1
|
Peters J, Bollaert E, Cloos AS, Claus M, Essaghir A, Lenglez S, Saussoy P, Dachy G, Autin P, Demoulin JB, Havelange V. MiR-92a-1-5p contributes to cellular proliferation and survival in chronic myeloid leukemia and its inhibition enhances imatinib efficacy. Noncoding RNA Res 2025; 14:14-24. [PMID: 40521242 PMCID: PMC12167123 DOI: 10.1016/j.ncrna.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/16/2025] [Accepted: 05/15/2025] [Indexed: 06/18/2025] Open
Abstract
Tyrosine kinase inhibitors (TKI), such as imatinib, have revolutionized chronic myeloid leukemia (CML) treatment. Despite this success, TKI intolerance and resistance remain significant clinical challenges. A promising therapeutic approach is to simultaneously target the BCR::ABL1 oncogene and other oncogenic drivers. The polycistronic miR-17-92 cluster is known to contribute to CML development and progression, but the specific roles of miR-92a-1-5p within this cluster remain unclear. In this study, we assess the roles of this microRNA and evaluate the therapeutic potential of combining microRNA inhibition with imatinib to improve treatment outcome. Our results show that miR-92a-1-5p is downregulated by imatinib in myeloid cell lines harboring BCR::ABL1 and in CML patient samples. Inhibition of miR-92a-1-5p reduces proliferation and enhances imatinib-induced cell death, while its overexpression increases proliferation and counteracts the effects of imatinib on cell death. This decrease in proliferation caused by miR-92a-1-5p inhibition is rescued after simultaneous inhibition of two newly identified target genes: BNIP3L (NIX) and TP53INP1. We confirm that miR-92a-1-5p regulates proliferation and cell cycle by targeting TP53INP1 and decreases autophagy by targeting BNIP3L. Our data suggest that miR-92a-1-5p plays a role in CML progression, and its inhibition enhances imatinib anti-leukemic efficacy, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Joanne Peters
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Emeline Bollaert
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Anne-Sophie Cloos
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Melissa Claus
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Sandrine Lenglez
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Pascale Saussoy
- Laboratory of Hematology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Guillaume Dachy
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
- Department of Hematology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Pierre Autin
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
| | - Violaine Havelange
- de Duve Institute, Experimental Medicine Unit, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 75 Box B1.74.05, 1200, Brussels, Belgium
- Department of Hematology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
2
|
Long Z, Ge C, Zhao Y, Liu Y, Zeng Q, Tang Q, Dong Z, He G. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. Neural Regen Res 2025; 20:2633-2644. [PMID: 38993141 PMCID: PMC11801289 DOI: 10.4103/nrr.nrr-d-23-01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Chuanhua Ge
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qinghua Zeng
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qing Tang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yu Z, Guo Y, Chen H, Wan W, Hu M, Li Y, Wei T, Chen Q. A phloem-limited unculturable bacterium induces mild xenophagy in insect vectors for persistent infection. Microbiol Res 2025; 297:128186. [PMID: 40262357 DOI: 10.1016/j.micres.2025.128186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Xenophagy is an important antibacterial defense mechanism that many organisms use to engulf intracellular pathogens. However, the mechanisms of xenophagy triggered by insect-borne plant bacteria are not well understood. Candidatus Liberibacter asiaticus (CLas) causes Huanglongbing, which poses a serious threat to citrus production. CLas is a phloem-limited unculturable bacterium that is transmitted by the Asian citrus psyllid in a persistent and propagative manner in nature. Here, we found that CLas infection in the gut of psyllids triggered a mild and anti-bacterial xenophagy. Xenophagy limited excessive propagation of CLas to maintain psyllid survival, because overload of CLas was detrimental to psyllid life. Furthermore, the outer membrane β-barrel protein (OMBB) of CLas is the key secreted protein that induces xenophagy in psyllids by interacting with ATG8 and ATG14. OMBB can independently induce autophagy in psyllid and non-host cells. Together, these results revealed that an insect-borne plant bacterium activates mild xenophagy to control its propagation, thereby achieving persistent infection in insect vectors.
Collapse
Affiliation(s)
- Zhongkai Yu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Yuxin Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Hongyan Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Wenqiang Wan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Mengting Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - You Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| | - Qian Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China.
| |
Collapse
|
4
|
Wu JS, Kan JY, Chang YS, Le UNP, Su WC, Lai HC, Lin CW. Developing Zika virus-transduced hACE2 expression models for severe acute respiratory syndrome coronavirus 2 infection in vitro and in vivo. J Virol Methods 2025; 336:115166. [PMID: 40239870 DOI: 10.1016/j.jviromet.2025.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
To address the human ACE2 dependence for SARS-CoV-2 infection, this study presents a novel strategy for generating ZIKV-hACE2 single-round infectious particles (SRIPs) by incorporating the hACE2 gene into a Zika virus (ZIKV) mini-replicon. SARS-CoV-2 SRIP infection was significantly enhanced in HEK293T cells pre-infected with ZIKV-hACE2, as evidenced by increased cytopathic effects and elevated mRNA and protein levels of the SARS-CoV-2 nucleocapsid (N) protein. A mouse model was also developed with this approach to investigate SARS-CoV-2 infection. Immunohistochemical and real-time RT-PCR analyses confirmed the presence of the SARS-CoV-2 N protein in the lungs of mice injected with ZIKV-hACE2 SRIPs, indicating successful infection. The mouse model displayed COVID-19-like pathological changes, including increased macrophages in BALF, severe lung damage, and elevated pro-inflammatory cytokines (IL-6 and IL-1β). These features mimic severe COVID-19 cases in humans. Additionally, treatment with nirmatrelvir resulted in a 6.2-fold reduction in viral load and a marked decrease in N protein levels. Overall, this ZIKV mini-replicon-mediated hACE2 expression model, both in vitro and in vivo, is a valuable tool for studying SARS-CoV-2 infection and evaluating therapeutic interventions. The mouse model's pathological features further underscore its relevance for in vivo research on SARS-CoV-2.
Collapse
Affiliation(s)
- Joh-Sin Wu
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Uyen Nguyen Phuong Le
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Cheng-Wen Lin
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan.
| |
Collapse
|
5
|
Uppar PM, Kim NY, Harish KK, Beeraka NM, Gaonkar SL, Madegowda M, Sethi G, Rangappa KS, Nikolenko VN, Chinnathambi A, Alharbi SA, Ahn KS, Basappa B. Targeting breast cancer cells with 2-indolyl-1,3,4-oxadiazole compounds by inducing apoptosis, paraptosis and autophagy. Chem Biol Interact 2025; 415:111528. [PMID: 40288434 DOI: 10.1016/j.cbi.2025.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
While 2-Indolyl-1,3,4-oxadiazole derivatives are recognized for their antibacterial properties, their potential as anticancer agents remains underexplored. This study investigates the anti-breast cancer properties of a novel 2-Indolyl-1,3,4-oxadiazole compound, 5l, focusing on its ability to induce apoptosis, paraptosis, and autophagy, and targeting poly (ADP-ribose) polymerase (PARP1), a critical enzyme in DNA repair. A series of 1,3,4-oxadiazole derivatives (compounds 5a-5m) were synthesized using an optimized multi-step process, enhancing reaction efficiency and yield. In silico molecular docking was used to determine binding efficacy of these derivatives. Lead compound, 5l, underwent cytotoxicity assays against MDA-MB-231, MCF-7, BT-474, and SK-BR-3 breast cancer cell lines, as well as the non-cancerous MCF-10A cell line. Molecular docking assessed the interaction of 5l with the PARP1 active site. Frontier molecular orbital (FMO) and molecular electrostatic potential (MESP) analyses were conducted to map electron distribution and identify reactive regions within compound 5l. The effects of 5l on cellular processes such as apoptosis, autophagy, and endoplasmic reticulum (ER) integrity were evaluated using live and dead assays, Annexin V staining, ER-tracker dye staining, and acridine orange assays. Western blotting analyzed apoptosis, paraptosis, and autophagy-related genomic instability. The optimized synthesis yielded high-purity 1,3,4-oxadiazole derivatives. Compound 5l displayed significant anticancer activity, with IC50 values of 63.7 μM, 29.1 μM, 50.3 μM, and 39.8 μM for MDA-MB-231, MCF-7, BT-474, and SK-BR-3 cell lines respectively, demonstrating its cytotoxic efficacy. Molecular docking revealed that 5l binds to PARP1 active site with a binding energy of -11.7 kcal/mol, indicating a strong interaction supporting its role as a PARP1 inhibitor. Annexin V assays, ER-tracker dye staining, and Acridine orange assays were used to assess apoptosis, ER integrity, and autophagy. 5l induced upregulation of cleaved PARP and downregulation of Alix-loaded proteins, alongside increased LC3-II expression, indicating autophagy-mediated genomic instability. Compound 5l exhibits potent anti-breast cancer activity through paraptosis, apoptosis, and autophagy-mediated genomic instability and by PARP1 inhibition with typically a low IC50 values, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Pradeep M Uppar
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India; Sri Sri Shivalingeshwara Swamy Govt. First Grade College, Channagiri, 577213, India.
| | - Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India.
| | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
| | - Santhosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal, 576104, India.
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600.
| | | | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| |
Collapse
|
6
|
Al Kadi M, Yamashita M, Shimojima M, Yoshikawa T, Ebihara H, Okuzaki D, Kurosu T. Cytokine storm and vascular leakage in severe dengue: insights from single-cell RNA profiling. Life Sci Alliance 2025; 8:e202403008. [PMID: 40127923 PMCID: PMC11933670 DOI: 10.26508/lsa.202403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Severe dengue is characterized by vascular leakage triggered by a hyperinflammatory response, though the underlying mechanisms remain unclear. Our previous mouse model study highlighted the importance of small intestine in severe disease and identified key cytokines (IL-17A, TNF-α, and IL-6) involved. Here, we used a Fixed RNA Profiling assay to characterize key cytokine- and effector-producing cells, along with their receptor expression. Type 3 innate lymphoid cells (ILC3), Th17 cells, and γδ T cells emerged as pathologically relevant IL-17A/F-producing cells. These cells expressed IL-1β and IL-23 receptors, underscoring the significance of these signaling pathways. IL-1β was produced by M2-like macrophages, dendritic cells, and neutrophils, whereas M1-like macrophages, which differentiated post-infection, produced IL-23, TNF-α, and IL-6, acting as initiators and amplifiers of the cytokine storm. Newly differentiated neutrophils produced IL-1β and effector molecule matrix metalloprotease-8, suggesting a dual role in exacerbating the cytokine storm and directly mediating vascular leakage. Identified macrophages and neutrophils exhibited atypical characteristics. These findings provide new pathological insights into severe dengue and broader mechanism underlying cytokine storm-related diseases.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Maika Yamashita
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Liu X, Gu J, Liu S, Huang J, Li L, Wang F, He S, Mi Z, Zhang Y, Wen J, Gao Q, Yang H, Feng Y, Luo H, Zhai X, Zhang L, Zheng Y, Luo Y, Niu T. The mitochondrial protease ClpP is a promising target for multiple myeloma treatment. Biochem Pharmacol 2025; 236:116855. [PMID: 40054785 DOI: 10.1016/j.bcp.2025.116855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Drug resistance and relapse are the major obstacles in multiple myeloma (MM) treatment, driving the search for novel therapeutics. The chemoactivation of mitochondrial caseinolytic protease P (ClpP) has shown to have anticancer effects on many tumors, but has seldom been elucidated in MM. Here we found that the CLPP expression was elevated in MM patients, and further increased in relapsed cases. After synthesizing and screening a panel of ClpP agonists, we identified a compound, 7b, as the most potent anti-MM agent in vitro. 7b activated ClpP protease activity, selectively degrading mitochondrial proteins, many of which are involved in oxidative phosphorylation (OXPHOS). As result, 7b treated MM had metabolic dysfunction, the mitochondrial membrane potential (MMP) collapse, reduced OXPHOS levels, and increased mitochondrial reactive oxygen species (ROS), leading to mitophagy-mediated MM cell death. Notably, 7b also showed efficacy against drug-resistant MM cell lines, including bortezomib- and lenalidomide-resistant cells. In vivo, 7b also exhibited remarkable anti-MM activity with tolerable side effects. In conclusion, targeting ClpP represents a promising therapeutic strategy for MM, with 7b serving as a potent anti-MM agent, especially for relapsed and refractory MM.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Gu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, China
| | - Song Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, China
| | - Jingcao Huang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Linfeng Li
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Wang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyao He
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyue Mi
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Wen
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China; Department of Hematology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Qianwen Gao
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China; College of Life Science, Sichuan University, Chengdu, China
| | - Haonan Yang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Luo
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Zhai
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, China.
| | - Ting Niu
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, China; National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, China.
| |
Collapse
|
8
|
Ho MS. Clearance Pathways for α-Synuclein in Parkinson's Disease. J Neurochem 2025; 169:e70124. [PMID: 40509661 PMCID: PMC12163304 DOI: 10.1111/jnc.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/18/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
Protein aggregation and accumulation are hallmark features of neurodegenerative diseases. In Parkinson's disease, the progressive formation and propagation of α-synuclein aggregates-found in Lewy bodies and Lewy neurites-are closely linked to widespread neuronal dysfunction, dopaminergic neuron loss, and the emergence of both motor and nonmotor symptoms, including anosmia, cognitive decline, and depression. Despite their pathological significance, the mechanisms underlying the formation, spread, and clearance of these aggregates remain incompletely understood. In this review, we examine the cellular and molecular pathways responsible for the elimination of protein aggregates in the diseased brain. We first summarize various experimental models of α-synuclein pathology, followed by a discussion of the degradation mechanisms in neurons and glial cells under pathological conditions. These findings offer new insights into cell type-specific clearance pathways and highlight potential therapeutic targets for mitigating α-synuclein-associated toxicity in Parkinson's disease.
Collapse
Affiliation(s)
- Margaret S. Ho
- Institute of NeuroscienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
9
|
Sugawara Y, Morinaga H, Chen J, Kitagawa Y, Ogata H, Karim A, Kikuchi M, Khan M, Yasuhara E, Goto T, Martyn JAJ, Yasuhara S. Mito-Kaede photoactivation and chase experiment for mitophagy: mitophagy flux response toward various stimulations. Biotechniques 2025:1-13. [PMID: 40449520 DOI: 10.1080/07366205.2025.2505357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Abstract
Mitophagy, a crucial mitochondrial quality control system for cellular stress adaptation, is a key focus in pathophysiology and drug discovery. Developing a simple and versatile mitophagy flux assay is vital for advancing our understanding of cellular responses. Addressing a gap in systematic methods, we employ the photoactivatable fluorescent protein mito-Kaede in C2C12 myocytes, demonstrating its remarkable versatility in quantifying mitophagy flux responses under various stimuli, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), TNF-α, lipopolysaccharide (LPS), and hypoxia. This study underscores the validity and distinctive advantages of the mito-Kaede assay through comparative analysis with conventional assays including Western blotting (WB), potentially providing valuable insights for both mitophagy flux analysis and drug development.
Collapse
Affiliation(s)
- Yoh Sugawara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Morinaga
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Trauma and Critical Care Medicine, Kyorin University, Faculty of Medicine
| | - Jingyuan Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yoshinori Kitagawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Hiroki Ogata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Asiya Karim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Miu Kikuchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Maryam Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Erica Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Joseph A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| |
Collapse
|
10
|
Zhang Y, Ma P, Wang S, Chen S, Deng H. Restoring calcium crosstalk between ER and mitochondria promotes intestinal stem cell rejuvenation through autophagy in aged Drosophila. Nat Commun 2025; 16:4909. [PMID: 40425608 PMCID: PMC12116733 DOI: 10.1038/s41467-025-60196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Breakdown of calcium network is closely associated with cellular aging. Previously, we found that cytosolic calcium (CytoCa2+) levels were elevated while mitochondrial calcium (MitoCa2+) levels were decreased and associated with metabolic shift in aged intestinal stem cells (ISCs) of Drosophila. How MitoCa2+ was decoupled from the intracellular calcium network and whether the reduction of MitoCa2+ drives ISC aging, however, remains unresolved. Here, we show that genetically restoring MitoCa2+ can reverse ISC functional decline and promote intestinal homeostasis by activating autophagy in aged flies. Further studies indicate that MitoCa2+ and Mitochondria-ER contacts (MERCs) form a positive feedback loop via IP3R to regulate autophagy independent of AMPK. Breakdown of this loop is responsible for MitoCa2+ reduction and ISC dysfunction in aged flies. Our results identify a regulatory module for autophagy initiation involving calcium crosstalk between the ER and mitochondria, providing a strategy to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Yao Zhang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Peng Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Saifei Wang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Shuxin Chen
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Hansong Deng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China.
| |
Collapse
|
11
|
Gong B, Liu Y, Yan W, Cheng C, Yang H, Huang J, Liu Q, Liu Y, Guo J, Deng X, Zhou B, Zheng D, Liu X, Liu Z, Fang W. NAP1L1 degradation by FBXW7 reduces the deubiquitination of HDGF-p62 signaling to stimulate autophagy and induce primary cisplatin chemosensitivity in nasopharyngeal carcinoma. Mol Cancer 2025; 24:152. [PMID: 40414865 DOI: 10.1186/s12943-025-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Nucleosome assembly protein 1-like 1 (NAP1L1) has been implicated in promoting tumor cell proliferation. However, its role in regulating autophagy in tumors, including nasopharyngeal carcinoma (NPC), remains unclear. In this study, we observed that autophagy-inducing agents reduced NAP1L1 protein levels without affecting its mRNA expression. Reduced NAP1L1 enhanced autophagosome formation and maturation, thereby promoting cisplatin (DDP) chemosensitivity in both in vitro and in vivo NPC models. Mechanistically, reduced NAP1L1 impaired the recruitment of ubiquitin-specific protease 14 (USP14), limiting the deubiquitination of heparin-binding growth factor (HDGF) and decreasing HDGF protein levels. In turn, reduced HDGF suppressed USP14-mediated p62 deubiquitination, leading to further declines in p62 protein levels. Notably, the F-box and WD repeat domain-containing protein 7 (FBXW7), an inhibitory E3 ubiquitin ligase, directly interacted with and ubiquitinated NAP1L1, promoting its degradation. This degradation triggered NPC autophagy and enhanced DDP chemosensitivity by disrupting NAP1L1-induced HDGF/p62 signaling. Clinically, NAP1L1 protein expression was inversely correlated with FBXW7 levels in NPC tissue samples. Patients exhibiting high NAP1L1 and low FBXW7 levels had the poorest DDP chemosensitivity and survival outcomes. Our findings demonstrate that FBXW7-mediated NAP1L1 degradation suppresses HDGF-p62 signaling, thereby inducing autophagy and enhancing DDP chemosensitivity. These results underscore the potential of NAP1L1 and FBXW7 as therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yahui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyan Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiankang Guo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojie Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Beixian Zhou
- Center of Stem Cell and Regenerative Medicine, The People's Hospital of Gaozhou, Gaozhou, China.
| | - Dayong Zheng
- Department of Oncology, Shunde Hospital of Southern Medical Universtiy, Foshan, China.
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou, Guangdong, China.
- Central Laboratory, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Weiyi Fang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Central Laboratory, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Galindo-Cabello N, Sobas-Abad EM, Lapresa R, Agulla J, Almeida Á, López A, Pastor JC, Pastor-Idoate S, Usategui-Martín R. The TP53 Arg72Pro polymorphism predicts visual and neurodegenerative outcomes in retinal detachment. Cell Death Dis 2025; 16:415. [PMID: 40419469 DOI: 10.1038/s41419-025-07739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/03/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Retinal detachment (RD) separates the retina from the retinal epithelium, causing photoreceptor apoptosis and irreversible vision loss. Even with successful surgical reattachment, complete visual recovery is not guaranteed. The TP53 Arg72Pro polymorphism, implicated in apoptosis, has emerged as a potential predictor of RD outcomes. We investigated the impact of the Arg72Pro polymorphism on retinal neurodegeneration and functional recovery in patients. The underlying mechanisms were analyzed in a humanized TP53 Arg72Pro RD mouse model. In a cohort of 180 patients, carriers of the Pro allele exhibited decreased apoptotic gene expression and improved visual recovery. Complementary findings in mice revealed that the Pro variant preserved photoreceptor integrity and reduced apoptosis rates following RD. Our findings highlight the potential of this TP53 polymorphism as a biomarker for RD outcomes and a tool for tailoring therapies. This study underscores the importance of integrating genetic profiling into personalized medicine approaches to improve recovery of RD patients' visual outcomes.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
- Network of Inflammatory Diseases- Networks of Cooperative Research Oriented to Health Results (RICORS), Carlos III National Institute of Health, Madrid, Spain
| | - Eva M Sobas-Abad
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Network of Inflammatory Diseases- Networks of Cooperative Research Oriented to Health Results (RICORS), Carlos III National Institute of Health, Madrid, Spain
- School of Nursing, University of Valladolid, Valladolid, Spain
| | - Rebeca Lapresa
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesús Agulla
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
| | - Ángeles Almeida
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
| | - Antonio López
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
| | - José Carlos Pastor
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.
- Network of Inflammatory Diseases- Networks of Cooperative Research Oriented to Health Results (RICORS), Carlos III National Institute of Health, Madrid, Spain.
- Department of Ophthalmology, University Clinical Hospital of Valladolid, Valladolid, Spain.
| | - Ricardo Usategui-Martín
- Unit of Excellence Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain.
- Network of Inflammatory Diseases- Networks of Cooperative Research Oriented to Health Results (RICORS), Carlos III National Institute of Health, Madrid, Spain.
| |
Collapse
|
13
|
Hong L, Zhao C, Wu T, Hu X, Li X, Li L. The role of programmed cell death in renal cancer: a bibliometric perspective (1998-2024). Discov Oncol 2025; 16:889. [PMID: 40410435 PMCID: PMC12102035 DOI: 10.1007/s12672-025-02610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/07/2025] [Indexed: 05/25/2025] Open
Abstract
OBJECTIVE This bibliometric study aimed to map the global research landscape of programmed cell death (PCD) in renal cancer, delineating publication trends, influential authors, contributing regions, and thematic shifts between 1998 and 2023 year. METHODS We retrieved 5, 134 records from the Web of Science Core Collection (1998-2023) using comprehensive keywords encompassing "renal cancer," "programmed cell death," and related synonyms. After applying inclusion and exclusion criteria, we conducted co-citation, keyword, and cluster analyses with CiteSpace (v.6.3.R2) and VOSviewer (v.1.6.20) to identify major research fronts, collaboration networks, and thematic clusters. RESULTS Findings revealed a progressive increase in publications, notably accelerating after 2010 in tandem with the rise of immunotherapeutic strategies and targeted molecular interventions. China and the United States emerged as leading contributors, while journals such as Cancer Research and Clinical Cancer Research dominated in both publication frequency and citation impact. Authors including Kwon Taeg Kyu and Dahiya Rajvir significantly shaped foundational apoptosis research. Keyword and cluster analyses demonstrated a shift from earlier apoptosis- and angiogenesis-focused studies toward intersections of metabolic reprogramming, immune infiltration, and newer cell death modalities (e.g., ferroptosis, pyroptosis). High-impact papers underscored immunotherapy's pivotal role in modulating cell death pathways and informing novel combination regimens. CONCLUSION PCD research in renal cancer has evolved into a dynamic, interdisciplinary domain integrating immunology, molecular targeting, and multi-omic profiling. Future development of the field aimed at refining precision therapies that exploit diverse cell death mechanisms and thereby improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Hong
- Department of Medical Laboratory, The People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Barkam, 624000, China
| | - Chun Zhao
- Department of General Practice, The People's Hospital of Dazu, Chongqing, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Tingping Wu
- Department of General Practice, The People's Hospital of Dazu, Chongqing, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xiaorong Hu
- Department of Nephrology, The People's Hospital of Dazu, Chongqing, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xueyao Li
- Department of Nephrology, The People's Hospital of Dazu, Chongqing, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, 402360, China.
| | - Lu Li
- Department of Nephrology, The People's Hospital of Dazu, Chongqing, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, 402360, China.
| |
Collapse
|
14
|
Gebauer N, Wang SS. The Role of EBV in the Pathogenesis of Diffuse Large B-Cell Lymphoma. Curr Top Microbiol Immunol 2025. [PMID: 40399571 DOI: 10.1007/82_2025_296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
There are multiple established risk factors for DLBCL; these risk factors share an underlying biology, which generally cause immune dysfunction, spanning immunosuppression to chronic inflammation. EBV is an established risk factor for DLBCL and approximately 10% of DLBCLs are EBV-positive. EBV is a ubiquitous infection, and it is thus among populations that are immunocompromised, by age or medically defined, where EBV-positive DLBCLs arise. In this chapter, we review the current classification, epidemiology, clinical, pathology, and molecular characteristics of EBV-positive DLBCL, and discuss the role of EBV in lymphoma tumorigenesis. We further discuss current and novel treatments aimed at the NFκB pathway and other targets.
Collapse
Affiliation(s)
- Niklas Gebauer
- Klinik für Hämatologie und Onkologie, UKSH Campus Lübeck, Lübeck, Germany
| | - Sophia S Wang
- Division of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
15
|
Peng H, Cheng Q, Chen J, Wang Y, Du M, Lin X, Zhao Q, Chen S, Zhang J, Wang X. Green Tea Epigallocatechin-3-gallate Ameliorates Lipid Accumulation and Obesity-Associated Metabolic Syndrome via Regulating Autophagy and Lipolysis in Preadipocytes and Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12272-12291. [PMID: 40347183 DOI: 10.1021/acs.jafc.5c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Previous studies have shown that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, demonstrates promising antiobesity effects. While autophagy mediates obesity via preadipocyte differentiation and lipogenesis, EGCG's potential autophagy-dependent antiobesity mechanism remains unclear. We used 3T3-L1 cells and high-fat-diet (HFD)-fed mice to examine how EGCG inhibits adipogenesis and lipogenesis via autophagy. EGCG (50 or 100 mg/kg) significantly attenuated HFD-induced weight gain, fat accumulation, hyperlipidemia, and glucose intolerance in mice. It also enhanced autophagy and lipolysis in white adipose tissue (WAT). EGCG profoundly inhibited terminal preadipocyte differentiation and lipid droplet formation in 3T3-L1 cells accompanied by reduced PPARγ, C/EBPα, and FASN expressions. Mechanistically, EGCG inhibited autophagy during the early stage of preadipocyte differentiation, as evidenced by increased autophagosome accumulation and impaired autophagic flux. The antiadipogenic effect of EGCG was further aggravated by the autophagy inhibitor chloroquine. Meanwhile, EGCG increased p38 and AMPK/ACC phosphorylation while inhibiting JNK phosphorylation in 3T3-L1 cells at an early stage of adipogenesis. Interestingly, EGCG reduced the expression of lipolytic enzymes HSL and ATGL, and it decreased glycerol contents in differentiated 3T3-L1 cells. These findings provide novel insights into the mechanism of using green tea EGCG in functional foods to combat obesity by targeting autophagy and lipolysis.
Collapse
Affiliation(s)
- He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Ying Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Menghao Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, P. R. China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jingsa Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
- School of Pharmaceutical Sciences & Institute of Advanced Studies, Taizhou University, Taizhou 318000, P. R. China
| |
Collapse
|
16
|
ALKhemeiri N, Eljack S, Saber-Ayad MM. Perspectives of Targeting Autophagy as an Adjuvant to Anti-PD-1/PD-L1 Therapy for Colorectal Cancer Treatment. Cells 2025; 14:745. [PMID: 40422248 DOI: 10.3390/cells14100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with increasing incidence and mortality rates. Standard conventional treatments for CRC are surgery, chemotherapy, and radiotherapy. Recently, immunotherapy has been introduced as a promising alternative to CRC treatment that utilizes patients' immune system to combat cancer cells. The beneficial effect of immune checkpoint inhibitors, specifically anti-PD-1/ PD-L1, has been ascribed to the abundance of DNA replication errors that result in the formation of neoantigens. Such neoantigens serve as distinct flags that amplify the immune response when checkpoint inhibitors (ICIs) are administered. DNA replication errors in CRC patients are expressed as two statuses: the first is the deficient mismatch repair (MSI-H/dMMR) with a higher overall immune response and survival rate than the second status of patients with proficient mismatch repair (MSS/pMMR). There is a limitation to using anti-PD-1/PD-L1 as it is only confined to MSI-H/dMMR, where there is an abundance of T-cell inhibitory ligands (PD-L1). This calls for investigating new therapeutic interventions to widen the scope of ICIs' role in the treatment of CRC. Autophagy modulation provides a good example. Autophagy is a cellular process that plays a crucial role in maintaining cellular homeostasis and has been studied for its impact on tumor development, progression, and response to treatment. In this review, we aim to highlight autophagy as a potential determinant in tumor immune response and to study the impact of autophagy on the tumor immune microenvironment. Moreover, we aim to investigate the value of a combination of anti-PD-1/PD-L1 agents with autophagy modulators as an adjuvant therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Nasrah ALKhemeiri
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sahar Eljack
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Maha Mohamed Saber-Ayad
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo 12211, Egypt
| |
Collapse
|
17
|
Tan BEK, Tham SK, Poh CL. Development of New Live-Attenuated Vaccine Candidates Lacking Antibody-Dependent Enhancement (ADE) Against Dengue. Vaccines (Basel) 2025; 13:532. [PMID: 40432141 PMCID: PMC12115996 DOI: 10.3390/vaccines13050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Dengue virus (DENV) threatens public health, especially in regions with tropical and subtropical climates. In 2024, the World Health Organisation reported 3.4 million confirmed dengue cases, with 16,000 severe cases and 3000 dengue-associated fatalities. The first licensed dengue vaccine, CYD-TDV (Dengvaxia®,Sanofi-Pasteur, Paris, France), is recommended by the WHO only for individuals aged 9-45 years with a prior history of dengue infection. However, being vaccinated with Dengvaxia® increases the risk of developing severe dengue infections in seronegative individuals. Recently, a second licensed dengue vaccine, Qdenga®,Takeda, Singen, Germany), was approved and recommended by the WHO to be administered only in highly dengue-endemic countries, as it was not shown to elicit a robust immune response against DENV-3 and DENV-4 serotypes in dengue seronegative individuals. Due to an imbalance in immune response against all four DENV serotypes, there is a higher risk of developing the antibody-dependent enhancement (ADE) effect, which could lead to severe dengue. This review has identified mutations throughout the DENV genome that were demonstrated to attenuate the virulence of DENV in either in vitro or in vivo studies. Several amino acid residues within the DENV prM and E proteins were identified to play important roles in ADE and modifying these ADE-linked residues is important in the rational design of novel live-attenuated dengue vaccine candidates. This review provides current insights to guide the development of a novel live-attenuated tetravalent dengue vaccine candidate that is effective against all DENV serotypes and safe from ADE. The efficacy and safety of the live-attenuated vaccine candidate should be further validated in in vivo studies.
Collapse
Affiliation(s)
- Brandon E. K. Tan
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Seng Kong Tham
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
- Nilai University, No.1, Persiaran Universiti, Putra Nilai, Bandar Baru Nilai, Nilai 71800, Malaysia
| |
Collapse
|
18
|
Usategui-Martín R, Esteban-López V, Chantre-Fortes E, Sánchez-Martín M, Riancho JA, López DE, González-Sarmiento R. The p.R321C mutation in the p62 protein is associated with abnormalities in the central nervous system. Sci Rep 2025; 15:16929. [PMID: 40374720 PMCID: PMC12081919 DOI: 10.1038/s41598-025-00764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025] Open
Abstract
SQSTM1/p62 has an essential role in autophagy, a catabolic pathway that is vital for maintaining cell homeostasis. p62 alterations have been observed in multiple pathological conditions, including neurodegenerative diseases and bone metabolism alterations. The p.R321C p62 protein mutation has been described in patients with amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Paget's disease of bone. In vitro studies associated the p62-321C variant with a blockade of autophagy and with the activation of the NF-kB pathway. We aimed to provide a deeper understating of the pathophysiological consequences of the p.R321C p62 mutation using a humanized mouse model. Micro-computed tomography, immunohistochemistry, and western blot analysis studied the functional consequences of the p. R321C p62 mutation. Statistical analyses were performed using SPSS software. The results showed that the p62-321C mice developed seizures after tactile-vestibular stimulation, probably associated with a blockage of the autophagy and NF-kB activation. Changes in expression of cFos and p62 were found in the amygdala, hypothalamic nuclei, and hippocampi nuclei. In addition, numerous degenerating motor neurons were observed in the spinal cord of the p62-321C mice. We report that the blockage of the autophagy, caused by p.R321C p62 mutation, is associated with abnormalities in the central nervous system, mainly seizures after tactile-vestibular stimulation and degeneration of the motor neurons of the spinal cord but not with bone abnormalities in a humanized mouse model.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Molecular Medicine Unit, Department of Medicine, Faculty of Medicine, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Vega Esteban-López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
| | - Estefanía Chantre-Fortes
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Transgenic Facility, University of Salamanca, 37007, Salamanca, Spain
| | - José A Riancho
- Department of Medicine and Psychiatry, Faculty of Medicine, University of Cantabria, IDIVAL, 39011, Santander, Spain
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008, Santander, Spain
| | - Dolores E López
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Faculty of Medicine, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain.
| |
Collapse
|
19
|
Ma JX, Li XJ, Li YL, Liu MC, Du RH, Cheng Y, Li LJ, Ai ZY, Jiang JT, Yan SY. Chaperonin-containing tailless complex polypeptide 1 subunit 6A negatively regulates autophagy and protects colorectal cancer cells from cisplatin-induced cytotoxicity. World J Gastroenterol 2025; 31:105729. [DOI: 10.3748/wjg.v31.i18.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND As a member of the chaperonin-containing tailless complex polypeptide 1 (TCP1) complex, which plays a pivotal role in ensuring the accurate folding of numerous proteins, chaperonin-containing TCP1 subunit 6A (CCT6A) participates in various physiological and pathological processes. However, its effects on cell death and cancer therapy and the underlying mechanisms need further exploration in colorectal cancer (CRC) cells.
AIM To explore the effects of CCT6A on cell death and cancer therapy and the underlying mechanisms in CRC.
METHODS Cell proliferation was evaluated using the MTS assay, EdU staining, and colony growth assays. The expression of CCT6A was monitored by immunoblotting and quantitative PCR. CCT6A was knocked out by CRISPR-Cas9, and overexpressed by transfecting plasmids. Autophagy was examined by immunoblotting and the mCherry-GFP-LC3 assay. To monitor apoptosis and necroptosis, immunoblotting, co-immunoprecipitation, and flow cytometry were employed.
RESULTS Cisplatin (DDP) exerted cytotoxic effects on CRC cells while simultaneously downregulating the expression of CCT6A. Depletion of CCT6A amplified the cytotoxic effects of DDP, whereas overexpression of CCT6A attenuated these adverse effects. CCT6A suppressed autophagy, apoptosis, and necroptosis under both basal and DDP-treated conditions. Autophagy inhibitors significantly enhanced the cytotoxic effects of DDP, whereas a necroptosis inhibitor partially reversed the cell viability loss induced by DDP. Furthermore, inhibiting autophagy enhanced both apoptosis and necroptosis induced by DDP.
CONCLUSION CCT6A negatively modulates autophagy, apoptosis, and necroptosis, and CCT6A confers resistance to DDP therapy in CRC, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jian-Xing Ma
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Xiao-Jun Li
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ya-Long Li
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ming-Chan Liu
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Rui-Hang Du
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Yi Cheng
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Liang-Jie Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Zhi-Ying Ai
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Jian-Tao Jiang
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xibei Hospital, Xi’an 710000, Shaanxi Province, China
| | - Si-Yuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| |
Collapse
|
20
|
Azuma R, Shingu Y, Gao J, Wakasa S. Effects of Left Ventricular Unloading on Cardiac Function, Heart Failure Markers, and Autophagy in Rat Hearts with Acute Myocardial Infarction. Int J Mol Sci 2025; 26:4422. [PMID: 40362660 PMCID: PMC12072880 DOI: 10.3390/ijms26094422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Percutaneous ventricular assist devices are utilized in cases of cardiogenic shock following acute myocardial infarction (AMI). However, the mechanism underlying the beneficial effects of LV unloading in AMI remains unclear. This study aimed to examine the impact of LV unloading on cardiac function, heart failure markers, and protein degradation (autophagy and ubiquitin-proteasome system: UPS) post AMI in rats. Nine-week-old male Lewis rats were randomized into non-AMI, AMI, non-AMI with LV unloading, and AMI with LV unloading groups. LV unloading was achieved through heterotopic heart-lung transplantation. Rats were euthanized 2 and 14 days after the procedure. Cardiac functional assessment was performed using Langendorff heart perfusion. RT-PCR and Western blot analyses were conducted using the LV myocardium. The rate pressure product was comparable between the non-AMI with LV unloading group and the AMI with LV unloading at 14 days. The atrial natriuretic factor tended to be suppressed by LV unloading. LV unloading had reducing effects on the expressions of p62, selectively degraded during autophagy, both 2 and 14 days after AMI. There was no effect on the parameters for the UPS. LV unloading has a mitigating effect on the deterioration of cardiac function following AMI. Autophagy, which was suppressed by AMI, was ameliorated by LV unloading.
Collapse
|
21
|
Li Q, Zhang M, Gao Q, Chen X. High fat-induced the upregulation of LOX-1 in RF/6A cells under high glucose condition. J Diabetes Complications 2025; 39:109019. [PMID: 40168811 DOI: 10.1016/j.jdiacomp.2025.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
OBJECTIVE To investigate the effect of ox-LDL on the expression of lectin-like receptor of ox-LDL (LOX-1) and intercellular adhesion molecule-1 (ICAM-1) in RF/6A cells under high-glucose condition. METHODS RF/6A cells were cultured in normal or high-glucose medium for two days. Furthermore, RF/6A cells were cultured in medium with high glucose and ox-LDL or normal medium with ox-LDL. The concentrations of ox-LDL were determined by initial screening based on migration and immunofluorescence. The expressions of LOX-1 and ICAM-1 were determined by western blot. RESULTS The maximal effect of glucose on RF/6A cells was observed with the concentration of 25 mmol/l for 48 h. The LOX-1 expression was upregulated under high glucose condition than normal glucose (p < 0.05). There were significant LOX-1 overexpression and blocked ICAM-1 activation in RF/6A cells under high-glucose condition (p < 0.05). In the normal medium with ox-LDL groups, LOX-1 expression was both increased than in the normal medium group (p < 0.05). In the high glucose medium with ox-LDL groups, the expression levels of LOX-1 and ICAM-1 were increased than the high glucose medium group (p < 0.05). CONCLUSION A certain concentration of ox-LDL blocks high-glucose-induced retinal vascular endothelial injury by inhibiting the upregulation of ICAM-1 due to a high-glucose environment. Dyslipidemia may play an important role in the development of diabetic retinopathy, emphasizing the importance of active regulation of blood lipids in diabetic retinopathy therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Ophthalmology, Bright Gaoxin Eye Hospital, Urumqi, Xinjiang 830013, China
| | - Mingmei Zhang
- Department of Ophthalmology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Qianying Gao
- Department of Ophthalmology, Ophthalmological Center of Sun Yat-sen University, Guangzhou, Guangdong 510030, China
| | - Xueyi Chen
- Department of Ophthalmology, Lanzhou Aier Eye Hospital, Lanzhou, Gansu 730030, China.
| |
Collapse
|
22
|
Maaz M, Sultan MT, Noman AM, Zafar S, Tariq N, Hussain M, Imran M, Mujtaba A, Yehuala TF, Mostafa EM, Selim S, Al Jaouni SK, Alsagaby SA, Al Abdulmonem W. Anthocyanins: From Natural Colorants to Potent Anticancer Agents. Food Sci Nutr 2025; 13:e70232. [PMID: 40321606 PMCID: PMC12048707 DOI: 10.1002/fsn3.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/15/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer is a prevalent global disease affecting ~20 million individuals, and this burden causes the death of ~9.7 million people in 2024. The prevalence rate is continuously increasing due to exposure to harmful environmental and occupational contaminants (toxins and chemicals), compromised immune response, genetic modifications, and poor lifestyle and dietary practices. The management of cancer is challenging and demands cost-effective and safe therapeutic strategies. This review accentuates the anticancer potential of anthocyanins and its associated underlying mechanism. Anthocyanins, the active components extracted from grapes, berries, black chokeberries, eggplants, black currants, sweet cherries, strawberries, black grapes, plums, and red onions, hold antioxidant and anti-inflammatory potential. The bioavailability of anthocyanins is a crucial factor in imposing their anticancer effect, and this bioavailability can be improved by microbial phenolic catabolites, provision of α-casein, and nano delivery systems. Anthocyanins hinder cell migration, invasion, and proliferation by inducing apoptosis, suppressing cell cycle at G0/G1, S, or G2/M stages, and modulating signaling pathways such as apoptotic cascades, PI3K/Akt, MAPK, and NF-κB. Moreover, anthocyanins downregulate oncogenes (Bcl-2, MYC, and HER2) and improve the activity of tumor suppressor genes (TP53, BRCA1, and RB1). Anthocyanins, particularly cyanidin-3-O-glucoside, suppress inflammation and production of pro-inflammatory cytokines (COX-2, TNF-α, and IL-6) in colorectal cancer and hepatocellular carcinoma. Moreover, it causes cell cycle inhibition and mitochondrial dysfunction in ovarian and cervical malignancies. Although pre-clinical studies have proved anticancer activities, further clinical trials are required to validate its therapeutic impact and standard dose regimens.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muhammad Tauseef Sultan
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Ahmad Mujtaba Noman
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
- TIMES Institute MultanMultanPakistan
| | - Shehnshah Zafar
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Naima Tariq
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food EngineeringBahir Dar Institute of Technology, Bahir Dar UniversityBahir DarEthiopia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| |
Collapse
|
23
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
24
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
25
|
He D, Chen S, Wang X, Wen X, Gong C, Liu L, He G. Icaritin Represses Autophagy to Promote Colorectal Cancer Cell Apoptosis and Sensitized Low-Temperature Photothermal Therapy via Targeting HSP90-TXNDC9 Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412953. [PMID: 40184625 PMCID: PMC12120733 DOI: 10.1002/advs.202412953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/10/2025] [Indexed: 04/06/2025]
Abstract
Colorectal cancer (CRC) ranks among the leading causes of cancer-related dea ths worldwide, and the rising incidence and mortality of CRC underscores the urgent need for better understanding and management strategies. Icaritin (ICA) is the metabolites of icariin, a natural flavonoid glycoside compound derived from the stems and leaves of Epimedium. It has broad spectrum antitumor activity and inhibits the proliferation, migration, and invasion of CRC cells, and causes S phase cell cycle arrest. It exerts its antitumor effects against CRC through repressing autophagy to promote CRC cell apoptosis via interfering the HSP90-TXNDC9 interactions. The safety and efficacy of ICA are also affirmed in a mouse xenograft model. Additionally, to test whether ICA exerts synergistic effects with low-temperature photothermal therapy (LTPTT), a novel nanodrug delivery system, employing SiO2 nanocarriers, is designed aiming to load ICA with photothermal materials polydopamine (PDA), and folic acid (FA). This SiO2/Ica-PDA-FA multifunctional nanocomposite actively targets tumor tissues through the high affinity of FA for cancer cells. Once internalized, the acidic intracellular environment triggers the controlled release of ICA, inhibiting HSP90-TXNDC9 interactions. By LTPTT and ICA drug therapy under near-infrared illumination, a dual synergistic antitumor effect is achieved, holding promise for enhancing therapeutic outcomes in CRC treatment.
Collapse
Affiliation(s)
- Dan He
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeNuclear Industry 416 HospitalChengdu610051China
| | - Siliang Chen
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoyun Wang
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiang Wen
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
| | - Lei Liu
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
| | - Gu He
- Division of Head & Neck Tumor Multimodality TreatmentCancer Center and Department of Dermatology & VenerologyWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of DermatologyClinical Institute of Inflammation and ImmunologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Institute of Precision Drug Innovation and Cancer CenterThe Second Hospital of Dalian Medical UniversityDalian116023China
| |
Collapse
|
26
|
Zhang Y, Qian C, Chu C, Yang XZ, Wu Y, Cai L, Yao S, He W, Guo Z, Chen Y. Self-Assembly of Short Peptides Activates Specific ER-Phagy and Induces Pyroptosis for Enhanced Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202422874. [PMID: 40069115 DOI: 10.1002/anie.202422874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Developing specific endoplasmic reticulum-autophagy (ER-phagy) inducers is highly desirable for discovering new ER-phagy receptors and elucidating the detailed ER-phagy mechanism and potential cancer immunotherapy. However, most of the current ER-phagy-inducing methods cause nonselective autophagy of other organelles. In this work, we report the design and synthesis of simple and stable short peptides (D-FFxFFs) that could specifically trigger ER-phagy, which further induces pyroptosis and activates the immune response against tumor cells. D-FFxFFs locate preferentially in ER and readily self-assemble to form nanosized misfolded protein mimics, which lead to distinct upregulation of dedicated ER-phagy receptors with no obvious autophagy of other organelles. Significant unfolded protein response (UPR) is activated via IRE1-JNK and PERK-ATF4 pathways. Interestingly, the persistent ER-phagy triggers ER Ca2+ release and a surge in mitochondrial Ca2+ levels, resulting in GSDMD-mediated pyroptosis other than apoptosis. The ER-phagy induces pyroptosis and activates a distinct antitumor immune response without evolving the acquired drug resistance. This work not only provides a powerful tool for investigating the mechanism and function of ER-phagy but also offers an appealing strategy for anticancer immunotherapy.
Collapse
Affiliation(s)
- Yunhua Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chengyuan Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chengyan Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Xiu-Zhi Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, 210008, P.R. China
| |
Collapse
|
27
|
Yu ZY, Peng RY, Cheng N, Wang RT, Nan MD, Milazzo S, Pilkington K, Seely D, Horneber M, Liu JP. Melatonin in cancer treatment. Cochrane Database Syst Rev 2025; 4:CD010145. [PMID: 40304216 PMCID: PMC12042261 DOI: 10.1002/14651858.cd010145.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
RATIONALE Preserving health-related quality of life is an aspect of care that requires constant attention from the time of cancer diagnosis. Melatonin has been used to diminish treatment-related side effects and cancer symptoms, and as a medication to regulate circadian rhythm. An up-to-date systematic review is needed to investigate the current evidence concerning possible beneficial effects of melatonin on quality of life and sleep in cancer patients. OBJECTIVES To evaluate the benefits and harms of melatonin for preserving health-related quality of life and sleep in cancer patients. SEARCH METHODS To identify studies for inclusion in this review, we used CENTRAL, MEDLINE, 10 other databases, and four trial registers, together with reference checking, citation searching, and contact with study authors. The latest search date was 10 September 2024. ELIGIBILITY CRITERIA We included randomised controlled trials (RCTs) of adults (18 years or over) with histologically proven cancer of any stage that evaluated melatonin (alone or in combination with standard anticancer treatment) versus no treatment or placebo (alone or in combination with standard anticancer treatment), or standard anticancer treatment. Standard anticancer treatment refers to treatments to stop or prevent cancer, including chemotherapy, radiation therapy, surgery, immunotherapy, and hormonal therapies (such as androgen deprivation therapy). OUTCOMES The primary outcomes of interest were quality of life and sleep quality within three months, and melatonin-related adverse events. Other outcomes included survival, disease-free survival, progression-free survival, tumour response, and anticancer treatment-related harms. RISK OF BIAS We used Cochrane's risk of bias tool (RoB 1) to assess the risk of bias in the studies included in the review. SYNTHESIS METHODS We synthesised results for each outcome using random-effects meta-analysis. The effect size was presented as risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with 95% confidence intervals (CI). If this was not possible, due to the nature of the data, we synthesised results in a narrative format. We used GRADE to assess the certainty of evidence for each outcome. INCLUDED STUDIES We identified 30 RCTs (reported in 49 publications) involving 5093 adult participants with cancer (2470 males, 2228 females, 395 not reported). Studies were conducted in a hospital setting and took place in at least 10 countries. We assessed two studies at low risk of bias and the other 28 at high risk of bias. SYNTHESIS OF RESULTS Melatonin plus standard treatment versus placebo plus standard treatment The evidence is very uncertain about the effect of melatonin on quality of life score (MD 2.60, 95% CI -14.53 to 19.73; 1 study, 126 participants; very low certainty evidence), and sleep score (MD 2.80, 95% CI 0.18 to 5.42; 1 study, 50 participants; very low certainty evidence) within three months. We are also very uncertain about potential adverse effects of melatonin: headache (RR 2.77, 95% CI 0.33 to 23.14; 1 study, 25 participants; very low certainty evidence); fatigue (RR 1.02, 95% CI 0.90 to 1.17; 2 studies, 170 participants; very low certainty evidence); and nausea (RR 1.01, 95% CI 0.66 to 1.56; 1 study, 146 participants; very low certainty evidence). No data are available relating to dizziness. We downgraded the certainty of the evidence because of high risk of bias, small sample size, the width of the 95% confidence interval, and indirectness due to inadequate reporting of cancer type. Melatonin plus standard treatment versus standard treatment No data are available relating to quality of life and sleep within three months. The evidence is very uncertain about headaches (experienced by 15 of 820 participants in melatonin groups, with no data available for control groups; 2 studies, 1640 participants; very low certainty evidence). Melatonin likely reduces the incidence of fatigue (RR 0.46, 95% CI 0.39 to 0.55; 10 studies, 1359 participants; moderate-certainty evidence) and may reduce nausea (RR 0.85, 95% CI 0.72 to 1.00; 6 studies, 710 participants; low-certainty evidence). No data are available relating to dizziness. We downgraded the certainty of the evidence because of the high risk of bias and the width of the 95% confidence interval. Melatonin (topical use) plus standard treatment versus placebo plus standard treatment The evidence is very uncertain about the effect of melatonin on quality of life (one study reported no difference between groups, both having the same median score of 66.7; 48 participants; very low certainty evidence). No data are available relating to sleep and adverse events (including headache, dizziness, fatigue, and nausea). We downgraded the certainty of the evidence because of the high risk of bias, small sample size, and insufficient data. AUTHORS' CONCLUSIONS The available evidence is of very low certainty, so we are unable to draw conclusions about the effects of melatonin on quality of life and sleep at three months in people receiving treatment for cancer. There may be no difference in adverse events between melatonin plus standard treatment and placebo plus standard treatment, but the evidence is very uncertain. Data were lacking for some outcomes, such as dizziness. Melatonin used alongside standard treatment probably reduces the risk of fatigue and may reduce nausea when compared to standard treatment alone. Since the evidence base for melatonin in people with cancer is limited due to insufficient data and risks of bias in study design, the decision for or against using melatonin as an adjunct to cancer treatment cannot easily be made at the current time. FUNDING This Cochrane Review was partially funded by AG Biologische Krebstherapie, Deutsche Krebshilfe (grant numbers 70-301 and 109863). The funding agency had no role in the design or conduct of the study. REGISTRATION The protocol for this review is available via DOI 10.1002/14651858.CD010145.
Collapse
Affiliation(s)
- Ze Yu Yu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Yan Peng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nuo Cheng
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Ting Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Die Nan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Stefania Milazzo
- Department of Internal Medicine, Division of Oncology and Hematology, Paracelsus Medical University, Klinikum Nuremberg, Nuremberg, Germany
| | - Karen Pilkington
- School of Dental, Health and Care Professions, University of Portsmouth, Portsmouth, UK
| | - Dugald Seely
- The Patterson Institute for Integrative Oncology Research at CCNM (Canadian College of Naturopathic Medicine), Ottawa, Canada
| | - Markus Horneber
- Department of Internal Medicine, Division of Respiratory Medicine, Paracelsus Medical University, Klinikum Nuernberg, Nuernberg, Germany
| | - Jian Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Sruthi KK, Ummanni R. Valosin-Containing Protein (VCP/p97) Mediates Neuroendocrine Differentiation in Prostate Cancer Cells Through Pim1 Signaling Inducing Autophagy. Prostate 2025. [PMID: 40269472 DOI: 10.1002/pros.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Neuroendocrine Prostate Cancer (NEPC) is an aggressive type of androgen-independent prostate cancer (AIPC) associated with resistance to treatment. Valosin-containing protein (VCP/p97) has been found to be overexpressed in prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) in response to interleukin-6 (IL-6). This study explores the molecular mechanisms through which VCP/p97 contributes to the progression of NEPC. METHODS To investigate the role of VCP/p97 in the NED of PCa, we overexpressed the VCP/p97 in PCa cells. The molecular mechanisms underlying VCP/p97 induced NED were assessed by using western blot analysis and RT-PCR. Morphological changes were analyzed by using both bright field and confocal microscope. Lysotracker staining was performed to identify autophagy in VCP positive PCa cells. RESULTS In the present study, we found that VCP/p97 expression was notably higher in neuroendocrine (NE) cells NCI-H660 and PC3 than in other PCa cells. IL-6 treatment led to significant VCP/p97 overexpression in LNCaP and VCaP cells, with a marked increase in NE markers NSE and CHR-A. Inhibition of VCP/p97 using NMS-873 attenuated NED features, suggesting that VCP/p97 is required for NED progression. Moreover, VCP's role in NED is linked to its regulation via Pim1 in differentiating cells. Exogenous expression of VCP/p97 enhanced Pim1 and c-Myc expression, which were diminished upon VCP/p97 inhibition which is corroborated by reduced NED markers. Pim1 inhibition using AZD1208 and c-Myc knockdown further supported Pim1's involvement in VCP mediated NED. To promote NED, VCP/p97 regulated autophagy, as evidenced by increased LC3B and decreased SQSTM1/p62 levels upon VCP overexpression. Inhibition of VCP/p97 or autophagy disrupted NED and autophagic flux, arresting NED of LNCaP cells. Lysotracker staining and autophagic flux assays confirmed VCP's role in enhancing lysosomal-mediated autophagy and autophagolysosome formation. Furthermore, we show that AMPK activation, via LKB1 is essential for VCP/p97 mediated NED and autophagy. CONCLUSION VCP drives NED in PCa cells through a complex interplay involving the Pim1 axis and autophagy pathways. These findings highlight the potential of targeting VCP/p97 and its associated mechanisms as therapeutic strategies to inhibit NED progression.
Collapse
Affiliation(s)
- K K Sruthi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Chen Y, Ballarò R, Sans M, Thege FI, Zuo M, Dou R, Min J, Yip-Schneider M, Zhang J, Wu R, Irajizad E, Makino Y, Rajapakshe KI, Rudsari HK, Hurd MW, León-Letelier RA, Katayama H, Ostrin E, Vykoukal J, Dennison JB, Do KA, Hanash SM, Wolff RA, Guerrero PA, Kim M, Schmidt CM, Maitra A, Fahrmann JF. Long-chain sulfatide enrichment is an actionable metabolic vulnerability in intraductal papillary mucinous neoplasm (IPMN)-associated pancreatic cancers. Gut 2025:gutjnl-2025-335220. [PMID: 40268349 DOI: 10.1136/gutjnl-2025-335220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND We conducted an integrated cross-species spatial assessment of transcriptomic and metabolomic alterations associated with progression of intraductal papillary mucinous neoplasms (IPMNs), which are bona fide cystic precursors of pancreatic ductal adenocarcinoma (PDAC). OBJECTIVE We aimed to uncover biochemical and molecular drivers that underlie malignant progression of IPMNs to PDAC. DESIGN Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS)-based spatial imaging and Visium spatial transcriptomics (ST) was performed on human resected IPMN/PDAC tissues (n=23) as well as pancreata from a mutant Kras;Gnas mouse model of IPMN/PDAC. Functional studies in murine IPMN/PDAC-derived Kras;Gnas cells were performed using CRISPR/cas9 technology, small interfering RNAs, and pharmacological inhibition. RESULTS MALDI-MS analyses of patient tissues revealed long-chain hydroxylated sulfatides to be selectively enriched in the neoplastic epithelium of IPMN/PDAC. Integrated ST analyses showed cognate transcripts involved in sulfatide biosynthesis, including UGT8, Gal3St1, and FA2H, to co-localise with areas of sulfatide enrichment. Genetic knockout or pharmacological inhibition of UGT8 in Kras;Gnas IPMN/PDAC cells decreased protein expression of FA2H and Gal3ST1 with consequent alterations in mitochondrial morphology and reduced mitochondrial respiration. Small molecule inhibition of UGT8 elicited anticancer effects via ceramide-mediated compensatory mitophagy and activation of intrinsic apoptosis pathways. In vivo, UGT8 inhibition suppressed tumour growth in allograft models of murine IPMN/PDAC cells derived from Kras;Gnas and Kras;Tp53;Gnas mice. CONCLUSION Our work identifies enhanced sulfatide metabolism as an early metabolic alteration in cystic precancerous lesions of the pancreas that persists through invasive neoplasia and a potential actionable vulnerability in IPMN-derived PDAC.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Riccardo Ballarò
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta Sans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fredrik Ivar Thege
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mingxin Zuo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J Zhang
- Department of Epidemiology, Indiana University, Indianapolis, Indiana, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuki Makino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kimal I Rajapakshe
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hamid K Rudsari
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paolo A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Wu Z, Liu Y, Ma X, Li Y, Zhu X, Yang D, Pei J, Li Y. Epidemiological and spatiotemporal analysis of elderly HIV-1/AIDS patients in Ningxia, China, from 2018 to 2023. Sci Rep 2025; 15:14161. [PMID: 40269207 PMCID: PMC12019375 DOI: 10.1038/s41598-025-98791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
To analyze the epidemiological transmission characteristics and spatiotemporal distribution patterns of the elderly HIV-1/AIDS population in NHAR from 2018 to 2023, to provide theoretical support for the targeted formulation and implementation of HIV-1 interventions. A cross-sectional study was conducted in August 2024. Plasma samples were collected from the elderly HIV-1/AIDS patients (> 50 years old) in NHAR, followed by RNA extraction and RT-PCR to amplify the pol gene of HIV-1. The amplicons were sequenced for the partial pol region. Subtyping was performed using online tools from the HIV-1 database and MEGA11. Drug resistance was analyzed using the Stanford University HIVdb algorithm. Molecular transmission networks were constructed using Cytoscape 3.10.0. Logistic regression was performed to identify the potential risk factors. Spatial analysis revealed the geographic patterns of elderly HIV-1/AIDS patients. A total of 208 HIV-1/AIDS patients were included in this study, predominantly male (78.37%), primary school and below (46.63%), heterosexual transmission (80.77%) and farmers (52.40%). Nine genetic subtypes were identified, with CRF07_BC being the most common (54.81%). The overall drug resistance rate was 37.98%. The number of network nodes increased from 18 in 2018 to 107 in 2023, with large propagating clusters in 2023 merging or expanding from smaller clusters in previous years. Logistic regression analysis showed that males had a lower risk of transmission, individuals from Yinchuan, Shizuishan, and Wuzhong had a lower probability of entering the network, and CRF07_BC and CRF01_AE had a higher risk of transmission. From 2020 to 2023, there was a highly significant clustering pattern among elderly HIV/AIDS patients in NHAR, with shifts in hotspots. Yuanzhou District remained a persistent cold spot. This study reveals that the elderly HIV-1/AIDS patients in NHAR were predominantly married, male, and engaged in farming, with low levels of education. An increase in the diversity of viral genetic subtypes was observed, along with a high rate of drug resistance. The molecular network expanded significantly, accompanied by the emergence of large transmission clusters, indicating complex transmission patterns. The spatial distribution of these cases exhibited aggregation, with notable differences observed between districts and counties. To effectively intervene in the transmission of HIV-1 among the elderly population, it is essential to establish a long-term dynamic molecular transmission surveillance network and to improve AIDS screening and drug resistance testing.
Collapse
Affiliation(s)
- Zhonglan Wu
- College of Life Sciences, Ningxia University, No.489, West Helanshan Road, Xixia District, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, NO.4 Fengchao Road, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yichang Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, NO.4 Fengchao Road, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiaofa Ma
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yufeng Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaohong Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Dongzhi Yang
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, NO.4 Fengchao Road, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianxin Pei
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, NO.4 Fengchao Road, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Yong Li
- College of Life Sciences, Ningxia University, No.489, West Helanshan Road, Xixia District, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
31
|
Ibrahim NK, Schreek S, Cinar B, Stasche AS, Lee SH, Zeug A, Dolgner T, Niessen J, Ponimaskin E, Shcherbata H, Fehlhaber B, Bourquin JP, Bornhauser B, Stanulla M, Pich A, Gutierrez A, Hinze L. SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response. Cell Rep 2025; 44:115434. [PMID: 40131931 PMCID: PMC12094083 DOI: 10.1016/j.celrep.2025.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Adaptation to changes in amino acid availability is crucial for cellular homeostasis, which requires an intricate orchestration of involved pathways. Some cancer cells can maintain cellular fitness upon amino acid shortage, which has a poorly understood mechanistic basis. Leveraging a genome-wide CRISPR-Cas9 screen, we find that superoxide dismutase 2 (SOD2) has a previously unrecognized dismutase-independent function. We demonstrate that SOD2 regulates global proteasomal protein degradation and promotes cell survival under conditions of metabolic stress in malignant cells through the E3 ubiquitin ligases UBR1 and UBR2. Consequently, inhibition of SOD2-mediated protein degradation highly sensitizes different cancer entities, including patient-derived xenografts, to amino acid depletion, highlighting the pathophysiological relevance of our findings. Our study reveals that SOD2 is a regulator of proteasomal protein breakdown upon starvation, which serves as an independent catabolic source of amino acids, a mechanism co-opted by cancer cells to maintain cellular fitness.
Collapse
Affiliation(s)
- Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Halyna Shcherbata
- Department of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Research Core Unit - Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Giammaria S, Pandino I, Zingale GA, Atzori MG, Cavaterra D, Cecere M, Michelessi M, Roberti G, Tanga L, Carnevale C, Vercellin AV, Siesky B, Harris A, Grasso G, Bocedi A, Coletta M, Tundo GR, Oddone F, Sbardella D. Profiling of the Peripheral Blood Mononuclear Cells Proteome by Shotgun Proteomics Identifies Alterations of Immune System Components, Proteolytic Balance, Autophagy, and Mitochondrial Metabolism in Glaucoma Subjects. ACS OMEGA 2025; 10:14866-14883. [PMID: 40291004 PMCID: PMC12019430 DOI: 10.1021/acsomega.4c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Glaucoma is a chronic optic neuropathy and is the second cause of irreversible blindness worldwide. Although the pathogenesis of the disease is not fully understood, the death of retinal ganglion cells and degeneration of the optic nerve are likely promoted by a combination of local and systemic factors. Growing attention has been paid to nonintraocular pressure risk factors, including mechanisms of inflammation and neuroinflammation. Phenotypical and molecular alterations of circulating immune cells, in particular, lymphocyte subsets, have been documented in murine models of glaucoma and in human subjects. Very recently, oxygen consumption rate and nicotinamide adenine dinucleotide levels of human peripheral blood mononuclear cells (PBMC) have been proposed as biomarkers of disease progression, thus suggesting that immune cells of glaucoma subjects present severe molecular and metabolic alterations. In this framework, this pilot study aimed to be the first to characterize global proteome perturbations of PBMC of patients with primary open-angle glaucoma (POAG) compared to nonglaucomatous controls (control) by shotgun proteomics. The approach identified >4,500 proteins and a total of 435 differentially expressed proteins between POAG and control subjects. Clustering and rationalization of proteomic data sets and immunodetection of selected proteins by Western blotting highlighted significant alterations of immune system compartments (i.e., complement factors, regulators of immune functions, and lymphocyte activation) and pathways serving key roles for immune system such as proteolysis (i.e., matrix metalloproteinases and their inhibitors), autophagy (i.e., beclin-1 and LC3B), cell proliferation (Bcl2), mitochondrial (i.e., sirtuin), and energetic/redox metabolism (i.e., NADK). Based on these findings, this proteomic study suggests that circulating immune cells suffer from heterogeneous alterations of central pathways involved in cell metabolism and homeostasis. Larger, properly designed studies are required to confirm specifically how immune cellular alterations may be involved in the pathogenesis of both neuroinflammation and glaucomatous disease.
Collapse
Affiliation(s)
- Sara Giammaria
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Irene Pandino
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Dario Cavaterra
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Michela Cecere
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | - Gloria Roberti
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Lucia Tanga
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Brent Siesky
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Alon Harris
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Giuseppe Grasso
- Department
of Chemical SciencesUniversity of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Alessio Bocedi
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | | | - Grazia Raffaella Tundo
- Department
of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | | | | |
Collapse
|
33
|
Zhao M, Xiao X, Jin D, Zhai L, Li Y, Yang Q, Xing F, Qiao W, Yan X, Tang Q. Composition and Biological Activity of Colored Rice-A Comprehensive Review. Foods 2025; 14:1394. [PMID: 40282795 PMCID: PMC12026479 DOI: 10.3390/foods14081394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Colored rice (black, purple, red and brown) has been consumed in China for nearly 4000 years. Recent research has focused on exploring its nutritional and metabolomic profiles and associated health benefits. Due to the improvement in detection and quantification techniques for health-promoting compounds and their activities, the number of studies has increased significantly. In this regard, a timely and updated review of research on nutritional composition, phytochemistry, and metabolite content and composition can significantly enhance consumer awareness. Here, we present a detailed and up-to-date understanding and comparison of the nutritional and phytochemical (metabolite) composition of colored rice. While earlier literature reviews focus on either single type of colored rice or briefly present nutritional comparison or bioactivities, here we present more detailed nutrient profile comparison (carbohydrates, fats, proteins, amino acids, minerals, and vitamins), together with the most recent comparative data on phytochemicals/metabolites (flavonoids, anthocyanins, fatty acids, amino acids and derivatives, phenolic acids, organic acids, alkaloids, and others). We discuss how metabolomics has broadened the scope of research by providing an increasing number of detected compounds. Moreover, directions on the improvement in colored rice nutritional quality through breeding are also presented. Finally, we present the health-beneficial activities (antioxidant, anti-inflammatory, antimicrobial, hypoglycemic, neuroprotective, anti-aging, and antitumor activities) of different colored rice varieties, together with examples of the clinical trials, and discuss which bioactive substances are correlated with such activities.
Collapse
Affiliation(s)
- Mingchao Zhao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiaorong Xiao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Dingsha Jin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Linan Zhai
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
| | - Yapeng Li
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingwen Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Funeng Xing
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Weihua Qiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaowei Yan
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingjie Tang
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
34
|
Qiu YH, Zhang YH, Wu ZC, Huang JY, Chen BC, Xiao J, Chen FF. 3,4-Dimethoxychalcone alleviates limb ischemia/reperfusion injury by TFEB-mediated autophagy enhancement and antioxidative response. FASEB J 2025; 39:e70496. [PMID: 40162605 DOI: 10.1096/fj.202402609rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Caloric restriction mimetics (CRMs) replicate the positive effects of caloric restriction (CR) and have demonstrated therapeutic benefits in neuroinflammatory and cardiovascular diseases. However, it remains uncertain whether CRMs enhance functional recovery following ischemia/reperfusion (I/R) injury, as well as the specific mechanisms involved in this process. This study examines the therapeutic potential of the CRM 3,4-dimethoxychalcone (3,4-DC) in limb I/R injury. Histology, tissue swelling analysis, and laser doppler imaging (LDI) were used to assess the viability of the limbs. Western blotting and immunofluorescence were utilized to examine apoptosis levels, oxidative stress (OS), autophagy, transcription factor EB (TFEB) activity, and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. The administration of 3,4-DC notably alleviated hypoperfusion, tissue swelling, skeletal muscle fiber damage, and cellular injury in the limb caused by I/R. The pharmacological blockade of autophagy negated the antioxidant and antiapoptotic effects of 3,4-DC. Moreover, RNA interference-mediated TFEB silencing eliminated the 3,4-DC-induced restoration of autophagy, antioxidant response, and antiapoptotic effects. Additionally, our findings revealed that 3,4-DC modulates TFEB activity via the MCOLN1-calcineurin signaling pathway. 3,4-DC facilitates functional recovery by enhancing TFEB-driven autophagy, while simultaneously suppressing oxidative stress and apoptosis following I/R injury, suggesting its potential value in clinical applications.
Collapse
Affiliation(s)
- Yi-Hui Qiu
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin-He Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zi-Chang Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jing-Yong Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bi-Cheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Fan-Feng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Shojaei S, Barzegar Behrooz A, Cordani M, Aghaei M, Azarpira N, Klionsky DJ, Ghavami S. A non-fluorescent immunohistochemistry method for measuring autophagy flux using MAP1LC3/LC3 and SQSTM1 as core markers. FEBS Open Bio 2025. [PMID: 40181489 DOI: 10.1002/2211-5463.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/31/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy/autophagy is a crucial cellular process for degrading and recycling damaged proteins and organelles, playing a significant role in diseases such as cancer and neurodegeneration. Evaluating autophagy flux, which tracks autophagosome formation, maturation, and degradation, is essential for understanding disease mechanisms. Current fluorescence-based methods are resource-intensive, requiring advanced equipment and expertise, limiting their use in clinical laboratories. Here, we introduce a non-fluorescent immunohistochemistry (IHC) method using MAP1LC3/LC3 and SQSTM1 as core markers for autophagy flux assessment. LC3 levels reflect autophagosome formation, whereas SQSTM1 degradation and a decrease in the number of its puncta indicate active flux (i.e., lysosomal turnover). We optimized chromogenic detection using diaminobenzidine (DAB) staining and developed a scoring system based on puncta number and the percentage of stained cells. This accessible, cost-effective method enables reliable autophagy quantification using a standard light microscope, bridging the gap between experimental research and clinical diagnostics. Our protocol allows accurate autophagy evaluation in fixed tissues, offering practical applications in biomedical research and clinical pathology assessment.
Collapse
Affiliation(s)
- Shahla Shojaei
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine, Academy of Silesia, Katowice, Poland
| |
Collapse
|
36
|
Park H, Park J, Kim T, Heo H, Chang J, Blackstone C, Lee S. A depression-associated protein FKBP5 functions in autophagy initiation through scaffolding the VPS34 complex. Mol Neurobiol 2025:10.1007/s12035-025-04897-3. [PMID: 40175715 DOI: 10.1007/s12035-025-04897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Common variants in the FKBP5 gene have been implicated in recurrence of major depressive disorder (MDD) and response to antidepressant treatment. Although the relationship between FKBP5 and MDD has been revealed through several studies, the detailed molecular mechanisms by which FKBP5 regulates responsiveness to antidepressants have not been fully understood. Here, we aimed to elucidate the molecular mechanisms of FKBP5 in autophagy initiation and its potential role in the antidepressant response. We found that FKBP5 deficiency impaired the initiation of basal and stress-induced autophagy, accompanied by reduced protein levels of the PIK3C3/VPS34 complex, which is essential for autophagy initiation. Mechanistically, we demonstrated that FKBP5 physically binds to the VPS34 complex components, facilitating their assembly and subsequent autophagy initiation. Particularly, our study revealed that FKBP5 mediates antidepressant-induced autophagy by promoting the VPS34 complex assembly. These findings were consistent in neuronal cells, where FKBP5 depletion resulted in decreased autophagy and impaired the VPS34 complex assembly. Understanding the interplay between FKBP5, autophagy, and MDD may provide new insights into more effective treatments for MDD and related disorders.
Collapse
Affiliation(s)
- Hyungsun Park
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jisoo Park
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Taewan Kim
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Craig Blackstone
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Seongju Lee
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
37
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Fu D, Li Z, Feng H, Fan F, Zhang W, He L. Chaperone mediated autophagy modulates microglia polarization and inflammation via LAMP2A in ischemia induced spinal cord injury. Toxicol Res (Camb) 2025; 14:tfaf061. [PMID: 40309223 PMCID: PMC12038812 DOI: 10.1093/toxres/tfaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Spinal cord injury (SCI)-induced ischemic delayed paralysis is one of the most serious side effects of aneurysms surgeries. Recent studies prove that the activation of autophagy, including macroautophagy and micro-autophagy pathways, occur during SCI-induced brain neuron damage. However, the role of chaperone mediated autophagy (CMA) during SCI remains to be unveiled. In the present work, rat model of delayed paralysis after aneurysms operation and adenovrius induced LAMP2A knockdown in microglia cells were applied in the present work to investigate the involvement of LAMP2A-mediated CMA in the aneurysm operation related SCI and delayed paralysis. The results showed that LAMP2A was upregulated in the SCI procedure, and contributed to neuron death and pro-inflammation perturbation via inducing iNOS+ polarization in microgila. We additionally observed that knockdown of LAMP2A resulted in the shift of microglia from iNOS+ to ARG1+ phenotype, as well as alleviated neuron damage during SCI. Furthermore, the analysis of BBB score, the result of immunohistological staining, and protein detection confirmed the activation of LAMP2A-mediated CMA activation and its interaction with NF-κB signaling, which leads to neuron death and motor function loss. These results prove that LAMP2A-mediated CMA contributes to the upregulation of pro-inflammatory cytokines and results in cell death in neurons during ischemic delayed paralysis via activating NF-κB signaling. Inhibition of LAMP2A promotes neurons survival during ischemic delayed paralysis.
Collapse
Affiliation(s)
- Dan Fu
- Department of Pediatrics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| | - Ziyou Li
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| | - Huafeng Feng
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| | - Fangling Fan
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| | - Wang Zhang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510900, China
| |
Collapse
|
39
|
Orefice V, Ceccarelli F, Barbati C, Buoncuore G, Pirone C, Alessandri C, Conti F. Caffeine improves systemic lupus erythematosus endothelial dysfunction by promoting endothelial progenitor cells survival. Rheumatology (Oxford) 2025; 64:1886-1893. [PMID: 39380132 DOI: 10.1093/rheumatology/keae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/20/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE We studied the role of caffeine intake on endothelial function in SLE by assessing its effect on circulating endothelial progenitor cells (EPCs) both ex vivo in SLE patients and in vitro in healthy donors (HD) treated with SLE sera. METHODS We enrolled SLE patients without traditional cardiovascular risks factors. Caffeine intake was evaluated with a 7-day food frequency questionnaire. EPCs percentage was assessed by flow cytometry analysis and, subsequently, EPCs pooled from six HD were co-cultured with caffeine with and without SLE sera. After 7 days, we evaluated cells' morphology and ability to form colonies, the percentage of apoptotic cells by flow cytometry analysis and the levels of autophagy and apoptotic markers by western blot. Finally, we performed a western blot analysis to assess the A2AR/SIRT3/AMPK pathway. RESULTS We enrolled 31 SLE patients, and observed a positive correlation between caffeine intake and circulating EPCs percentage. HD EPCs treated with SLE sera and caffeine showed an improvement in morphology and in number of EPCs colony-forming units in comparison with those incubated without caffeine. Caffeine was able to restore autophagy and apoptotic markers in HD EPCs as before SLE sera treatment. Finally, caffeine treatment was able to significantly reduce A2AR levels, leading to an increase in protein levels of SIRT3 and subsequently AMPK phosphorylation. CONCLUSIONS Caffeine intake positively correlated with the percentage of circulating EPCs in SLE patients; moreover, caffeine in vitro treatment was able to improve EPC survival and vitality through the inhibition of apoptosis and the promotion of autophagy via A2AR/SIRT3/AMPK pathway.
Collapse
Affiliation(s)
- Valeria Orefice
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiana Barbati
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Giorgia Buoncuore
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Carmelo Pirone
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Rheumatology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular, Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Bassal R, Rivkin-Natan M, Rabinovich A, Michaelson DM, Frenkel D, Pinkas-Kramarski R. APOE4 impairs autophagy and Aβ clearance by microglial cells. Inflamm Res 2025; 74:61. [PMID: 40164781 PMCID: PMC11958439 DOI: 10.1007/s00011-025-02016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a predominant form of dementia in elderly. In sporadic AD and in families with higher risk of AD, correlation with apolipoprotein E4 (APOE) allele expression has been found. How APOE4 induces its pathological effects is still unclear. Several studies indicate that autophagy, a major degradation pathway trough the lysosome, may be compromised in AD. Here we studied, the effects of APOE isoforms expression in microglia cells. By using an in-situ model, the clearance of Aβ plaques from brain sections of transgenic 5xFAD mice by the APOE expressing microglia was examined. The results show that APOE4 microglia has Impairment In clearance of insoluble Aβ plaques as compared to APOE3 and APOE2 microglia. Furthermore, APOE4 affect the uptake of soluble Aβ. We found that microglia expressing APOE4 exhibit reduced autophagic flux as compared to those expressing APOE3. The autophagy inhibitor chloroquine also blocked Aβ plaque uptake in APOE3 expressing cells. Furthermore, we found that APOE4 expressing microglia have altered mitochondrial dynamics protein expression, mitochondrial morphology and mitochondrial activity compared to those expressing APOE2, and APOE3. Rapamycin treatment corrected Mitochondrial Membrane Potential in APOE4-expressing cells. Taken together, these findings suggest that APOE4 impairs the activation of autophagy, mitophagy, and Aβ clearance and that autophagy-inducing treatments, such as rapamycin, can enhance autophagy and mitochondrial functions in APOE4 expressing microglia. Our results reveal a direct link between APOE4 to autophagy activity in microglia, suggesting that the pathological effects of APOE4 could be counteracted by pharmacological treatments inducing autophagy, such as rapamycin.
Collapse
Affiliation(s)
- Rawan Bassal
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel
| | - Maria Rivkin-Natan
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alon Rabinovich
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel
| | - Daniel Moris Michaelson
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Pinkas-Kramarski
- School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Dooka BD, Orish CN, Ezejiofor AN, Umeji TC, Nkpaa KW, Okereke I, Cirovic A, Cirovic A, Orisakwe OE. Rice bran extract ameliorate heavy metal mixture induced hippocampal toxicity via inhibiting oxido-inflammatory damages and modulating Hmox-1/BDNF/Occludin/Aβ40/Aβ42 in rats. Toxicol Res (Camb) 2025; 14:tfaf049. [PMID: 40201631 PMCID: PMC11975361 DOI: 10.1093/toxres/tfaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The hippocampus executes the integration of memory and spatial learning information. This study evaluated the effect of rice bran extract (RBE) on heavy metal mixture (MM) induced hippocampal toxicity and its underlying mechanism in albino rats. Thirty five rats were exposed to MM alone at Pb 20 mg/kg, Al 35 mg/kg, and Mn 0.564 mg/kg body weight or co-exposed with RBE at 125, 250 and 500 mg/kg body weight, 125 RBE mg/kg b.wt only, and 500 RBE mg/kg b.wt only 5 days a wk for 13 wk (90 days). Subsequently, oxidative stress, inflammation (cyclooxygenase-2) and caspase-3, amyloid precursor proteins (Aβ40 and Aβ42), HMOX-1, occludin and BDNF and transcription factor Nrf-2 in the hippocampus were investigated. MM treatment resulted in significantly higher escape latency time than both the control and MM plus RBE group. MM exposure induced increased oxidative stress, inflammation resulting in enhanced hippocampal apoptosis. MM significantly increased bioaccumulation of Pb, Al, and Pb; increased caspase-3, Nrf-2, Aβ40 and Aβ42 and significantly decreased occludin, BDNF, HMOX-1 when compared with the control. All these effects were reversed by RBE. Collectively, RBE ameliorated MM - induced oxidative stress, neuro-inflammation and hippocampal apoptosis via attenuation of oxidative damages of cellular constituents, neuronal inflammation and subsequent down regulation of amyloid precursor proteins Aβ40, Aβ42 and up regulation of occludin, BDNF, HMOX-1 protein expression via Nrf-2 dependent pathways to abrogate hippocampal toxicity associated with spatial learning and memory deficits.
Collapse
Affiliation(s)
- Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba 500102, Port Harcourt, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Theresa C Umeji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers State 500102, Nigeria
| | - Kpobari W Nkpaa
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ifeoma Okereke
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Mersin TR-10, Turkey
| |
Collapse
|
42
|
Zaffer S, Kiran Reddy VS, Shikari AB, Ray A. Rice with a healthier glycaemic profile: Unveiling the molecular mechanisms and breeding strategies for the future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109543. [PMID: 39952157 DOI: 10.1016/j.plaphy.2025.109543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Rice is a staple food crop consumed by billions globally. However, rice consumption is associated with a high glycaemic response, which has negative health implications. Identifying rice varieties with intrinsically lower glycaemic responses would benefit public health. Recent research has uncovered genomic loci in rice associated with glycaemic response in rice. However, diagnostic assays are needed to efficiently characterize these loci in rice germplasm and breeding populations. This review summarizes current knowledge on low glycaemic rice genetics and proposes strategies for diagnostic assay development. Specific loci implicated in modulating starch digestion and glycaemic response are highlighted. Developing robust, high-throughput molecular marker platform for low glycaemic rice loci will accelerate varietal improvement and enhance the nutritional qualities and health benefits of this essential crop. The review also explores the role of other grain components, such as lipids and proteins, and their interactions with starch in influencing the glycaemic index (GI).
Collapse
Affiliation(s)
- Shafia Zaffer
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - V Shasi Kiran Reddy
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India
| | - Asif Bashir Shikari
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India.
| | - Anuprita Ray
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
43
|
Armeli F, Mengoni B, Schifano E, Lenz T, Archer T, Uccelletti D, Businaro R. The Probiotic Yeast, Milmed, Promotes Autophagy and Antioxidant Pathways in BV-2 Microglia Cells and C. elegans. Antioxidants (Basel) 2025; 14:393. [PMID: 40298639 PMCID: PMC12023983 DOI: 10.3390/antiox14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Autophagy, a catabolic process essential for maintaining cellular homeostasis, declines with age and unhealthy lifestyles, contributing to neurodegenerative diseases. Probiotics, including Milmed yeast, have demonstrated anti-inflammatory and antioxidant properties. This study evaluated the activity of Milmed on BV-2 microglial cells in vitro and in the in vivo model of Caenorhabditis elegans (C. elegans) in restoring autophagic processes. Methods: BV-2 microglial cells were incubated with S. cerevisiae (Milmed treated yeast or untreated yeast) and then stimulated with lipopolysaccharide (LPS). mRNAs of the autophagic factors and antioxidant enzymes were assessed by qPCR; mTOR and NRF2 were evaluated by ELISA. pNRF2 compared with cytosolic NRF2 was evaluated by immunofluorescence. The longevity, body size, and reactive oxygen species (ROS) levels of C. elegans were measured by fluorescence microscopy. Results: Treatment with Milmed YPD cultured yeast or the dried powder obtained from it promoted autophagic flux, as shown by the increased expression of the Beclin-1, ATG7, LC3, and p62 mRNAs and the inhibition of mTOR, as evaluated by ELISA. It also enhanced the antioxidant response by increasing the expression of NRF2, SOD1, and GPX; moreover, pNRF2 expression compared with cytosolic NRF2 expression was enhanced, as shown by immunofluorescence. Milmed dietary supplementation prolonged the survival of C. elegans and reduced the age-related ROS accumulation without changing the expression of gst-4. The pro-longevity effect was found to be dependent on SKN-1/Nrf2 activation, as shown by the absence of benefit in skn-1 mutants. Conclusions: Milmed yeast demonstrates significant pro-autophagy and antioxidant activity with significant pro-longevity effects in C. elegans, thereby extending the lifespan and improving stress resistance, which, together with the previously demonstrated anti-inflammatory activity, highlights its role as a highly effective probiotic for its beneficial health effects. Activation of the SKN-1/NRF2 pathway and the modulation of autophagy support the therapeutic potential of Milmed in neuroprotection and healthy aging.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
- Department of Human Sciences, European University of Rome, 00163 Rome, Italy
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Emily Schifano
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (D.U.)
| | - Thomas Lenz
- Milmed Unico AB, 11139 Stockholm, Sweden; (T.L.); (T.A.)
| | - Trevor Archer
- Milmed Unico AB, 11139 Stockholm, Sweden; (T.L.); (T.A.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (D.U.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
44
|
Cheng QY, Wu MM, Wei XL, Lu LL, Liu RD, Li YH, Zhu NN, Li YQ, Zuo L, Wang H. Hepatocyte cellular repressor of E1A-stimulated genes 1 protects against acetaminophen-induced liver injury by promoting autophagy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01532-8. [PMID: 40133627 DOI: 10.1038/s41401-025-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Acetaminophen-induced liver injury (AILI) accounts for a significant proportion of acute liver failure emphasizing the critical need to elucidate AILI pathogenesis and to identify effective therapeutic agents. Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that plays a crucial role in maintaining liver homeostasis. Prior studies have shown that CREG1 mitigates liver injury, steatosis, and inflammation associated with multiple liver diseases. In this study we investigated the role and therapeutic potential of CREG1 in AILI. We showed that the expression levels of CREG1 were markedly elevated in livers of AILI mice and patients with drug-induced liver injury (DILI), which was also observed in primary hepatocytes treated with acetaminophen (APAP). Hepatocyte-specific CREG1 deficiency mice were more sensitive to APAP compared to Creg1fl/fl mice, whereas AAV8-mediated CREG1 overexpression protected mice from AILI. We demonstrated that CREG1 deficiency impaired autophagy and activated inflammatory signaling pathways. Pre-administration of A769662 to activate AMPK or rapamycin to induce autophagy prevented the liver injury in Creg1Δhep mice. Coherently, the protective effect of CREG1 overexpression against AILI could be inhibited by dorsomorphin, an AMPK inhibitor. These findings suggest that CREG1 alleviates AILI by regulating autophagy through AMPK activation, and CREG1 represents a promising therapeutics target for AILI treatment.
Collapse
Affiliation(s)
- Qian-Ying Cheng
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Miao-Miao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Li Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Li-Li Lu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Run-Dong Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ni-Na Zhu
- School of Basic Medical Sciences, Molecular Biology Laboratory, Anhui Medical University, Hefei, 230032, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, 230032, China
| | - Ya-Qun Li
- School of Basic Medical Sciences, Molecular Biology Laboratory, Anhui Medical University, Hefei, 230032, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, 230032, China
| | - Li Zuo
- School of Basic Medical Sciences, Molecular Biology Laboratory, Anhui Medical University, Hefei, 230032, China.
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
45
|
Yan Z, Huang A, Ma D, Hong C, Zhang S, He L, Rao H, Luo S. ATP6AP1 promotes cell proliferation and tamoxifen resistance in luminal breast cancer by inducing autophagy. Cell Death Dis 2025; 16:201. [PMID: 40133274 PMCID: PMC11937278 DOI: 10.1038/s41419-025-07534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Autophagy is a highly conserved cellular process essential for maintaining cellular homeostasis and influencing cancer development. Lysosomal acidification and autophagosome-lysosome fusion are two important steps of autophagy degradation that are tightly regulated. Although many key proteins that regulate these two events have been identified, the effector proteins that co-regulate both steps remain to be explored. ATP6AP1, an accessory subunit of V-ATPase, plays a critical role in the assembly and regulation of V-ATPase. However, the function of ATP6AP1 in autophagy remains unknown, and the role of ATP6AP1 in cancer is still poorly understood. In this study, we found that ATP6AP1 is overexpressed in luminal breast cancer tissues and promotes the proliferation and tamoxifen resistance of luminal breast cancer cells both in vitro and in vivo. We also observed that high ATP6AP1 expression correlates with poor overall patient survival. Our research further revealed that ATP6AP1 enhances tamoxifen resistance by activating autophagy. Mechanistically, ATP6AP1 promotes autophagy by regulating both lysosomal acidification and autophagosome-lysosome fusion. Remarkably, ATP6AP1 induces lysosomal acidification through the regulation of V-ATPase assembly and facilitates autophagosome-lysosome fusion by enhancing the interaction between Rab7 and the HOPS complex. Together, our studies identify ATP6AP1 as a crucial regulator of autophagy, potentially serving as a valuable prognostic marker or therapeutic target in human luminal breast cancer.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dongwen Ma
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenao Hong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shengmiao Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
46
|
Gremke N, Besong I, Stroh A, von Wichert L, Witt M, Elmshäuser S, Wanzel M, Fromm MF, Taudte RV, Schmatloch S, Karn T, Reinisch M, Hirmas N, Loibl S, Wündisch T, Litmeyer AS, Jank P, Denkert C, Griewing S, Wagner U, Stiewe T. Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs. Signal Transduct Target Ther 2025; 10:92. [PMID: 40113784 PMCID: PMC11926384 DOI: 10.1038/s41392-025-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Activating PIK3CA mutations, present in up to 40% of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (Her2-) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR+, Her2-, and PIK3CA-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1T37/46 phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1T37/46 phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.
Collapse
Affiliation(s)
- Niklas Gremke
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany.
| | - Isabelle Besong
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Alina Stroh
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Luise von Wichert
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Marie Witt
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Verena Taudte
- Core Facility for Metabolomics, Philipps University, Marburg, Germany
| | | | - Thomas Karn
- UCT Frankfurt-Marburg, Department of Gynecology and Obstetrics, Goethe University, Frankfurt, Germany
| | - Mattea Reinisch
- Breast Unit, University Hospital Mannheim, Mannheim, Germany
- Department of Gynecology with Breast Center, University Medicine Berlin, Berlin, Germany
| | - Nader Hirmas
- German Breast Group (GBG), Neu-Isenburg, Germany
| | | | - Thomas Wündisch
- UCT Frankfurt-Marburg, Comprehensive Cancer Center Marburg, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Anne-Sophie Litmeyer
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Paul Jank
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Sebastian Griewing
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Uwe Wagner
- Department of Gynecology, Gynecological Endocrinology and Oncology, University Hospital Gießen and Marburg Campus Marburg, Philipps-University, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
- Genomics Core Facility, Philipps-University, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, Gießen, Germany
| |
Collapse
|
47
|
Dong Y, Sheng G, Chen W. TPX2 knockdown mediates p53 activation to induce autophagy and apoptosis for anti-colorectal cancer effects. J Recept Signal Transduct Res 2025:1-13. [PMID: 40116489 DOI: 10.1080/10799893.2025.2470180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) exhibits high morbidity and mortality worldwide. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) impacts various cancers; however, mechanism of TPX2 in CRC remains unclear. Xenograft nude mouse models were constructed by subcutaneous injection of HCT116 cells with sh-NC, sh-TPX2, OE-NC, and OE-TPX2 transfection. Following the test of tumor growth, immunohistochemistry and TUNEL staining were done. In vitro, HCT116, RKO, and SW480 cells were divided into sh-NC, sh-TPX2, and sh-TPX2 + 3-methyladenine (3-MA, autophagy inhibitor) groups. Further, sh-p53 and rapamycin (RA, autophagy agonist) were added in HCT116 cells. EdU staining, flow cytometry, transparent electron microscopy, and Western blot were performed. Comparing with sh-NC group, sh-TPX2 inhibited tumor growth and Ki67 expression, and increased LC3-II expression and apoptosis, whereas OE-TPX2 group presented an opposite trend. In vitro, HCT116 and RKO cells in sh-TPX2 group enhanced apoptosis and LC3 II/LC3 I expression, and inhibited proliferation and P62 expression, which were reversed after further 3-MA intervention. The above results were not found in SW480 cells. Moreover, compared to sh-TPX2 group, sh-TPX2 + RA group enhanced apoptosis and autophagy, and suppressed the proliferation of HCT116 cells, which were reversed following further sh-p53 intervention. Therefore, sh-TPX2 mediated p53 activation to induce autophagy for anti-CRC effects, providing new ideas for CRC treatment.
Collapse
Affiliation(s)
- Yunfei Dong
- Department of Anorectal, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Guixian Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Argüelles JC. What are the ethical limits of claimed scientific authorship? a case report of relevance. Cell Mol Life Sci 2025; 82:120. [PMID: 40095066 PMCID: PMC11914549 DOI: 10.1007/s00018-025-05650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Since its discovery in the middle of the XX century, research into autophagy has undergone a spectacular expansion, particularly in the early 1990s. A number of physiological processes involving autophagy have been revealed and important human pathologies have been associated with perturbations in autophagy. In 2008 the "Guidelines for the use and interpretation of assays for monitoring autophagy" was launched with the purpose of collecting in a single document all the available information to monitor autophagy, which, it was thought, might be useful for established groups and any new scientists attracted by this field. The usefulness and success of this Guidelines has led to the subsequent publication of editions every 4 years, a task in which a growing number of authors have become involved and consequently included in the list of contributors. However, this worthy initiative and closely associated metric parameters has led to important scholarly repercussions in terms of perceived merits, grants and financial support obtained, professional careers and other areas concerning scientific activity. All these aspects are carefully examined in this contribution.
Collapse
Affiliation(s)
- Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
49
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
50
|
Garcia-Gomara M, Legarra-Marcos N, Serena M, Rojas-de-Miguel E, Espelosin M, Marcilla I, Perez-Mediavilla A, Luquin MR, Lanciego JL, Burrell MA, Cuadrado-Tejedor M, Garcia-Osta A. FKBP51 inhibition ameliorates neurodegeneration and motor dysfunction in the neuromelanin-SNCA mouse model of Parkinson's disease. Mol Ther 2025; 33:895-916. [PMID: 39905728 PMCID: PMC11897814 DOI: 10.1016/j.ymthe.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of neuromelanin (NM)-containing dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc) and the buildup of α-synuclein (α-syn) inclusions, called Lewy bodies. To investigate the roles of NM and α-syn in DA neuron degeneration, we modeled PD by inducing NM accumulation in a humanized α-syn mouse model (Snca-; PAC-Tg(SNCAWT)) via the expression of human tyrosinase in the SN. We found that this mouse strain develops naturally progressive motor dysfunction and dopaminergic neuronal loss in the SN with aging. Upon tyrosinase injection, NM-containing neurons developed p62 and ubiquitin inclusions. Furthermore, the upregulation of genes associated with microglial activation in the midbrain indicated a role of pro-inflammatory factors in neurodegeneration. Midbrain RNA sequencing confirmed the microglial response and identified Fkbp5 as one of the more dysregulated genes. Next, we showed that FKBP51(51 kDa) was significantly upregulated with aging and in PD human brains. Pharmacological treatment with SAFit2, a potent FKBP51 inhibitor, led to a reduction in ubiquitin-positive inclusions, prevention of neurodegeneration in the SNpc, and improved motor function in NM-SNCAWT mice. These results highlight the critical role of FKBP51 in PD and propose SAFit2 as a promising therapeutic candidate for reducing neurodegeneration in PD.
Collapse
Affiliation(s)
- Marta Garcia-Gomara
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Naroa Legarra-Marcos
- Computational Biology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Maria Serena
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Elvira Rojas-de-Miguel
- IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Maria Espelosin
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Irene Marcilla
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Alberto Perez-Mediavilla
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Biochemistry and Genetics Department, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Maria Rosario Luquin
- IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Department of Neurology, Clínica Universidad de Navarra, University of Navarra, Avenida Pio XII 36, Pamplona, 31008 Navarra, Spain
| | - Jose Luis Lanciego
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Maria Angeles Burrell
- IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain.
| | - Ana Garcia-Osta
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain.
| |
Collapse
|