that degrade extracellular matrix components, such as collagen, elastin, laminin, and fibronectin. They also play a part in tissue remodeling by cleaving and rejoining the tissue proteins. Cancer, neurodegenerative disorders, cardiovascular diseases, arthritis, and chronic inflammatory conditions are just some of the diseases that can start or get worse when different MMPs are not working properly. Venomous Animals such as honeybees, toads, snakes, spiders, scorpions, jellyfish, and sea anemones contain venom-secreting glands, which help them defend against predators and immobilize their prey. The molecules that come from animal venom are a complicated mix of bioactive molecules, such as peptides, enzymes, proteins, and small organic compounds that do a number of biological things. Venom-derived molecules have been found to modulate MMP. These venoms and their components target specific signaling pathways, modifying MMP expression levels to either induce inflammation or exhibit anti-inflammatory effects. In this review, we study and explore different MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP8, and MMP9, and their roles in the progression of certain diseases. We also look at different types of molecules derived from marine and land animal venom that are used as MMP modulators. We look at how they work by targeting specific signaling pathways to change MMPs and how they might be used as a medicine to stop diseases by decreasing MMPs.
Collapse
Affiliation(s)
- Ansumaan Sharma
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Mohammadi S. Innate immunity and wound repair: The platelet-rich fibrin advantage. World J Biol Chem 2025; 16:107195. [DOI: 10.4331/wjbc.v16.i2.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/30/2025] Open
Abstract
In this editorial, we comment on the article by Sá-Oliveira et al. We focus specifically on the role of platelet-rich fibrin (PRF) in modulating innate immunity to enhance wound repair. The process of wound healing is complex and involves a coordinated series of biological events, including inflammation, cell proliferation, and tissue remodeling. The innate immune system is important in the early stages of wound repair, with inflammation being a crucial initial phase in tissue regeneration. However, the inflammatory response should be regulated, as excessive or dysregulated inflammation can impair healing. Platelet concentrates, specifically PRF, have originated as promising tools to optimize the tissue repair process. PRF is a second-generation platelet concentrate, and the release of growth factors (GFs) plays a determining role in several aspects of wound healing, including promoting cell proliferation, stimulating angiogenesis, and modulating inflammation. PRF forms a fibrin matrix that entraps platelets and GFs. This structure allows for their sustained release over time, which is believed to provide a more favorable microenvironment for tissue repair. Recent research by Sá-Oliveira et al has provided valuable evidence supporting the efficacy of PRF in promoting wound healing. Their study, conducted on an animal model, demonstrated that PRF-based dressings were more effective in accelerating wound closure in the early stages of the healing process, enhancing tissue repair, and modulating the inflammatory response. We explore how PRF's unique properties contribute to a more controlled and effective healing process. By examining these findings, we aim to highlight PRF's potential as a promising therapeutic strategy for improved wound management.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dakhiliyah, Oman
| |
Collapse
|
14
|
Little M, Achouba A, Ayotte P, Lemire M. Emerging evidence on selenoneine and its public health relevance in coastal populations: a review and case study of dietary Se among Inuit populations in the Canadian Arctic. Nutr Res Rev 2025; 38:171-180. [PMID: 38327212 DOI: 10.1017/s0954422424000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selenium is an essential mineral yet both deficiency and excess are associated with adverse health effects. Dietary intake of Se in humans varies greatly between populations due to food availability, dietary preferences, and local geological and ecosystem processes impacting Se accumulation into agricultural products and animal populations. We argue there is a need to evaluate and reconsider the relevance of public health recommendations on Se given recent evidence, including the metabolic pathways and health implications of Se. This argument is particularly pertinent for Inuit populations in Northern Canada, who often exceed dietary tolerable upper intake levels and exhibit very high whole blood Se concentrations due to their dependence on local country foods high in the newly discovered Se compound, selenoneine. Since selenoneine appears to have lower toxicity compared to other Se species and does not contribute to the circulating pools of Se for selenoprotein synthesis, we argue that total dietary Se or total Se in plasma or whole blood are poor indicators of Se adequacy for human health in these populations. Overall, this review provides an overview of the current evidence of Se speciation, deficiency, adequacy, and excess and implications for human health and dietary recommendations, with particular reference to Inuit populations in the Canadian Arctic and other coastal populations consuming marine foods.
Collapse
Affiliation(s)
- Matthew Little
- School of Public Health and Social Policy, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Adel Achouba
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, G1S 4L8, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, G1S 4L8, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, G1V 0A6, Canada
- Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Avenue Wolfe, Quebec, G1V 5B3, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en Santé, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, 1050, chemin Sainte-Foy, Québec, G1S 4L8, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, G1V 0A6, Canada
| |
Collapse
|
15
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
16
|
Yuan Y, Chen L. Transporters in vitamin uptake and cellular metabolism: impacts on health and disease. LIFE METABOLISM 2025; 4:loaf008. [PMID: 40444179 PMCID: PMC12121362 DOI: 10.1093/lifemeta/loaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 06/02/2025]
Abstract
Vitamins are vital nutrients essential for metabolism, functioning as coenzymes, antioxidants, and regulators of gene expression. Their absorption and metabolism rely on specialized transport proteins that ensure bioavailability and cellular utilization. Water-soluble vitamins, including B-complex and vitamin C, are transported by solute carrier (SLC) family proteins and ATP-binding cassette (ABC) transporters for efficient uptake and cellular distribution. Fat-soluble vitamins (A, D, E, and K) rely on lipid-mediated pathways through proteins like scavenger receptor class B type I (SR-BI), CD36, and Niemann-Pick C1-like 1 (NPC1L1), integrating their absorption with lipid metabolism. Defective vitamin transporters are associated with diverse metabolic disorders, including neurological, hematological, and mitochondrial diseases. Advances in structural and functional studies of vitamin transporters highlight their tissue-specific roles and regulatory mechanisms, shedding light on their impact on health and disease. This review emphasizes the significance of vitamin transporters and their potential as therapeutic targets for deficiencies and related chronic conditions.
Collapse
Affiliation(s)
- Yaxuan Yuan
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| | - Ligong Chen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| |
Collapse
|
17
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
18
|
Wu L, Coletta DK. Obesity and type 2 diabetes mellitus: insights from skeletal muscle extracellular matrix remodeling. Am J Physiol Cell Physiol 2025; 328:C1752-C1763. [PMID: 40244268 DOI: 10.1152/ajpcell.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/23/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic diseases at epidemic proportions. The economic burden for these diseases is at an all-time high, and as such, there is an urgent need for advancements in identifying targets for treating these complex disorders. The extracellular matrix (ECM), comprising collagen, fibronectin, laminin, elastin, and proteoglycan, surrounds skeletal muscles and plays a critical role in maintaining tissue homeostasis by providing structural support and facilitating cell-to-cell communication. Disruption of the ECM signaling results in changes to its micro/macroenvironment, thereby modifying tissue homeostasis. Skeletal muscle ECM remodeling has been shown to be associated with insulin resistance, an underlying feature of obesity and T2DM. This narrative review explores the critical components of skeletal muscle ECM and its accumulation and remodeling in metabolic diseases. In addition, we discuss potential treatments to mitigate the effects of ECM remodeling in skeletal muscle. We conclude that targeting ECM remodeling in skeletal muscle represents a promising yet underexplored therapeutic avenue in the management of metabolic disorders.
Collapse
Affiliation(s)
- Linda Wu
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Dawn K Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
19
|
Mohammed HE, El-Nekeety AA, Rashwan HM, Abdel-Aziem SH, Hassan NS, Hassan EE, Abdel-Wahhab MA. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Toxicol Rep 2025; 14:101853. [PMID: 39758803 PMCID: PMC11699744 DOI: 10.1016/j.toxrep.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of Ferula assafo extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS. Six groups of female Sprague-Dawley rats were randomly assigned and received oral treatment for two weeks. They consisted of the control group, the groups that got FAE at low or high doses (150 and 250 mg/kg b.w.), the group that received CdCl2 (2 mg/kg b.w.), and the groups that received CdCl2 + FAE at the low or high dose. Tissues and blood samples were collected for different assays and pathological examinations. The HPLC detected 11 polyphenol compounds, whereas the GC-MS identified 24 bioactive compounds. The in vivo study revealed that CdCl2 alone disrupted all biochemical indices, oxidative indicators, cytokines, antioxidant enzymes, pro and anti-apoptotic mRNA gene expression, increased DNA fragmentation percentage, and caused pathological alterations in hepatic and renal sections. FAE plus CdCl2 therapy considerably improved all indicators and the histological architecture of the kidney and liver, with the higher dose being more effective in improving all of the measured parameters. Therefore, FAE is a promising option for food and pharmaceutical applications to protect against oxidative damage caused by Cd exposure.
Collapse
Affiliation(s)
- Hagar E. Mohammed
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Hanan M. Rashwan
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | | | | | - Entesar E. Hassan
- Genetics and Cytology Dept., National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
20
|
Park HY, Ryu YK, Lee GS, Go J, Kim JE, Min KS, Lee CH, Moon JH, Kim KS. Sitagliptin attenuates L-dopa-induced dyskinesia by regulating mitochondrial proteins and neuronal activity in a 6-OHDA-induced mouse model of Parkinson's disease. J Neural Transm (Vienna) 2025; 132:827-843. [PMID: 40095077 DOI: 10.1007/s00702-025-02907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
L-dopa-induced dyskinesia (LID) is an incapacitating complication of long-term administration of L-dopa therapy that commonly affects patients with Parkinson's disease (PD) due to the widespread use of the causative drug. Herein, we investigated the therapeutic potential of sitagliptin, a drug used to treat type 2 diabetes mellitus, to treat LID. 6-hydroxydopamine (6-OHDA) was unilaterally injected into the left side of the substantia nigra pas compacta to induce a mouse model of PD. After four weeks of 6-OHDA induction, L-dopa was administered with or without sitagliptin for 11 consecutive days. LID was monitored using abnormal involuntary movement (AIM) scoring, conducted on days 5 and 10 of L-dopa treatment. Comparative proteomic analysis was performed on the 6-OHDA-lesioned striatum by comparing groups treated with vehicle + L-dopa and sitagliptin + L-dopa. Sitagliptin combined with L-dopa significantly attenuated AIM scores in 6-OHDA-lesioned mice. Proteomic analysis following sitagliptin treatment showed an increase in proteins involved in mitochondrial function regulation and a decrease in proteins associated with cytoskeleton function regulation. Changes in the expression of Ndufb2, a subunit of NADH: ubiquinone oxidoreductase (complex I), and Arc, an immediate early gene (IEG), which showed the most significant increase and decrease, respectively, were validated using western blotting and RT-PCR analysis. These findings suggest that sitagliptin may have therapeutic potential by enhancing mitochondrial functions and suppressing neuronal activity in the striatum, thereby mitigating the incapacitating complications associated with long-term L-dopa use in patients with PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
22
|
Ferreira LM, García-García P, García PA, Castro MÁ. A review on quinolines: New green synthetic methods and bioactive potential. Eur J Pharm Sci 2025; 209:107097. [PMID: 40221058 DOI: 10.1016/j.ejps.2025.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Quinolines have been an interest of study for a few decades due to the importance of this system in natural and pharmaceutical products. Since their discovery in the nineteenth century, many medicinal properties have been found for quinoline compounds. Firstly, as an anti-parasitic agent against malaria and then against many other diseases, such as, other parasitic infections, HIV, bacterial infections and cancer. Consequently, many synthetic methods have been developed to afford the quinoline ring. In this review we look back at traditional methods and look forward to the most recent and promising "green" methods for the synthesis of quinolines. Also, we review the newest advances in therapeutic compounds based on the quinoline skeleton for the treatment of parasitic and cancer diseases and the most recent applications of quinoline derivatives in drug delivery systems.
Collapse
Affiliation(s)
- Laura M Ferreira
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - Pilar García-García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - María Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| |
Collapse
|
23
|
Van Mulders L, Locquet L, Kaandorp C, Janssens GPJ. An overview of nutritional factors in the aetiopathogenesis of myocardial fibrosis in great apes. Nutr Res Rev 2025; 38:37-52. [PMID: 38343129 DOI: 10.1017/s0954422424000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The main cause of mortality in great apes in zoological settings is cardiovascular disease (CVD), affecting all four taxa: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla spp.) and orangutan (Pongo spp.). Myocardial fibrosis, the most typical histological characterisation of CVD in great apes, is non-specific, making it challenging to understand the aetiopathogenesis. A multifactorial origin of disease is assumed whereby many potential causative factors are directly or indirectly related to the diet, which in wild-living great apes mainly consists of high-fibre, low-carbohydrate and very low-sodium components. Diets of great apes housed in zoological settings are often different compared with the situation in the wild. Moreover, low circulating vitamin D levels have recently been recognised in great apes housed in more northern regions. Evaluation of current supplementation guidelines shows that, despite implementation of different dietary strategies, animals stay vitamin D insufficient. Therefore, recent hypotheses designate vitamin D deficiency as a potential underlying factor in the pathogenesis of myocardial fibrosis. The aim of this literature review is to: (i) examine important differences in nutritional factors between zoological and wild great ape populations; (ii) explain the potential detrimental effects of the highlighted dietary discrepancies on cardiovascular function in great apes; and (iii) elucidate specific nutrition-related pathophysiological mechanisms that may underlie the development of myocardial fibrosis. This information may contribute to understanding the aetiopathogenesis of myocardial fibrosis in great apes and pave the way for future clinical studies and a more preventive approach to great ape CVD management.
Collapse
Affiliation(s)
- Laurens Van Mulders
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Royal Zoological Society of Antwerp (KMDA), Antwerpen, Belgium
| | - Laurent Locquet
- Department of Veterinary Medicine and Sciences, University of Notingham, Nottingham, UK
- Dick White Referrals, Cambridgeshire, UK
| | - Christine Kaandorp
- Safari Park Beekse Bergen, Hilvarenbeek, The Netherlands
- Gaia zoo, Kerkrade, The Netherlands
- Zooparc Overloon, Overloon, The Netherlands
- Dierenrijk, Mierlo, The Netherlands
| | | |
Collapse
|
24
|
Li P, Zhu X, Huang C, Tian S, Li Y, Qiao Y, Liu M, Su J, Tian D. Effects of obesity on aging brain and cognitive decline: A cohort study from the UK Biobank. IBRO Neurosci Rep 2025; 18:148-157. [PMID: 39896714 PMCID: PMC11786748 DOI: 10.1016/j.ibneur.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective To investigate the impact of obesity on brain structure and cognition using large neuroimaging and genetic data. Methods Associations between body mass index (BMI), gray matter volume (GMV), whiter matter hyper-intensities (WMH), and fluid intelligence score (FIS) were estimated in 30283 participants from the UK Biobank. Longitudinal data analysis was conducted. Genome-wide association studies were applied to explore the genetic loci associations among BMI, GMV, WMH, and FIS. Mendelian Randomization analyses were applied to further estimate the effects of obesity on changes in the brain and cognition. Results The observational analysis revealed that BMI was negatively associated with GMV (r = -0.15, p < 1 × 10-24) and positively associated with WMH (r = 0.08, p < 1 × 10-16). The change in BMI was negatively associated with the change in GMV (r = -0.04, p < 5 × 10-5). Genetic overlap was observed among BMI, GMV, and FIS at SBK1 (rs2726032), SGF29 (rs17707300), TUFM (rs3088215), AKAP6 (rs1051695), IL27 (rs4788084), and SPI1 (rs3740689 and rs935914). The MR analysis provided evidence that higher BMI was associated with lower GMV (β=-1119.12, p = 5.77 ×10-6), higher WMH (β=42.76, p = 6.37 ×10-4), and lower FIS (β=-0.081, p = 1.92 ×10-23). Conclusions The phenotypic and genetic association between obesity and aging brain and cognitive decline suggested that weight control could be a promising strategy for slowing the aging brain.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Mirehei M, Motamedi F, Maghsoudi N, Mansouri Z, Naderi S, Khodagholi F, Abbaszadeh F. Effects of Bufexamac, a class IIb HDAC inhibitor, on behavior and neuropathological features in an Aβ-induced rat model of Alzheimer's disease. Exp Gerontol 2025; 204:112746. [PMID: 40185252 DOI: 10.1016/j.exger.2025.112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
It has been suggested that Alzheimer's disease (AD), a progressive neurological condition, can potentially be treated through epigenetic means by targeting histone deacetylases (HDACs), enzymes that regulate gene expression. In this study, we investigated the molecular mechanisms of Bufexamac, in an animal model of AD. Bufexamac specifically targets Class IIb HDACs, which are particularly relevant in the context of neuroinflammation and neurodegeneration. This selectivity may reduce off-target effects commonly associated with broader-spectrum HDAC inhibitors, such as pan-HDAC inhibitors, which can affect multiple HDAC classes and potentially lead to undesirable side effects. Male rats injected with Aβ25-35 for AD-like symptoms were treated with 20 μg/rat Bufexamac for 8 days. Cognitive function, depression, and anxiety were assessed through behavioral tests, while Western blotting, H&E staining, and ELISA were used to detect protein expression, morphological changes, and enzyme activity. Bufexamac treatment markedly improved cognitive and behavioral impairments in Aβ-injected rats and regulated the key proteins related to neuroinflammation (GFAP, Iba1), histone, and α-tubulin acetylation. Simultaneously, it decreased the expression of proteins in the stromal interaction molecule (STIM) pathway. Furthermore, Bufexamac lowered the activity of monoamine oxidase enzymes, elevated the count of healthy neurons, and ameliorated neuronal structure in the hippocampus. Overall, these findings suggest that Bufexamac could be a more targeted therapy for AD than other non-selective HDAC inhibitors, which often have diverse functions and potential side effects. Bufexamac enhances cognitive function and alleviates depression and anxiety by regulating proteins related to neuroinflammation, histone, and α-tubulin acetylation, as well as modulating STIM levels and MAO activity.
Collapse
Affiliation(s)
- Monireh Mirehei
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mansouri
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudabeh Naderi
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Feng H, Song L, Wu Y, Zhao F, Zhu F, Song Z, Zhang K, Jiang J, Cai X, Yin S, Zhang C. Novel insight into the mechanisms of neurotoxicity induced by glufosinate-ammonium via the microbiota-intestine-brain axis in Chinese mitten crab (Eriocheir sinensis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106426. [PMID: 40350230 DOI: 10.1016/j.pestbp.2025.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Glufosinate-ammonium (GLA) is a highly water-soluble and broad-spectrum herbicide, which poses a potential risk to aquatic organisms in aquatic ecosystems. In this study, the neurotoxic effects of GLA exposure on juvenile Eriocheir sinensis were evaluated from the perspective of microbiota-intestine-brain axis. The acute toxicity test was conducted by semi-static method. The results showed that GLA exposure induced neurotoxicity in juvenile crabs, mainly manifested by significantly increased neuronal apoptosis rate, DNA damage and neuron-specific enolase activity in serum, and showed a dose-dependent manner. The expression of apoptosis-related genes showed a similar trend. Moreover, GLA exposure significantly affected the depolarization and hyperpolarization signal transduction processes in the nervous system of juvenile crabs. In addition, compared with the control group, GLA exposure resulted in significantly changed of metabolic profile in ganglia, especially amino acid metabolism and glycerophospholipid metabolism. The intestinal microbial diversity changed significantly at the phylum, family and genus levels exposed to GLA. These results revealed the potential role of microbiota-intestine-brain axis in GLA-induced neurotoxicity in juvenile crabs. Taken together, this study suggested that GLA may induce neurotoxicity damage in juvenile crabs by affecting the neurotransmitter system and nerve signal transduction, and the inapplicability of the blood-brain barrier in crustaceans may intense the effect of microbial changes on neurological function. The results of this study provide new insights into the mechanism of GLA-induced neurotoxicity and preliminarily demonstrate the toxic risk of GLA exposure to non-target aquatic species.
Collapse
Affiliation(s)
- Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Lexue Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Yi Wu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Feng Zhao
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Zihao Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jianbin Jiang
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Xinfeng Cai
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
27
|
Salimi A, Khezri S, Amani M, Badrinezhad N, Hosseiny S, Saadati R. Crocin and gallic acid attenuate ethanol-induced mitochondrial dysfunction via suppression of ROS formation and inhibition of mitochondrial swelling in pancreatic mitochondria. Mol Cell Biochem 2025; 480:3669-3682. [PMID: 39754004 DOI: 10.1007/s11010-024-05180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 05/23/2025]
Abstract
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage. Intact mitochondria are isolated from pancreas by differential centrifugation and directly treated with toxic concentrations of ethanol (8% v/v) in the presence of different concentrations crocin/gallic acid/L-alliin (100, 500, and 1000 µM). Biomarkers of mitochondrial toxicity including the succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial swelling, lipid peroxidation, and glutathione content were assessed. The results showed that 8% v/v ethanol-treated rat pancreas-isolated mitochondria for 1 h resulted in a significant decrease of SDH activity to 81.34 ± 3.48%, a significant increase of ROS formation, MDA content, mitochondrial swelling, and collapse of MMP. Among three tested natural compounds, treatment with crocin and gallic acid significantly reversed the changes of the above indicators and resulted in the increase of SDH activity, improvement of MMP collapse and mitochondrial swelling, and reduction of ROS formation and oxidative stress in pancreas-isolated mitochondria. This study demonstrated that crocin and gallic acid had direct protective effects on the mitochondrial damages induced by ethanol in pancreas-isolated mitochondria, and these natural compounds could be developed as mitochondrial protective agents in the prevention of pancreatic β-cells and diabetogenic effect of ethanol.
Collapse
Affiliation(s)
- Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mojtaba Amani
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Niknaz Badrinezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Hosseiny
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Saadati
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
28
|
Goyal A, Afzal M, Khan NH, Goyal K, Srinivasamurthy SK, Gupta G, Benod Kumar K, Ali H, Rana M, Wong LS, Kumarasamy V, Subramaniyan V. Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential. Regen Ther 2025; 29:352-363. [PMID: 40248767 PMCID: PMC12004386 DOI: 10.1016/j.reth.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are properties of self-renewal and differentiation potentials and thus are very appealing to regenerative medicine. Nevertheless, their therapeutic potential is frequently constrained by senescence, limited proliferation, and stress-induced apoptosis. The key role of the p53-p21 biology in MSC biology resides in safeguarding genomic stability while promoting senescence and limiting regenerative capacity upon over-activation demonstrated. This pathway is a key point for improving MSC function and exploiting the inherent limitations. Recent advances indicate that senescence can be delayed by targeting the p53-p21 signaling and improved MSC proliferation and differentiation capacity. PFT-α pharmacological agents transiently inhibit p53 from increasing proliferation and lineage-specific differentiation, while antioxidants such as hydrogen-rich saline and epigallocatechin 3 gallate (EGCG) suppress oxidative stress and attenuate p53 p21 signaling. Genetic tools like CRISPR-Cas9 and RNA interference also precisely modulate TP53 and CDKN1A expression to optimize MSC functionality. The interplay of p53-p21 with pathways like Wnt/β-catenin and MAPK further highlights opportunities for combinatorial therapies to enhance MSC resilience and regenerative outcomes. This review aims to offer a holistic view of how p53-p21 targeting can further the regenerative potential of MSCs, resolving senescence, proliferation, and stress resilience towards advanced therapeutics built on MSCs.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - K. Benod Kumar
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Wang YX, Deng ZH, Li YY, Bai K, Ma J, Liu Y, Chen Q. Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases. LIFE MEDICINE 2025; 4:lnaf015. [PMID: 40376111 PMCID: PMC12076419 DOI: 10.1093/lifemedi/lnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025]
Abstract
Hematopoiesis and the behavior of hematopoietic stem and progenitor cells (HSPCs) are regulated by the bone marrow niche. Here, we introduce the major niche cell types in bone marrow and their response to stress condition. We highlight the hematopoietic response and bone marrow niche adaptation to inflammatory condition and non-hematopoietic diseases, which are not systematically summarized. These emerging data suggest targeting hematopoiesis and bone marrow niche may provide novel therapeutic target to precisely control the progression of the diseases.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Zhao-hua Deng
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yu-yan Li
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Ke Bai
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- The Institute of Future Health, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Chen
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| |
Collapse
|
30
|
Mudondo J, Happy K, Okello D, Kang Y. Trichosanthis Radix: A comprehensive review on botany, ethnomedicine, phytochemistry, pharmacology, quality control and toxicology. Fitoterapia 2025; 183:106597. [PMID: 40334818 DOI: 10.1016/j.fitote.2025.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Trichosanthis Radix, derived from the roots of Trichosanthes kirilowii Maximowicz and Trichosanthes rosthornii Harms, is used widely in traditional Asian medicine. It has been used for centuries across China, Japan, South Korea, and other Asian countries to treat several ailments, including diabetes, cancer, inflammation, cardiovascular and respiratory conditions. The pharmacopoeias in several countries recognize its ability to clear heat, reduce swelling, expel pus, generate fluids, and regulate menstruation. This review provides a comprehensive synopsis of botanical, and ethnomedicinal uses of Trichosanthis Radix. In addition, the phytochemical constituents, including proteins (trichosanthin), terpenoids (cucurbitacins), alkaloids, lignans, coumarins, and flavonoids, which contribute to its diverse pharmacological effects including antimicrobial, antiinflammatory, anticancer, antidiabetic, abortifacient, neuroprotective, immunoregulatory, and antiviral activities are examined. Furthermore, the clinical, pharmacokinetic, quality control measures, processing methods, and toxicity associated with Trichosanthis Radix are discussed. Finally, future research opportunities and potential applications of Trichosanthis Radix in modern medicine are explored with a focus on expanding its therapeutic use and ensuring safe and effective medicinal applications.
Collapse
Affiliation(s)
- Joyce Mudondo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Kenneth Happy
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Dennis Okello
- Department of Biological Sciences, Kabale University, P.O. Box 317, Kabale, Uganda
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
31
|
Naseem S, Rizwan M. Imo-induced changes in gut hormones and glucose metabolism: A key to improving insulin sensitivity in type 2 diabetes. Diabetes Res Clin Pract 2025; 226:112285. [PMID: 40449625 DOI: 10.1016/j.diabres.2025.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Isomalto-oligosaccharides (IMO) are prebiotic oligosaccharides that have shown promise in improving insulin sensitivity and glucose metabolism, making them potential therapeutic agents for Type 2 Diabetes (T2D). IMO selectively stimulates beneficial gut microbiota, particularly Bifidobacterium and Lactobacillus, leading to the production of short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate. These SCFAs play a pivotal role in enhancing the release of gut hormones such as GLP-1 (Glucagon-like peptide-1) and PYY (Peptide YY), which improve insulin secretion and promote satiety, thus improving glucose homeostasis. Clinical studies have reported that IMO supplementation can lower HbA1c by 0.5% and reduce postprandial glucose spikes, demonstrating its efficacy in glycemic control. Additionally, IMO promotes insulin sensitivity by reducing inflammation and enhancing adiponectin levels. Although the current findings are promising, further research is needed to determine optimal dosing, long-term safety, and the role of individual gut microbiomes in tailoring IMO interventions. Future studies focusing on personalized nutrition strategies and the synergistic effects of IMO with other lifestyle interventions could enhance its applicability as a key component in T2D management.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan; Department of Polymer & Process Engineering, University of Engineering and Technology Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology Lahore, Pakistan.
| |
Collapse
|
32
|
Zhang Y, Qi R, Luo X, Lu J, Zhao X, Wang L. Serum alpha-klotho levels associate with bone mineral density in chronic kidney disease patients from NHANES 2011 to 2016. Sci Rep 2025; 15:18760. [PMID: 40436995 PMCID: PMC12120104 DOI: 10.1038/s41598-025-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/23/2025] [Indexed: 06/01/2025] Open
Abstract
This study investigated the relationship between serum Alpha-Klotho (α-Klotho) levels and bone mineral density (BMD) in patients with chronic kidney disease (CKD) using data from the National Health and Nutrition Examination Survey (NHANES) 2011-2016. A population of 781 CKD patients aged ≥ 40 years was analyzed using multiple linear regression models to examine the association between serum α-Klotho levels and BMD at different skeletal sites, with adjustments for demographic, lifestyle, and clinical factors. Results showed that serum α-Klotho levels were significantly correlated with BMD at thoracic spine (β = 0.004 g/cm2, p = 0.00264), total BMD (β = 0.003 g/cm2, p = 0.02591), and trunk BMD (β = 0.002 g/cm2, p = 0.03708), while no significant associations were observed at the left leg, lumbar spine, or pelvis. Stratified analyses showed that the association was more pronounced in men, non-Hispanic whites, those with a body mass index greater than 29.9 kg/m2, and those without hypertension and diabetes. The inconsistent associations observed across different skeletal sites suggest that it remains unclear whether serum α-Klotho levels are consistently associated with BMD in CKD patients. Additionally, the cross-sectional design precludes any determination of causality in the observed site-specific associations.
Collapse
Affiliation(s)
- Yani Zhang
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Rui Qi
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Xinwei Luo
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Jin Lu
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China
| | - Xueying Zhao
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China
| | - Liyuan Wang
- School of Basic Medical Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
33
|
Joshi T, Chokshi S, Wilhite A, Singleton MH, Catranis E, Scalici J, Lee KJ. The relationship between acid-sensing ion channel, ASIC2, and oncogenic β-catenin signaling in ovarian cancer. Sci Rep 2025; 15:18633. [PMID: 40437028 PMCID: PMC12119882 DOI: 10.1038/s41598-025-03429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
Inflammation associated with incessant ovulation plays a key role in epithelial ovarian cancer (EOC) pathogenesis. Ion channels, such as acid-sensing ion channel-2 or ASIC2 are known to be upregulated in inflammatory conditions and may play a role in cancer cell invasion and metastasis. Previously we reported the role of phosphodiesterase 10A (PDE10) modulation of β-catenin in ovarian cancer, and are currently investigating its contribution to ovarian pathogenesis. Differential ASIC2 expression was noted with PDE10 modulation in both pre-malignant and ovarian cancer tissues. Hence, we presently report the potential role of ASIC2 in EOC development and progression as well as involvement with PDE10. ASIC2 protein is expressed across all EOC cell lines, primarily within the nucleus. Knockout of PDE10 decreased ASIC2. Conversely, ASIC2 inhibition decreased ASIC2 as well as PDE10 protein levels. ASIC2 inhibition via Diminazene also produced marked ovarian cancer death. While changes in extracellular pH did not impact ASIC2 expression, intracellular pH and calcium levels increased with ASIC inhibition. Calcium increases induced a decrease in oncogenic β-catenin. There may be a direct relationship between PDE10 and ASIC2 protein expression in EOC through convergence on a β-catenin mediated signaling pathway. This could potentially implicate ion channels, specifically ASIC2, as a link between the acidic tumor microenvironment and cancer cell signaling. It is also possible that ASIC2 plays a crucial role in acidosis-mediated tumorigenesis in ovarian cancer.
Collapse
Affiliation(s)
- Tanvi Joshi
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Sagar Chokshi
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Annelise Wilhite
- Carilion Clinic, Virginia Tech School of Medicine, Roanoke, VA, USA
| | - Mary Howard Singleton
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | - Elizabeth Catranis
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA
| | | | - Kevin J Lee
- USA Health Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Mobile, AL, 36604, USA.
| |
Collapse
|
34
|
Nambidi S, Pallatt S, Banerjee A, Pathak S, Chan MKS. Klotho protein: a multifaceted regulator in aging and cancer dynamics. Mol Biol Rep 2025; 52:507. [PMID: 40423846 DOI: 10.1007/s11033-025-10575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025]
Abstract
Klotho, named after the youngest of the three Fates in Greek mythology daughters of Zeus and Nyx, who together spin the thread of life, allot destiny, and determine the time of passing for both mortals and immortals, is an important regulatory factor in aging and cancer dynamics. Initially described as an aging-suppressing protein, Klotho is now recognized for its more diverse role in modulating key signaling pathways like Wnt/β-catenin, IGF-1, PI3K/AKT, and TGF-β. Essentially, its various pro-cellular health functions, such as antioxidant, anti-inflammatory, and tumor-suppressive activities, are, in fact, considered that ensures the maintenance of cellular health and reduce complications related to aging. Klotho deficiency is associated with accelerated aging, chronic kidney disease, cardiovascular disorders, neurodegeneration, and various cancers. This review thus covers the twin roles of Klotho as an antiaging and tumor-suppressor protein, on their therapeutic potential, as well as advances in delivery systems and development of biomarkers and challenges for clinical translation.. Moreover, natural strategies like exercise and dietary interventions are explored that could help overcome Klotho deficiency. Further research with Klotho may offer a paradigm shift in the treatment of aging and cancer and add yet another avenue to increase survival of the patients.
Collapse
Affiliation(s)
- Sibin Nambidi
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamil Nadu, India
| | - Sneha Pallatt
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamil Nadu, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamil Nadu, India.
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, Tamil Nadu, India.
| | - Mike K S Chan
- European Wellness Biomedical Group, Klosterstrasse 205, 67480, Edenkoben, Germany
- Baden R&D Laboratories GmbH, Ferdinand-Lassalle-Strasse 40, 72770, Reutlingen, Germany
| |
Collapse
|
35
|
Arias A, Entrena-Barbero E, Ilmjärv T, Paoli R, Romagnoli F, Feijoo G, Moreira MT. Conceptual design and environmental evaluation of the Biorefinery approach for R-phycoerythrin extraction and purification. N Biotechnol 2025; 86:73-86. [PMID: 39884387 DOI: 10.1016/j.nbt.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Marine algae are considered promising resources both at present and in the near future. Their availability, together with their molecular structure and properties, increases their applicability in various sectors: food and feed, cosmetics, pharmaceuticals and bioenergy. However, the "bio" qualification does not always imply a lower impact compared to fossil-based process schemes. Therefore, to verify the suitability of algae-based scenarios from a sustainable and circular perspective, it is necessary to assess their sustainability potential through process modelling (scaling up from laboratory scale to evaluate their potential at commercial level), environmental assessment (using the Life Cycle Assessment (LCA) method) and circularity analysis (by quantifying circularity indicators focusing on recovery, waste management and effective use of resources). In this context, this research report focused on the techno-economic assessment (TEA) and LCA of three alternative scenarios based on the extraction of R-phycoerythrin from offshore harvested macroalgae: water extraction followed by enzymatic digestion (S01), ultrasound-assisted extraction (S02) and water extraction (S03). In addition, the evaluation of environmental, social and circularity indicators and the application of the Greenness Grid methodology were included. According to the results obtained, S01 is the most promising alternative among the three scenarios due to its process productivity, lower environmental impact and potential sustainable scenario score according to the Green Chemistry assessment. Regarding the economic perspective, S03 is the only one that does not reach economic viability. Future studies should focus on improving process efficiency, promoting the use of renewable energy resources and supporting technological progress in emerging extraction processes.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Eduardo Entrena-Barbero
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Tanel Ilmjärv
- Vetik OÜ, Saaremaa vald, Muratsi küla, Lahe, Saaremaa 93859, Estonia
| | - Riccardo Paoli
- Institute of Energy Systems and Environment, Faculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes iela, Riga LV1048, Latvia
| | - Francesco Romagnoli
- Institute of Energy Systems and Environment, Faculty of Electrical and Environmental Engineering, Riga Technical University, 12/1 Azenes iela, Riga LV1048, Latvia
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
36
|
Makri V, Giantsis IA, Feidantsis K, Georgoulis I, Gougousi A, Michaelidis B. Unraveling the metabolic gene expression and energetic patterns of the seasonally acclimatized gilthead seabream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:102. [PMID: 40411699 PMCID: PMC12103388 DOI: 10.1007/s10695-025-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
The aim of the present study was to investigate how seasonal changes in the oxidation of biological energy substrates contribute to the thermal tolerance of farmed fish, as well as to explore the potential relationship between seasonality, metabolic pathways, and the energy reserves of a highly important aquaculture species, i.e., the gilthead sea bream Sparus aurata. In a monthly basis collected tissue samples from a fish farm in Evoikos Gulf in Greece, RNA/DNA ratio was measured, representing a highly informative index of the nutritional condition and growth of fish. Additionally, seasonal variations in glucose and lipid metabolism were assessed through relative gene expressions of key metabolic enzymes and proteins such as glucose transporter (Glu), lactate dehydrogenase (L-LDH), citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase (HOAD), pyruvate kinase (PK), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptors (PPARα/γ). Furthermore, the expression of uncoupling proteins, NADH dehydrogenase (NDH-2), hypoxia-inducible factor-1 alpha (Hif-1a), electron transport system activity (ETS), and its components (complex I + III) was also employed as indicators of the respiratory chain activity. The findings reveal two distinct metabolic periods affecting productivity: a cold acclimatization phase marked by significant lipid accumulation and a warm acclimatization phase characterized by elevated carbohydrate metabolic pathways and enhanced corresponding enzymatic activities. However, the decreasing CS enzymatic activity during warm acclimatization may reflect the initiation of mitochondrial dysfunction. These metabolic adjustments underscore the fish adaptive responses to seasonal temperature fluctuations, highlighting their mechanisms of thermal tolerance and energy utilization. This understanding is particularly relevant for sustainability practices under varying thermal conditions.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Laboratory of Ichthyology & Fisheries, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, 26504, Mesolonghi, Greece.
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonia Gougousi
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
37
|
Shirzad S, Eterafi M, Karimi Z, Barazesh M. MicroRNAs involved in colorectal cancer, a rapid mini-systematic review. BMC Cancer 2025; 25:934. [PMID: 40413456 DOI: 10.1186/s12885-025-14343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) involves the uncontrolled proliferation of glandular epithelial cells in the colon or rectum. The high mortality rate associated with CRC has driven extensive research into innovative diagnostic and therapeutic strategies. Among these, microRNAs (miRNA) have gained attention for their crucial role in regulating various cellular processes that contribute to the initiation, progression, and metastasis of CRC. METHOD This systematic review aimed to assess the roles of various miRNAs in CRC by analyzing multiple studies. The PICO framework was followed to structure the study regarding miRNA involved in CRC development and progression compared to normal cases. The outcomes were measured according miRNAs impact on CRC progression, survival rates, and treatment response. Systematic review of studies published from 2000 to November 2023 were included. Data were collected from prominent databases, including Google Scholar, PubMed, ScienceDirect, Irandoc, SID, and Magiran, covering studies from 2000 to November 2023. Studies were managed using EndNote for citation management, and duplicates were removed. The remaining studies were evaluated based on predefined inclusion and exclusion criteria. RESULTS In our review, we categorized 28 miRNAs based on their potential tumor suppressor or oncogenic effects in CRC progression. Among them, 14 miRNAs were highlighted as important based on the assessment using TCGA data, with miR-200a also showing a significant effect on patient survival. CONCLUSION This study compiled and analyzed validated miRNAs associated with CRC progression. The findings suggest the potential of these miRNAs as non-invasive biomarkers, which may be used alone or in combination with traditional tumor markers for improved diagnostic and prognostic applications in CRC. This review contributes novel insights by updating the current understanding and offering a comprehensive evaluation of miRNAs in CRC.
Collapse
Affiliation(s)
- Sogol Shirzad
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
| | - Majid Eterafi
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Karimi
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran.
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Mahdi Barazesh
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
38
|
Landazuri Vinueza J, Salisbury NJH, Dye KN, Roman A, Galloway DA. Delta-catenin is required for cell proliferation in virus-positive Merkel cell carcinoma cell lines but not in human fibroblasts. mBio 2025:e0083225. [PMID: 40407323 DOI: 10.1128/mbio.00832-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer often driven by the integration of Merkel cell polyomavirus (MCPyV) into the host genome and the persistent expression of its viral oncoproteins, small tumor (ST) antigen, and truncated large tumor (t-LT) antigen. While human fibroblasts support MCPyV replication, the cell of origin for MCC remains unknown. We hypothesized that MCPyV initially replicates in fibroblasts but, in rare cases, infects Merkel cell progenitors, contributing to MCC development. Using TurboID mass spectrometry, we identified δ-catenin as a novel ST interactor in fibroblasts. However, while ST binds δ-catenin in fibroblasts, this interaction is absent in virus-positive (VP)-MCC cell lines. Despite this, δ-catenin is essential for VP-MCC, but not for fibroblast cell proliferation. We found that fibroblasts predominantly express δ-catenin isoform 1, whereas VP-MCC cells mainly express isoform 3. Overexpression of isoform 1 in VP-MCC failed to restore ST binding. δ-Catenin promotes VP-MCC proliferation by regulating cell cycle gene expression through its interaction with Kaiso, a transcriptional repressor. Additionally, we found that lysine-specific histone demethylase 1 (LSD1, also known as KDM1A) regulates δ-catenin isoform 3 expression by modulating ESRP1, a δ-catenin splicing factor. Our findings reveal novel host factors involved in MCPyV infection and MCC tumorigenesis, suggesting that the host cell supporting viral replication and the MCC cell of origin may be distinct cell types.IMPORTANCEMerkel cell polyomavirus (MCPyV), the only known human oncogenic polyomavirus, is the primary cause of Merkel cell carcinoma (MCC), a rare and aggressive type of skin cancer. MCC is driven by two viral proteins: small T (ST) and large T (LT). While the virus can replicate in skin fibroblasts, it is still unknown which type of skin cell becomes cancerous. We found that ST binds to a host protein, δ-catenin in fibroblasts, potentially playing a role in the virus lifecycle, but this interaction is missing in the cancer cells. Our study provides evidence that the cells in which the virus replicates and causes cancer are different.
Collapse
Affiliation(s)
| | | | - Kristine N Dye
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ann Roman
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Denise A Galloway
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
39
|
Nagasaka A, Bando Y, Toda-Fujii M, Onozawa G, Suzuki K, Miyata T, Amano O. Differences in palatal shelf epithelial stiffness between the lingual/nasal and buccal/oral surfaces during palatal shelf elevation in developing mice. Dev Dyn 2025. [PMID: 40408552 DOI: 10.1002/dvdy.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/04/2025] [Accepted: 05/03/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND During secondary palate formation, bilateral palatal shelves grow vertically to a horizontal position. This morphological change of the palatal shelves, defined as the palatal shelf elevation, occurs from embryonic day (E)-13.5 to E14 in mice. Palatal shelves show regional differences in elevation patterns along the anterior-posterior (AP) axis; however, the underlying mechanisms remain unclear. Material properties of the lingual/nasal and buccal/oral surfaces, especially stiffness, possibly contribute to different elevation patterns. RESULTS Indentation test using atomic force microscopy was performed to measure the stiffness at the epithelial surface of the palatal shelf. Measurement of palatal shelf stiffness along the AP axis before and after elevation revealed that the lingual/nasal surface was softer than the buccal/oral surface in the posterior region before elevation and that the palatal shelf was stiffer after elevation than before elevation. Moreover, the thickness of epithelial cells on the lingual/nasal side was lower than that on the buccal/oral side before elevation. CONCLUSION Overall, our results suggest that epithelial cell thickness affects epithelial surface stiffness, causing regional differences in elevation patterns.
Collapse
Affiliation(s)
- Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
| | - Yasuhiko Bando
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
| | - Miyuki Toda-Fujii
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
| | - Go Onozawa
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Japan
| | - Kaito Suzuki
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Osamu Amano
- Division of Histology, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
40
|
Maloba GO, Were T, Barasa E, Mohamed N, Arshi A, Gallyas F. Synergistic Effects of 2-Deoxyglucose and Diclofenac Sodium on Breast Cancer Cells: A Comparative Evaluation of MDA-231 and MCF7 Cells. Int J Mol Sci 2025; 26:4894. [PMID: 40430033 PMCID: PMC12112485 DOI: 10.3390/ijms26104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Resistance of breast cancers to chemotherapy remains a global challenge to date. Drug combination studies between anti-cancer agents are increasingly becoming therapeutic strategies, geared towards alleviating breast cancers. Previously, 2-deoxyglucose has been shown to target and interrupt glycolysis. Available evidence also suggests that diclofenac, which was originally designed as a pain reliever, could inhibit the proliferation of breast cancer cells. However, the reverse Warburg effect and other metabolic reprogramming mechanisms in breast cancers limit the pharmacological application of both 2-deoxyglucose and diclofenac as mono-therapeutic agents. The present study explores the additive anti-cancer effects of 2-deoxyglucose and diclofenac sodium on breast cancer cells. In this study, MDA-231 and MCF7 cells were treated with 2-deoxyglucose and diclofenac sodium in single and combination doses before being evaluated for viability, cell growth, reactive oxygen species, apoptotic and necrotic phases, and migration abilities. Additionally, immunoblotting of pro-apoptotic proteins, Caspase-3 and Caspase-9, and a hypoxia-inducible factor-1 alpha, was also performed. The results showed that combination treatments of the cells with the drugs exhibited additive anti-cancer effects by limiting proliferation, enhancing cytotoxic reactive oxygen species generation, enhancing apoptosis and necrosis, limiting colony formation and expansion of cells, and inhibiting cell migration. The degrees of cytotoxicity of combined treatments were almost similar in both cell lines, although with minimal differences. Put together, these results reveal the novel synergistic effects of 2-deoxyglucose and diclofenac sodium on breast cancer cells, hence potentially elevating their pharmacological profile in the overall breast cancer therapy.
Collapse
Affiliation(s)
- Geofrey Ouma Maloba
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (G.O.M.); (N.M.); (A.A.)
| | - Tom Were
- Department of Pathology, Masinde Muliro University of Science and Technology, Kakamega 190-50100, Kenya; (T.W.); (E.B.)
| | - Erick Barasa
- Department of Pathology, Masinde Muliro University of Science and Technology, Kakamega 190-50100, Kenya; (T.W.); (E.B.)
| | - Nasreldeen Mohamed
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (G.O.M.); (N.M.); (A.A.)
| | - Arshi Arshi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (G.O.M.); (N.M.); (A.A.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (G.O.M.); (N.M.); (A.A.)
| |
Collapse
|
41
|
Yasir M, Choe J, Hassan M, Kloczkowski A, Chun W. Recent advances and future perspectives in small molecule JAK2 inhibitors. Future Med Chem 2025:1-17. [PMID: 40392133 DOI: 10.1080/17568919.2025.2507564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signaling pathway is essential for controlling immune function, blood cell formation, and cell growth. Dysregulation of this pathway is implicated in various diseases, including hematologic malignancies, autoimmune disorders, and chronic inflammatory conditions. This review provides a comprehensive overview of the structural and functional aspects of JAK/STAT signaling, with a particular focus on the role of JAK2. This manuscript explores the primary regulators of the JAK/STAT pathway, such as Suppressors Of Cytokine Signaling (SOCS), Protein Inhibitors of Activated STATs (PIAS), and Protein Tyrosine Phosphatases (PTPs), which play a crucial role in maintaining cellular balance and stability. Additionally, the therapeutic landscape of JAK2 inhibitors is explored, covering both approved and investigational drugs, including their mechanisms of action, efficacy, and safety profiles. Emerging strategies such as drug repositioning using computational approaches and experimental validation are also highlighted. By integrating insights from molecular docking studies, machine learning models, and kinase assays, this review emphasizes the potential of JAK2 inhibitors in disease management.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
42
|
Zhao M, Lang T, Patwary Z, Eamens AL, Wang T, Webb J, Zuccarello GC, Wegner-Thépot A, O’Grady C, Heyne D, McKinnie L, Pascelli C, Satoh N, Shoguchi E, Campbell AH, Paul NA, Cummins SF. Insights into the Red Seaweed Asparagopsis taxiformis Using an Integrative Multi-Omics Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1523. [PMID: 40431088 PMCID: PMC12115072 DOI: 10.3390/plants14101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025]
Abstract
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas emissions, we need to advance our current understanding of the biology of this seaweed species. Here, we used both a domesticated diploid tetrasporophyte (>1.5 years in culture) and wild samples to establish a high-quality draft nuclear genome for A. taxiformis (lineage 6 based upon phylogenetic analyses using the cox2-3 spacer). The constructed nuclear genome is 142 Mb in size (including 70.67% repeat regions) and was determined to encode for approximately 10,474 protein-coding genes, including those associated with secondary metabolism, photosynthesis, and defence. To obtain information regarding molecular differences between cultured and wild tetrasporophytes, we further explored differential gene expression relating to their different growth environments. Cultured tetrasporophytes, which contained a relatively higher level of bromoform compared to wild tetrasporophytes, demonstrated an enrichment of regulatory factors, such as protein kinases and transcription factors, whereas wild tetrasporophytes were enriched for the expression of defence and stress-related genes. Wild tetrasporophytes also expressed a relatively high level of novel secretory genes encoding proteins with von Willebrand factor A protein domains (named rhodophyte VWAs). Gene expression was further confirmed by proteomic investigation of cultured tetrasporophytes, resulting in the identification of over 400 proteins, including rhodophyte VWAs, and numerous enzymes and phycobiliproteins, which will facilitate future functional characterisation of this species. In summary, as the most comprehensive genomic resource for any Asparagopsis species, this resource for lineage 6 provides a novel avenue for seaweed researchers to interrogate genomic information, which will greatly assist in expediating production of Asparagopsis to meet demand by both aquaculture and agriculture, and to do so with economic and environmental sustainability.
Collapse
Affiliation(s)
- Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
| | - Tomas Lang
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Zubaida Patwary
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L. Eamens
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Tianfang Wang
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Jessica Webb
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Giuseppe C. Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
| | - Ana Wegner-Thépot
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
| | - Charlotte O’Grady
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - David Heyne
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Lachlan McKinnie
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Cecilia Pascelli
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Okinawa, Japan; (N.S.); (E.S.)
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Okinawa, Japan; (N.S.); (E.S.)
| | - Alexandra H. Campbell
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Nicholas A. Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F. Cummins
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (T.L.); (Z.P.); (A.L.E.); (T.W.); (J.W.); (A.W.-T.); (C.O.); (D.H.); (L.M.); (C.P.); (A.H.C.); (N.A.P.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
43
|
Giri A, Hong IS, Kwon TK, Kang JS, Jeong JH, Kweon S, Yook S. Exploring therapeutic and diagnostic potential of cysteine cathepsin as targets for cancer therapy with nanomedicine. Int J Biol Macromol 2025; 315:144324. [PMID: 40398760 DOI: 10.1016/j.ijbiomac.2025.144324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Cysteine cathepsins have been discovered to be substantially expressed in multiple types of cancer. They play a key role in the progression and growth of these cancers, rendering them appealing targets for nanoscale delivery and noninvasive diagnostic imaging. This review explores cathepsins from the papain-like enzyme family (C1) within the cysteine peptidase clan (CA), emphasizing the role of cathepsin-responsive nanoparticles in tumor growth. Furthermore, it also explores how nanotechnology can harness cathepsin activity to enable targeted drug delivery, improve tumor imaging, and reduce systemic toxicity. By examining the molecular mechanisms governing cathepsin function and evaluating different nanocarrier systems, this work aims to enhance our understanding of targeted cancer treatment. Despite significant advances, challenges remain in translating these nanomedicine platforms into clinical use, including improving delivery efficiency, biocompatibility, long-term safety, and addressing issues such as interspecies protease variability and scalable nanomanufacturing. Future advancement, integrating advanced biomaterials, patient-derived organoid models, bispecific immune-protease targeting, CRISPR-based cathepsin editing, and artificial intelligence-driven pharmacokinetic modeling and analysis will be critical to fully realizing the clinical potential of cathepsin targeted nanomedicines. These innovations hold promises for advancing precision oncology by overcoming current limitations and improving patient outcomes.
Collapse
Affiliation(s)
- Anil Giri
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
44
|
Sullivan R, Becker JA, Zadoks RN, Venturini C, Esteves AIS, Benedict S, Fornarino DL, Andrews H, Okoh GR, Bhardwaj V, Sistrom M, Westman ME, Phuoc NN, Samsing F. Vibrio harveyi plasmids as drivers of virulence in barramundi (Lates calcarifer). PLoS One 2025; 20:e0319450. [PMID: 40388447 PMCID: PMC12088062 DOI: 10.1371/journal.pone.0319450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
Vibrio species are an emerging public and animal health risk in marine environments and the opportunistic bacterial pathogen Vibrio harveyi is a major disease risk for tropical aquaculture. Current understanding of virulence in V. harveyi is limited by strain-specific variability and complex host-pathogen dynamics. This study sought to integrate genomic investigation, phenotypic characterisation and in vivo challenge trials in barramundi (Lates calcarifer) to increase our understanding of V. harveyi virulence. We identified two hypervirulent isolates, Vh-14 and Vh-15 that caused 100% mortality in fish within 48 hours, and that were phenotypically and genotypically distinct from other V. harveyi isolates. Virulent isolates contained multiple plasmids, including a 105,412 bp conjugative plasmid with type III secretion system genes originally identified in Yersinia pestis. The emergence of this hypervirulent plasmid-mediated patho-variant poses a potential threat to the sustainable production of marine finfish in Southeast Asia, the Mediterranean and Australia. In addition, we observed an effect of temperature on phenotypic indicators of virulence with an increase in activity at 28°C and 34°C compared to 22°C. This suggests that temperature fluctuations associated with climate change may act as a stressor on bacteria, increasing virulence gene secretion and host adaptation. Our results utilising a myriad of technologies and tools, highlights the importance of a holistic view to virulence characterisation.
Collapse
Affiliation(s)
- Roisin Sullivan
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Joy A. Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Carola Venturini
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ana I. S. Esteves
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries and Environment, Menangle, New South Wales, Australia
| | - Suresh Benedict
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Dani L. Fornarino
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Hannah Andrews
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - God’spower R. Okoh
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Vidya Bhardwaj
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark Sistrom
- Berrimah Veterinary Laboratory, Department of Agriculture and Fisheries, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark E. Westman
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries and Environment, Menangle, New South Wales, Australia
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
45
|
Abdel-Rahman SA, Gabr MT. Optimization and development of a high-throughput TR-FRET screening assay for SLIT2/ROBO1 interaction. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 34:100240. [PMID: 40393541 DOI: 10.1016/j.slasd.2025.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/22/2025]
Abstract
The SLIT2/ROBO1 signaling axis plays a critical role in cell migration, angiogenesis, and immune regulation, contributing to tumor progression, metastasis, and therapy resistance. SLIT2 is highly expressed in various malignancies, where it promotes immune evasion by recruiting tumor-associated macrophages and disrupting vascular integrity, ultimately diminishing therapeutic efficacy. Beyond cancer, SLIT2/ROBO1 is implicated in neural development, fibrosis, and vascular remodeling, making it a potential but underexplored therapeutic target. However, no small-molecule inhibitors of SLIT2/ROBO1 interaction currently exist. Herein, we describe the development and optimization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for high-throughput screening of small-molecule inhibitors targeting this pathway. Using recombinant SLIT2 and ROBO1, we established a robust assay that enables high-throughput screening (HTS) of chemical libraries of small molecules for SLIT2/ROBO1 inhibition. Screening a focused chemical library of protein-protein interaction (PPI) inhibitors identified SMIFH2 as a SLIT2/ROBO1 inhibitor, demonstrating its ability to disrupt the interaction in a dose-dependent manner. Our study introduces a novel screening platform for identifying small molecule inhibitors of SLIT2/ROBO1, laying the foundation for future drug discovery efforts aimed at targeting this signaling axis in cancer and other diseases.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, NY, NY 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa T Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, NY, NY 10065, USA.
| |
Collapse
|
46
|
Valsami EA, Chu G, Guan M, Gilman J, Theocharidis G, Veves A. The Role of Omics Techniques in Diabetic Wound Healing: Recent Insights into the Application of Single-Cell RNA Sequencing, Bulk RNA Sequencing, Spatial Transcriptomics, and Proteomics. Adv Ther 2025:10.1007/s12325-025-03212-9. [PMID: 40381157 DOI: 10.1007/s12325-025-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 05/19/2025]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication of diabetes mellitus (DM) that affect millions of people worldwide every year. They have a long-term impact on patients' quality of life and pose a significant challenge for both patients and clinicians, alongside negative economic implications on affected individuals. The current therapeutic approaches are costly and, in many cases, ineffective, highlighting the urgent need to develop novel, affordable, more efficient, and personalized treatments. Recent advances in high-throughput omics technologies, including proteomics, bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and spatial transcriptomics in both preclinical animal and human clinical studies, have enhanced our understanding of the molecular function and mechanisms of DFUs, thereby offering potential for targeted therapies. Additionally, these technologies provide valuable insights behind the mechanism of action of novel wound dressings and treatments. In this review, we outline the latest application of omics technologies in DFU preclinical animal and human clinical research on diabetic wound healing, and spotlight recent findings.A graphical abstract is available with this article.
Collapse
Affiliation(s)
- Eleftheria-Angeliki Valsami
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Guangyu Chu
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Ming Guan
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Jessica Gilman
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Georgios Theocharidis
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA
| | - Aristidis Veves
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Palmer 321A, One Deaconess Rd, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Tang H, Li K, Shi Z, Wu J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells 2025; 14:729. [PMID: 40422232 DOI: 10.3390/cells14100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Hypertension and diabetes are two common causes of chronic kidney disease. Hypertension can induce renal vascular injury, glomerular damage, podocyte loss, and tubular injury, leading to tubulointerstitial fibrosis. A number of factors influence the regulation of hypertension, among which G-protein-coupled receptors (GPCRs) have been studied extensively because they are desirable targets for drug development. Compared to hypertension, the regulatory effects of GPCRs on hypertensive kidney disease (HKD) are less generalized. In this review, we discussed the GPCRs involved in hypertensive kidney disease, such as angiotensin II receptors (AT1R and AT2R), Mas receptor (MasR), Mas-related G-protein-coupled receptor member D (MrgD), relaxin family receptor 1 (RXFP1), adenosine receptors (A1, A2A, A2B, and A3), purinergic P2Y receptors, and endothelin receptors (ETA and ETB). The progression of HKD is rarely reversed but can be retarded by ameliorating the hypertensive microenvironment in the kidneys. However, simply reducing blood pressure cannot stop the progression of HKD. Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD), which is a major cause of morbidity and mortality in diabetes. Many GPCRs are involved in DN. Here, we select some well-studied GPCRs that are directly associated with the pathogenesis of DN to illustrate their mechanisms. The main purpose of this review is to provide an overview of the GPCRs involved in the occurrence and progression of HKD and DN and their probable pathophysiological mechanisms, which we hope will help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Huidi Tang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Kang Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Zhan Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
49
|
Tejero A, León-Navarro DA, Martín M. Membrane ATPases and Mitochondrial Proteins in Fetal Cerebellum After Exposure to L-Glutamate During Gestation. MEMBRANES 2025; 15:152. [PMID: 40422762 DOI: 10.3390/membranes15050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/04/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
L-Glutamate (L-Glu) and its salt derivatives are widely used in the food industry as flavor enhancers. Although the consumption of these compounds is generally considered safe, some studies suggest that chronically consuming L-Glu may be associated with various disorders. In this study, Wistar pregnant rats were treated daily with 1 g/L of L-Glu in their drinking water throughout the gestational period. OPA-1, DRP-1, and mitofusin 2-key proteins involved in mitochondrial fusion and fission-were analyzed by Western blot. The results showed that L-Glu exposure significantly decreased DRP-1 levels, while OPA-1 and mitofusin 2 levels were unaffected. This was accompanied by a notable decrease in mitochondrial complexes III and V. The activities of Mg2+-ATPase and Na+/K+-ATPase were also analyzed in fetal cerebellar plasma membranes. Maternal L-Glu intake significantly increased Mg2+-ATPase activity. Regarding Na+/K+-ATPase, the data showed that L-Glu exposure did not modulate the protein level or its activity. However, a positive interaction with glutamate receptors was observed in both activities, although neither AMPA nor NMDA receptors appeared to be involved. These results suggest that chronic maternal L-Glu intake during gestation modulates Mg2+-ATPase activity and protein markers of mitochondrial dynamics in the fetal cerebellum, which could affect neonatal development.
Collapse
Affiliation(s)
- Adrián Tejero
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Institute of Biomedicine, Investigación Sanitaria de Castilla-La Mancha, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Institute of Biomedicine, Investigación Sanitaria de Castilla-La Mancha, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Institute of Biomedicine, Investigación Sanitaria de Castilla-La Mancha, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
50
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|