1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
de Jong YP. Mice Engrafted with Human Liver Cells. Semin Liver Dis 2024. [PMID: 39265638 DOI: 10.1055/s-0044-1790601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Collapse
Affiliation(s)
- Ype P de Jong
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| |
Collapse
|
4
|
Liang M, Wang L, Tian X, Wang K, Zhu X, Huang L, Li Q, Ye W, Chen C, Yang H, Wu W, Chen X, Zhu X, Xue Y, Wan W, Wu Y, Lu L, Wang J, Zou H, Ying T, Zhou F. Identification and validation of anti-protein arginine methyltransferase 5 (PRMT5) antibody as a novel biomarker for systemic sclerosis (SSc). Ann Rheum Dis 2024; 83:1144-1155. [PMID: 38684324 PMCID: PMC11420721 DOI: 10.1136/ard-2024-225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES In the complex panorama of autoimmune diseases, the characterisation of pivotal contributing autoantibodies that are involved in disease progression remains challenging. This study aimed to employ a global antibody profiling strategy to identify novel antibodies and investigate their association with systemic sclerosis (SSc). METHODS We implemented this strategy by conducting immunoprecipitation (IP) following on-bead digestion with the sera of patients with SSc or healthy donors, using antigen pools derived from cell lysates. The enriched antigen-antibody complex was proceeded with mass spectrometry (MS)-based quantitative proteomics and over-represented by bioinformatics analysis. The candidate antibodies were then orthogonally validated in two independent groups of patients with SSc. Mice were immunised with the target antigen, which was subsequently evaluated by histological examination and RNA sequencing. RESULTS The IP-MS analysis, followed by validation in patients with SSc, revealed a significant elevation in anti-PRMT5 antibodies among patients with SSc. These antibodies exhibited robust diagnostic accuracy in distinguishing SSc from healthy controls and other autoimmune conditions, including systemic lupus erythematosus and Sjögren's syndrome, with an area under the curve ranging from 0.900 to 0.988. The elevation of anti-PRMT5 antibodies was verified in a subsequent independent group with SSc using an additional method, microarray. Notably, 31.11% of patients with SSc exhibited seropositivity for anti-PRMT5 antibodies. Furthermore, the titres of anti-PRMT5 antibodies demonstrated a correlation with the progression or regression trajectory in SSc. PRMT5 immunisation displayed significant inflammation and fibrosis in both the skin and lungs of mice. This was concomitant with the upregulation of multiple proinflammatory and profibrotic pathways, thereby underscoring a potentially pivotal role of anti-PRMT5 antibodies in SSc. CONCLUSIONS This study has identified anti-PRMT5 antibodies as a novel biomarker for SSc.
Collapse
Affiliation(s)
- Minrui Liang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingbiao Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Tian
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kun Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haihua Yang
- Department of Respiratory and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng Zhou
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Nilchan N, Kraivong R, Luangaram P, Phungsom A, Tantiwatcharakunthon M, Traewachiwiphak S, Prommool T, Punyadee N, Avirutnan P, Duangchinda T, Malasit P, Puttikhunt C. An Engineered N-Glycosylated Dengue Envelope Protein Domain III Facilitates Epitope-Directed Selection of Potently Neutralizing and Minimally Enhancing Antibodies. ACS Infect Dis 2024; 10:2690-2704. [PMID: 38943594 PMCID: PMC11320570 DOI: 10.1021/acsinfecdis.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.
Collapse
Affiliation(s)
- Napon Nilchan
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Romchat Kraivong
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Prasit Luangaram
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Anunyaporn Phungsom
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Mongkhonphan Tantiwatcharakunthon
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Somchoke Traewachiwiphak
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaneeya Duangchinda
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prida Malasit
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
7
|
Wallace HL, Russell RS. Inflammatory Consequences: Hepatitis C Virus-Induced Inflammasome Activation and Pyroptosis. Viral Immunol 2024; 37:126-138. [PMID: 38593460 DOI: 10.1089/vim.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Hepatitis C virus (HCV), despite the availability of effective direct-acting antivirals (DAAs) that clear the virus from >95% of individuals treated, continues to cause significant health care burden due to disease progression that can lead to fibrosis, cirrhosis, and/or hepatocellular carcinoma. The fact that some people who are treated with DAAs still go on to develop worsening liver disease warrants further study into the immunopathogenesis of HCV. Many viral infections, including HCV, have been associated with activation of the inflammasome/pyroptosis pathway. This inflammatory cell death pathway ultimately results in cell lysis and release of inflammatory cytokines, IL-18 and IL-1β. This review will report on studies that investigated HCV and inflammasome activation/pyroptosis. This includes clinical in vivo data showing elevated pyroptosis-associated cytokines in the blood of individuals living with HCV, studies of genetic associations of pyroptosis-related genes and development of liver disease, and in vitro studies aimed at understanding the mechanism of pyroptosis induced by HCV. Finally, we discuss major gaps in understanding and outstanding questions that remain in the field of HCV-induced pyroptosis.
Collapse
Affiliation(s)
- Hannah L Wallace
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| |
Collapse
|
8
|
Wen J, Chen G, Wang T, Yu W, Liu Z, Wang H. High-pressure Hydrodynamic Injection as a Method of Establishing Hepatitis B Virus Infection in Mice. Comp Med 2024; 74:19-24. [PMID: 38365263 PMCID: PMC10938560 DOI: 10.30802/aalas-cm-23-000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Among several existing mouse models for hepatitis B virus (HBV) infection, the high-pressure hydrodynamic injection (HDI) method is frequently used in HBV research due to its economic advantages and ease of implementation. The use of the HDI method is influenced by factors such as mouse genetic background, age, sex, and the type of HBV plasmid used. This overview provides a multidimensional analysis and comparison of various factors that influence the effectiveness of the HBV mouse model established through HDI. The goal is to provide a summary of information for researchers who create HBV models in mice.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoli Chen
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tianshun Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wan Yu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengyun Liu
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huan Wang
- Key Laboratory of Infectious Disease and Biosafety, Guizhou Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
9
|
Murray J, Martin DE, Hosking S, Orr-Burks N, Hogan RJ, Tripp RA. Probenecid Inhibits Influenza A(H5N1) and A(H7N9) Viruses In Vitro and in Mice. Viruses 2024; 16:152. [PMID: 38275962 PMCID: PMC10821351 DOI: 10.3390/v16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.
Collapse
Affiliation(s)
- Jackelyn Murray
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | | | - Sarah Hosking
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Nichole Orr-Burks
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Robert J. Hogan
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Ralph A. Tripp
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
10
|
Lin C, Luo L, Xun Z, Zhu C, Huang Y, Ye Y, Zhang J, Chen T, Wu S, Zhan F, Yang B, Liu C, Ran N, Ou Q. Novel function of MOTS-c in mitochondrial remodelling contributes to its antiviral role during HBV infection. Gut 2024; 73:338-349. [PMID: 37788894 DOI: 10.1136/gutjnl-2023-330389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV) infection causes substantial harm to mitochondrial activity, which hinders the development of effective treatments for chronic hepatitis B (CHB). The discovery of the mitochondrial-derived short peptide MOTS-c, which possesses multiple bioactivities, offers a promising new approach in treating HBV infection. This study aims to explore the diagnostic and therapeutic potential of MOTS-c in HBV-related diseases and its molecular mechanism. DESIGN In total, 85 healthy subjects and 404 patients with HBV infection, including 20 clinical treatment cohorts, were recruited for this study. MOTS-c levels were measured by ELISA and its diagnostic value was evaluated by receiving operating characteristic curve analysis. The therapeutic effect of MOTS-c was observed in multiple HBV-infected mice and cells through various techniques, including transcriptomic sequencing, flow cytometry, immunofluorescence and electron microscopy. Additionally, MOTS-c's potential interaction with myosin-9 (MYH9) and actin was predicted using immunoprecipitation, proteomics and target prediction software. RESULTS MOTS-c negatively correlates with HBV DNA expression (R=-0.71), and its AUC (the area under the curve) for distinguishing CHB from healthy controls is 0.9530, and IA (immune reactive) from IC (inactive HBV carrier) is 0.8689. Inhibition of HBV replication (with a 50-70% inhibition rate) was observed alongside improved liver function without notable toxicity in vitro or in vivo. MOTS-c was found to promote mitochondrial biogenesis and enhance the MAVS (mitochondrial antiviral signalling protein) signalling pathway. The impact is dependent on MOTS-c's ability to regulate MYH9-actin-mediated mitochondrial homeostasis. CONCLUSION MOTS-c has the potential to serve as a biomarker for the progression of HBV infection while also enhancing antiviral efficacy. These findings present a promising innovative approach for effectively treating patients with CHB. Furthermore, our research uncovers a novel role for MOTS-c in regulating MYH9-actin-mediated mitochondrial dynamics and contributing to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Caorui Lin
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Linjie Luo
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Chenggong Zhu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Huang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuchen Ye
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiawei Zhang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Songhang Wu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Fuguo Zhan
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Yang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Can Liu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ning Ran
- Institute of Medical Sciences, The Second Hospital & Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qishui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Sankhala RS, Dussupt V, Donofrio G, Gromowski GD, De La Barrera RA, Larocca RA, Mendez-Rivera L, Lee A, Choe M, Zaky W, Mantus G, Jensen JL, Chen WH, Gohain N, Bai H, McCracken MK, Mason RD, Leggat D, Slike BM, Tran U, Jian N, Abbink P, Peterson R, Mendes EA, Freitas de Oliveira Franca R, Calvet GA, Bispo de Filippis AM, McDermott A, Roederer M, Hernandez M, Albertus A, Davidson E, Doranz BJ, Rolland M, Robb ML, Lynch RM, Barouch DH, Jarman RG, Thomas SJ, Modjarrad K, Michael NL, Krebs SJ, Joyce MG. Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Rep 2023; 42:112942. [PMID: 37561630 PMCID: PMC10775418 DOI: 10.1016/j.celrep.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anna Lee
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Weam Zaky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Grace Mantus
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jaime L Jensen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Neelakshi Gohain
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Hongjun Bai
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - David Leggat
- Vaccine Research Center, NIH, Bethesda, MD 20852, USA
| | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica Araujo Mendes
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Guilherme Amaral Calvet
- Oswaldo Cruz Foundation, Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | | | | | | | | | | | - Morgane Rolland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rebecca M Lynch
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - M Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
12
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
14
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
15
|
Yu J, Shen Z, Chen S, Liu H, Du Z, Mao R, Wang J, Zhang Y, Zhu H, Yang S, Li J, Wu J, Dong M, Zhu M, Huang Y, Li J, Yuan Z, Xie Y, Lu M, Zhang J. Inhibition of HBV replication by EVA1A via enhancing cellular degradation of HBV components and its potential therapeutic application. Antiviral Res 2023:105643. [PMID: 37236321 DOI: 10.1016/j.antiviral.2023.105643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.
Collapse
Affiliation(s)
- Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Meng JX, Hu QM, Zhang LM, Li N, He YW, Yang ZX, Sun Y, Wang JL. Isolation and Genetic Evolution of Dengue Virus from the 2019 Outbreak in Xishuangbanna, Yunnan Province, China. Vector Borne Zoonotic Dis 2023. [PMID: 37184906 DOI: 10.1089/vbz.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Dengue virus (DENV) can be divided into four serotypes-DENV-1, DENV-2, DENV-3, and DENV-4. In humans, infection leads to dengue fever (DF), dengue hemorrhagic fever, and dengue shock syndrome, both widely prevalent in tropical and subtropical regions. In 2019, a severe outbreak of DF occurred in Xishuangbanna, Yunnan province. Objective: To investigate the etiology and genotype of the causative agents of this severe dengue outbreak in Xishuangbanna. Methods: Between October and November 2019, the sera of patients clinically diagnosed with DF were collected in the first People's Hospital of Xishuangbanna. RNA was extracted from the sera and amplified by RT-PCR with flavivirus primers. Flavivirus-positive sera were then used to inoculate Aedes albopictus cells (C6/36); viral RNA was extracted from these cells, amplified, and sequenced with DENV E gene-specific primers. Sequence splicing and nucleotide homology genetic evolution analysis were carried out by biological software (DNAStar). Unique mutations in the E genes of isolated DENV were analyzed by SWISS-MODEL and PyMOL. Results: Of the 60 samples collected from DF patients, 39 tested positively with flavivirus primers. The DENV was isolated from 25 of the 39 positive seras, of which 20 showed cytopathic effects (CPE) and 5 were no CPE. In these 25 isolated nucleic acids, 21 strains of DENV-1, 3 strains of DENV-2, and 1 strain of DENV-3 were identified according to the sequence of E protein. In the four unique mutations (D52, Y149, L312, T386), D52 and Y149 in the E protein of DENV-1 were predicted to be exposed on the surface of the prefusion conformation. Conclusion: The 2019 outbreak of DF in Xishuangbanna area of Yunnan Province consists of at least three serotypes of DENV-1, DENV-2, and DENV-3, and the sources of these virus strains are of mixed and complicated origin.
Collapse
Affiliation(s)
- Jin-Xin Meng
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qiu-Ming Hu
- People's Hospital of Jinghong City, Jinghong, China
| | - Li-Ming Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yu-Wen He
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhen-Xing Yang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yi Sun
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Jing-Lin Wang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
17
|
Ahn M, Chen VCW, Rozario P, Ng WL, Kong PS, Sia WR, Kang AEZ, Su Q, Nguyen LH, Zhu F, Chan WOY, Tan CW, Cheong WS, Hey YY, Foo R, Guo F, Lim YT, Li X, Chia WN, Sobota RM, Fu NY, Irving AT, Wang LF. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. Cell 2023; 186:2144-2159.e22. [PMID: 37172565 DOI: 10.1016/j.cell.2023.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Program, Singapore 168753, Singapore; SingHealth PGY1 Residency Program, Singapore 169608, Singapore; Department of Internal Medicine, Singapore General Hospital, Singapore 169608, Singapore.
| | - Vivian Chih-Wei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pritisha Rozario
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pui San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Adrian Eng Zheng Kang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qi Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lan Huong Nguyen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Shoo Cheong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Xin Li
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| |
Collapse
|
18
|
Vanekova L, Polidarova M, Charvat V, Vavrina Z, Veverka V, Birkus G, Brazdova A. Development and characterization of a chronic hepatitis B murine model with a mutation in the START codon of an HBV polymerase. Physiol Res 2023; 72:37-47. [PMID: 36545874 PMCID: PMC10069812 DOI: 10.33549/physiolres.934979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Chronic hepatitis B (CHB) is caused by the Hepatitis B virus (HBV) and affects millions of people worldwide. Developing an effective CHB therapy requires using in vivo screening methods, such as mouse models reflecting CHB based on hydrodynamic delivery of plasmid vectors containing a replication-competent HBV genome. However, long-term expression of HBV proteins is accompanied by production of progeny virions, thereby requiring a Biosafety Level (BSL) 3 animal facility. In the present study, we introduced a point mutation in the START codon of the HBV polymerase to develop a mouse model reflecting chronic hepatitis B infection without formation of viral progeny. We induced the mouse model by hydrodynamic injection of adeno-associated virus plasmid vector (pAAV) and minicircle plasmid (pMC) constructs into C57Bl/6 and C3H/HeN mouse strains, monitoring HBV antigens and antibodies in blood by enzyme-linked immunosorbent assay and analyzing liver expression of HBV core antigen by immunohistology. Persisting expression of viral antigens over 140 days (study endpoint) was observed only in the C3H/HeN mouse strain when using pAAV/1.2HBV-A and pMC/1.0HBV-D with pre-C and pre-S recombination sites. In addition, pAAV/1.2HBV-A in C3H/HeN sustained HBV core antigen positivity up to the study endpoint in C3H/HeN mice. Moreover, introducing the point mutation in the START codon of polymerase effectively prevented the formation of viral progeny. Our study establishes an accessible and affordable experimental paradigm for developing a robust mouse model reflecting CHB suitable for preclinical testing of anti-HBV therapeutics in a BSL2 animal facility.
Collapse
Affiliation(s)
- L Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
19
|
Pimkova Polidarova M, Vanekova L, Brehova P, Dejmek M, Vavrina Z, Birkus G, Brazdova A. Synthetic Stimulator of Interferon Genes (STING) Agonists Induce a Cytokine-Mediated Anti-Hepatitis B Virus Response in Nonparenchymal Liver Cells. ACS Infect Dis 2023; 9:23-32. [PMID: 36472628 DOI: 10.1021/acsinfecdis.2c00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem worldwide, with limited treatment options, but inducing an antiviral response by innate immunity activation may provide a therapeutic alternative. We assessed the cytokine-mediated anti-hepatitis B virus (HBV) potential for stimulating the cyclic GMP-AMP synthase-stimulator of interferon genes (STING) pathway using STING agonists in primary human hepatocytes (PHH) and nonparenchymal liver cells (NPCs). The natural STING agonist, 2',3'-cyclic GMP-AMP, the synthetic analogue 3',3'-c-di(2'F,2'dAMP), and its bis(pivaloyloxymethyl) prodrug had strong indirect cytokine-mediated anti-HBV effects in PHH regardless of HBV genotype. Furthermore, STING agonists induced anti-HBV cytokine secretion in vitro, in both human and mouse NPCs, and triggered hepatic T cell activation. Cytokine secretion and lymphocyte activation were equally stimulated in NPCs isolated from control and HBV-persistent mice. Therefore, STING agonists modulate immune activation regardless of HBV persistence, paving the way toward a CHB therapy.
Collapse
Affiliation(s)
- Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Lenka Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Petra Brehova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Gabriel Birkus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| |
Collapse
|
20
|
Protective Effects of Clinacanthus nutans (Burm.f.) Lindau Aqueous Extract on HBV Mouse Model by Modulating Gut Microbiota and Liver Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5625222. [PMID: 36636608 PMCID: PMC9831714 DOI: 10.1155/2023/5625222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Background Clinacanthus nutans (Burm.f.) Lindau (C. nutans) has been used in the therapy of hepatitis B (HB) and is effective; however, the mechanism of action has not been elucidated. Objective To investigate the protective effects of C. nutans aqueous extract on the hepatitis B virus (HBV) mouse model based on correlation analysis between gut microbiota and liver metabolomics. Materials and Methods We firstly constructed the animal model by high-pressure injection of pcDNA3.1(+)/HBV plasmid into the tail vein and treated it with C. nutans. The biomarkers and inflammatory cytokines of HB were detected by enzyme-linked immunosorbent assay and quantitative PCR; the Illumina-MiSeq platform was used for investigating gut microbiota; the LC-MS/MS method was utilized on screening liver tissue metabolites; multiomics joint analysis was performed using the R program. Results Compared with the modeling group, C. nutans significantly decreased the expression levels of HBsAg, IL-1β, TNF-α(P < 0.05) in the serum, and cccDNA (P < 0.05) in the liver tissues of mice. C. nutans dramatically reduced the ratio of Firmicutes and Bacteroidetes (P < 0.05) and significantly declined the proportion of Lactobacillaceae and Lactobacillus(P < 0.05), dramatically increasing the relative abundance of Bacteroidales_S24-7_group, Rikenellaceae, and Alistipes(P < 0.05); LC-MS/MS analysis results showed that C. nutans dramatically upregulate hippuric acid, L-histidine, trehalose, D-threitol, and stachyose and downregulate uridine 5'-diphosphate, cholic acid, trimethylamine N-oxide, CDP-ethanolamine, and phosphorylcholine (P < 0.05). The correlation analysis revealed that C. nutans affects the related metabolite levels of hippuric acid and cholic acid through the modulation of crucial bacteria (Alistipes) (P < 0.01), exerting specific anti-inflammatory effects. Conclusion These results suggest that C. nutans exerts protective effects in HBV model mice, showing the therapeutic potential for anti-HBV infection.
Collapse
|
21
|
Thomas PG, Shubina M, Balachandran S. ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis. Curr Top Microbiol Immunol 2023; 442:41-63. [PMID: 31970498 DOI: 10.1007/82_2019_190] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, MS 351, 262 Danny Thomas Place, 38105, Memphis, TN, USA.
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Aziz A, Suleman M, Shah A, Ullah A, Rashid F, Khan S, Iqbal A, Luo S, Xie L, Xie Z. Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Front Microbiol 2023; 14:1098323. [PMID: 36910181 PMCID: PMC9992208 DOI: 10.3389/fmicb.2023.1098323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The Zika virus (ZIKV), which originated in Africa, has become a significant global health threat. It is an RNA virus that continues to mutate and accumulate multiple mutations in its genome. These genetic changes can impact the virus's ability to infect, cause disease, spread, evade the immune system, and drug resistance. In this study genome-wide analysis of 175 ZIKV isolates deposited at the National Center for Biotechnology Information (NCBI), was carried out. The comprehensive mutational analysis of these isolates was carried out by DNASTAR and Clustal W software, which revealed 257 different substitutions at the proteome level in different proteins when compared to the reference sequence (KX369547.1). The substitutions were capsid (17/257), preM (17/257), envelope (44/257), NS1 (34/257), NS2A (30/257), NS2B (11/257), NS3 (37/257), NS4A (6/257), 2K (1/257), NS4B (15/257), and NS5 (56/257). Based on the coexisting mutational analysis, the MN025403.1 isolate from Guinea was identified as having 111 substitutions in proteins and 6 deletions. The effect of coexisting/reoccurring mutations on the structural stability of each protein was also determined by I-mutant and MUpro online servers. Furthermore, molecular docking and simulation results showed that the coexisting mutations (I317V and E393D) in Domain III (DIII) of the envelope protein enhanced the bonding network with ZIKV-specific neutralizing antibodies. This study, therefore, highlighted the rapid accumulation of different substitutions in various ZIKV proteins circulating in different geographical regions of the world. Surveillance of such mutations in the respective proteins will be helpful in the development of effective ZIKV vaccines and neutralizing antibody engineering.
Collapse
Affiliation(s)
- Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Ata Ullah
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
23
|
Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther 2022; 240:108233. [PMID: 35738431 PMCID: PMC9212443 DOI: 10.1016/j.pharmthera.2022.108233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.
Collapse
|
24
|
Wallace HL, Russell RS. Promiscuous Inflammasomes: The False Dichotomy of RNA/DNA Virus-Induced Inflammasome Activation and Pyroptosis. Viruses 2022; 14:2113. [PMID: 36298668 PMCID: PMC9609106 DOI: 10.3390/v14102113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
It is well-known that viruses activate various inflammasomes, which can initiate the programmed cell death pathway known as pyroptosis, subsequently leading to cell lysis and release of inflammatory cytokines IL-1β and IL-18. This pathway can be triggered by various sensors, including, but not limited to, NLRP3, AIM2, IFI16, RIG-I, and NLRC4. Many viruses are known either to activate or inhibit inflammasomes as a part of the innate immune response or as a mechanism of pathogenesis. Early research in the field of virus-induced pyroptosis suggested a dichotomy, with RNA viruses activating the NLRP3 inflammasome and DNA viruses activating the AIM2 inflammasome. More recent research has shown that this dichotomy may not be as distinct as once thought. It seems many viruses activate multiple inflammasome sensors. Here, we detail which viruses fit the dichotomy as well as many that appear to defy this clearly false dichotomy. It seems likely that most, if not all, viruses activate multiple inflammasome sensors, and future research should focus on expanding our understanding of inflammasome activation in a variety of tissue types as well as virus activation of multiple inflammasomes, challenging biases that stemmed from early literature in this field. Here, we review primarily research performed on human viruses but also include details regarding animal viruses whenever possible.
Collapse
|
25
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
26
|
Clinical impact and mechanisms of hepatitis B virus infection concurrent with non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1653-1663. [PMID: 35940901 PMCID: PMC9509100 DOI: 10.1097/cm9.0000000000002310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Chronic hepatitis B (CHB) virus infection is an important threat to global health despite the administration of vaccines and the use of antiviral treatments. In recent years, as the prevalence of obesity and metabolic syndrome has increased, non-alcoholic fatty liver disease (NAFLD) in patients with CHB has become more common. Both diseases can lead to liver fibrosis and even hepatocellular carcinoma, but the risk of dual etiology, outcome, and CHB combined with NAFLD is not fully elucidated. In this review, we assess the overlapping prevalence of NAFLD and CHB, summarize recent studies of clinical and basic research related to potential interactions, and evaluate the progressive changes of treatments for CHB patients with NAFLD. This review increases the understanding of the relationship and mechanisms of interaction between steatosis and hepatitis B virus infection, and it provides new strategies for the future clinical management and treatment of CHB combined with NAFLD.
Collapse
|
27
|
Generation of soluble, cleaved, well-ordered, native-like dimers of dengue virus 4 envelope protein ectodomain (sE) suitable for vaccine immunogen design. Int J Biol Macromol 2022; 217:19-26. [PMID: 35817240 DOI: 10.1016/j.ijbiomac.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Dengue virus is transmitted by Aedes mosquitoes and dengue is endemic in many regions of the world. Severe dengue results in complications that may lead to death. Although some vaccine candidates are in clinical trials and one vaccine Dengvaxia, with restricted efficacy, is available, there are currently no specific therapies to completely prevent or treat dengue. The dengue virus structural protein E (envelope) exists as a head-to-tail dimer on mature virus, is targeted by broadly neutralizing antibodies and is suitable for developing vaccine immunogens. Here, we have used a redesigned dengue prME expression construct and immunoaffinity chromatography with conformational/quaternary antibody A11 to purify soluble DENV4 sE(A259C) (E ectodomain) dimers from mammalian expression system to ~99 % purity. These dimers retain glycosylation reported for native DENV E, display the three major broadly neutralizing antibody epitopes, and form well-ordered structure. This strategy can be used for developing subunit vaccine candidates against dengue and other flaviviruses.
Collapse
|
28
|
Han L, Zhang F, Liu Y, Yu J, Zhang Q, Ye X, Song H, Zheng C, Han B. Uterus globulin associated protein 1 (UGRP1) binds podoplanin (PDPN) to promote a novel inflammation pathway during Streptococcus pneumoniae infection. Clin Transl Med 2022; 12:e850. [PMID: 35652821 PMCID: PMC9161880 DOI: 10.1002/ctm2.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Background Streptococcus pneumoniae is the major cause of life‐threatening infections. Toll‐like receptors (TLRs) and NOD‐like receptors (NLRs) could recognise S. pneumoniae and regulate the production of pro‐inflammatory cytokines. UGRP1, highly expressed in lung, is predominantly secreted in airways. However, the function of UGRP1 in pneumonia is mainly unknown. Methods and results We showed that upon TLR2/TLR4/NOD2 agonists stimulation or S. pneumoniae infection, treatment with UGRP1 could promote phosphorylation of p65 and enhance IL‐6, IL‐1β and TNFα production in macrophages. We further elucidated that after binding with cell‐surface receptor PDPN, UGRP1 could activate RhoA to enhance interaction of IKKγ and IKKβ, which slightly activated NF‐κB to improve expression of TLR2, MyD88, NOD2 and NLRP3. Deletion of UGRP1 or blocking UGRP1 interaction with PDPN protected mice against S. pneumoniae‐induced severe pneumococcal pneumonia, and activating RhoA with agonist in UGRP1‐deficient mice restored the reduced IL‐6 production. Conclusion We demonstrated that UGRP1–PDPN–RhoA signaling could activate NF‐κB to promote expression of TLR2, MyD88, NOD2 and NLRP3, which enhanced inflammatory cytokines secretion during S. pneumoniae infection. Antibodies, which could interrupt interaction of UGRP1 and PDPN, are potential therapeutics against S. pneumoniae.
Collapse
Affiliation(s)
- Lei Han
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Ye
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Zheng
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Merkuleva YA, Shcherbakov DN, Ilyichev AA. Methods to Produce Monoclonal Antibodies for the Prevention and Treatment of Viral Infections. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:256-272. [PMID: 35637780 PMCID: PMC9134727 DOI: 10.1134/s1068162022020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
A viral threat can arise suddenly and quickly turn into a major epidemic or pandemic. In such a case, it is necessary to develop effective means of therapy and prevention in a short time. Vaccine development takes decades, and the use of antiviral compounds is often ineffective and unsafe. A quick response may be the use of convalescent plasma, but a number of difficulties associated with it forced researchers to switch to the development of safer and more effective drugs based on monoclonal antibodies (mAbs). In order to provide protection, such drugs must have a key characteristic-neutralizing properties, i.e., the ability to block viral infection. Currently, there are several approaches to produce mAbs in the researchers' toolkit, however, none of them may serve as a gold standard. Each approach has its own advantages and disadvantages. The choice of the method depends both on the characteristics of the virus and on time constraints and technical challenges. This review provides a comparative analysis of modern methods to produce neutralizing mAbs and describes current trends in the design of antibodies for therapy and prevention of viral diseases.
Collapse
Affiliation(s)
- Yu. A. Merkuleva
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D. N. Shcherbakov
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A. A. Ilyichev
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| |
Collapse
|
30
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
31
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
32
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
33
|
Charged Residue Implantation Improves the Affinity of a Cross-Reactive Dengue Virus Antibody. Int J Mol Sci 2022; 23:ijms23084197. [PMID: 35457015 PMCID: PMC9027083 DOI: 10.3390/ijms23084197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) has four serotypes that complicate vaccine development. Envelope protein domain III (EDIII) of DENV is a promising target for therapeutic antibody development. One EDIII-specific antibody, dubbed 1A1D-2, cross-reacts with DENV 1, 2, and 3 but not 4. To improve the affinity of 1A1D-2, in this study, we analyzed the previously solved structure of 1A1D-2-DENV2 EDIII complex. Mutations were designed, including A54E and Y105R in the heavy chain, with charges complementary to the epitope. Molecular dynamics simulation was then used to validate the formation of predicted salt bridges. Interestingly, a surface plasmon resonance experiment showed that both mutations increased affinities of 1A1D-2 toward EDIII of DENV1, 2, and 3 regardless of their sequence variation. Results also revealed that A54E improved affinities through both a faster association and slower dissociation, whereas Y105R improved affinities through a slower dissociation. Further simulation suggested that the same mutants interacted with different residues in different serotypes. Remarkably, combination of the two mutations additively improved 1A1D-2 affinity by 8, 36, and 13-fold toward DENV1, 2, and 3, respectively. In summary, this study demonstrated the utility of tweaking antibody-antigen charge complementarity for affinity maturation and emphasized the complexity of improving antibody affinity toward multiple antigens.
Collapse
|
34
|
A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms. Acta Pharmacol Sin 2022; 43:954-962. [PMID: 34234269 PMCID: PMC8975860 DOI: 10.1038/s41401-021-00707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology allows for rapid selection of antibodies from the large repertoire of human antibody fragments displayed on phages. However, antibody fragments should be converted to IgG for biological characterizations and affinity of antibodies obtained from phage display library is frequently not sufficient for efficient use in clinical settings. Here, we describe a new approach that combines phage and mammalian cell display, enabling simultaneous affinity screening of full-length IgG antibodies. Using this strategy, we successfully obtained a novel germline-like anti-TIM-3 monoclonal antibody named m101, which was revealed to be a potent anti-TIM-3 therapeutic monoclonal antibody via in vitro and in vivo experiments, indicating its effectiveness and power. Thus, this platform can help develop new monoclonal antibody therapeutics with high affinity and low immunogenicity.
Collapse
|
35
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
36
|
Protocol for chronic hepatitis B virus infection mouse model development by patient-derived orthotopic xenografts. PLoS One 2022; 17:e0264266. [PMID: 35196351 PMCID: PMC8865695 DOI: 10.1371/journal.pone.0264266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background According to the World Health Organization, more than 250 million people worldwide are chronically infected with the hepatitis B virus, and almost 800.000 patients die annually of mediated liver disorders. Therefore, adequate biological test systems are needed that could fully simulate the course of chronic hepatitis B virus infection, including in patients with hepatocellular carcinoma. Methods In this study, we will assess the effectiveness of existing protocols for isolation and cultivation of primary cells derived from patients with hepatocellular carcinoma in terms of the yield of viable cells and their ability to replicate the hepatitis B virus using isolation and cultivation methods for adhesive primary cells, flow cytometry and quantitative polymerase chain reaction. Another part of our study will be devoted to evaluating the effectiveness of hepatocellular carcinoma grafting methods to obtain patient-derived heterotopic and orthotopic xenograft mouse avatars using animal X-ray irradiation and surgery procedures and in vivo fluorescent signals visualization and measurements. Our study will be completed by histological methods. Discussion This will be the first extensive comparative study of the main modern methods and protocols for isolation and cultivation primary hepatocellular carcinoma cells and tumor engraftment to the mice. All protocols will be optimized and characterized using the: (1) efficiency of the method for isolation cells from removed hepatocellular carcinoma in terms of their quantity and viability; (2) efficiency of the primary cell cultivation protocol in terms of the rate of monolayer formation and hepatitis B virus replication; (3) efficiency of the grafting method in terms of the growth rate and the possibility of hepatitis B virus persistence and replication in mice. The most effective methods will be recommended for use in translational biomedical research.
Collapse
|
37
|
Wallace HL, Wang L, Gardner CL, Corkum CP, Grant MD, Hirasawa K, Russell RS. Crosstalk Between Pyroptosis and Apoptosis in Hepatitis C Virus-induced Cell Death. Front Immunol 2022; 13:788138. [PMID: 35237259 PMCID: PMC8882739 DOI: 10.3389/fimmu.2022.788138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 01/15/2023] Open
Abstract
Extensive inflammation in the liver is known to contribute to the pathogenesis of hepatitis C virus (HCV) infection. Apoptosis has, for a long time, been known to act as a mechanism of hepatocyte death, but our previous research also identified inflammasome-mediated pyroptosis in infected and uninfected bystander cells as an additional mechanism of HCV-induced cytopathicity. The purpose of this study was to investigate the mechanism of HCV-induced cell death and to determine the timing and relative contributions of apoptosis and pyroptosis during HCV infection. In a model employing a cell culture-adapted strain of JFH-1 HCV and Huh-7.5 hepatocyte-like cells, we found that pyroptosis occurred earlier than did apoptosis during infection. CRISPR knockout of NLRP3 resulted in decreased caspase-1 activation, but not complete elimination, indicating multiple sensors are likely involved in HCV-induced pyroptosis. Knockout of gasdermin-D resulted in increased activation of apoptosis-related caspase-3, suggesting potential crosstalk between the two cell death pathways. An unexpected decrease in activated caspase-1 levels was observed when caspase-3 was knocked out, implying that caspase-3 may have a role in the initiation of pyroptosis, at least in the context of HCV infection. Lower viral titres in culture fluids and increased ratios of intracellular to extracellular levels of infectious virus were observed in knockout versus wild-type Huh-7.5 cells, suggesting that HCV may induce programmed cell death in order to enhance virus release from infected cells. These results contribute to the understanding of HCV pathogenesis and add to the increasing volume of literature suggesting various programmed cell death pathways are not mutually exclusive.
Collapse
Affiliation(s)
- Hannah L. Wallace
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Lingyan Wang
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Cassandra L. Gardner
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Christopher P. Corkum
- Confocal Imaging/Flow Cytometry Unit, Medical Laboratories, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kensuke Hirasawa
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Rodney S. Russell
- Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Rodney S. Russell,
| |
Collapse
|
38
|
Kong L, You R, Zhang D, Yuan Q, Xiang B, Liang J, Lin Q, Ding C, Liao M, Chen L, Ren T. Infectious Bronchitis Virus Infection Increases Pathogenicity of H9N2 Avian Influenza Virus by Inducing Severe Inflammatory Response. Front Vet Sci 2022; 8:824179. [PMID: 35211536 PMCID: PMC8860976 DOI: 10.3389/fvets.2021.824179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Infectious bronchitis virus (IBV) and H9N2 avian influenza virus (AIV) are frequently identified in chickens with respiratory disease. However, the role and mechanism of IBV and H9N2 AIV co-infection remain largely unknown. Specific-pathogen-free (SPF) chickens were inoculated with IBV 2 days before H9N2 virus inoculation (IBV/H9N2); with IBV and H9N2 virus simultaneously (IBV+H9N2); with H9N2 virus 2 days before IBV inoculation (H9N2/IBV); or with either IBV or H9N2 virus alone. Severe respiratory signs, pathological damage, and higher morbidity and mortality were observed in the co-infection groups compared with the IBV and H9N2 groups. In general, a higher virus load and a more intense inflammatory response were observed in the three co-infection groups, especially in the IBV/H9N2 group. The same results were observed in the transcriptome analysis of the trachea of the SPF chickens. Therefore, IBV might play a major role in the development of respiratory disease in chickens, and secondary infection with H9N2 virus further enhances the pathogenicity by inducing a severe inflammatory response. These findings may provide a reference for the prevention and control of IBV and H9N2 AIV in the poultry industry and provide insight into the molecular mechanisms of IBV and H9N2 AIV co-infection in chickens.
Collapse
Affiliation(s)
- Lingchen Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Renrong You
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Dianchen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qingli Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Libin Chen
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Tao Ren
| |
Collapse
|
39
|
Anasir MI, Poh CL. Discovery of B-cell epitopes for development of dengue vaccines and antibody therapeutics. Med Microbiol Immunol 2022; 211:1-18. [PMID: 35059822 DOI: 10.1007/s00430-021-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Dengue is one of the most frequently transmitted viral infections globally which creates a serious burden to the healthcare system in many countries in the tropical and subtropical regions. To date, no vaccine has demonstrated balanced protection against the four dengue serotypes. Dengvaxia as the only vaccine that has been licensed for use in endemic areas has shown an increased risk in dengue-naïve vaccines to develop severe dengue. A crucial element in protection from dengue infection is the neutralizing antibody responses. Therefore, the identification of protective linear B-cell epitopes can guide vaccine design and facilitate the development of monoclonal antibodies as dengue therapeutics. This review summarizes the identification of dengue B-cell epitopes within the envelope (E) protein of dengue that can be incorporated into peptide vaccine constructs. These epitopes have been identified through approaches such as bioinformatics, three-dimensional structure analysis of antibody-dengue complexes, mutagenesis/alanine scanning and escape mutant studies. Additionally, the therapeutic potential of monoclonal antibodies targeting the E protein of dengue is reviewed. This can provide a basis for the design of future dengue therapies.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam, Selangor, Malaysia
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
40
|
Murin CD, Gilchuk P, Crowe JE, Ward AB. Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Front Immunol 2022; 12:808047. [PMID: 35082794 PMCID: PMC8784787 DOI: 10.3389/fimmu.2021.808047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/immunology
- Antiviral Agents/therapeutic use
- Drug Combinations
- Ebolavirus/drug effects
- Ebolavirus/immunology
- Ebolavirus/physiology
- Epitopes/chemistry
- Epitopes/immunology
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Humans
- Models, Molecular
- Protein Domains/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
41
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
42
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
43
|
Carrara SC, Bogen JP, Grzeschik J, Hock B, Kolmar H. Antibody Library Screening Using Yeast Biopanning and Fluorescence-Activated Cell Sorting. Methods Mol Biol 2022; 2491:177-193. [PMID: 35482191 DOI: 10.1007/978-1-0716-2285-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display (YSD) emerged as a prominent screening methodology for the isolation of monoclonal antibodies (mAbs) against various antigens. However, phage display remains the gold standard in cell panning-based screenings to isolate mAbs against difficult-to-screen targets, such as G-protein coupled receptors (GPCR) and ion channels. Herein we describe a step-by-step protocol to establish and perform the isolation of mAbs using YSD in a fluorescence-activated cell sorting (FACS)-assisted biopanning manner, yielding a variety of antibodies binding their antigen with high affinity in the natural environment of the cell. Upon mixing antibody-displaying yeast cells with antigen-displaying mammalian cells, complexes are specifically formed and isolated for enrichment of yeast cells encoding binders against the antigen. The utilization of mammalian cells expressing the respective target accounts for accessibility of the epitope and the correct conformation of the antigen. Furthermore, critical characterization methods mandatory for this kind of antibodies are illuminated.
Collapse
Affiliation(s)
- Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
44
|
Linciano S, Wong EL, Mazzocato Y, Chinellato M, Scaravetti T, Caregnato A, Cacco V, Romanyuk Z, Angelini A. Guidelines, Strategies, and Principles for the Directed Evolution of Cross-Reactive Antibodies Using Yeast Surface Display Technology. Methods Mol Biol 2022; 2491:251-262. [PMID: 35482195 DOI: 10.1007/978-1-0716-2285-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability of cross-reactive antibodies to bind multiple related or unrelated targets derived from different species provides not only superior therapeutic efficacy but also a better assessment of treatment toxicity, thereby facilitating the transition from preclinical models to human clinical studies. This chapter provides some guidelines for the directed evolution of cross-reactive antibodies using yeast surface display technology. Cross-reactive antibodies are initially isolated from a naïve library by combining highly avid magnetic bead separations followed by multiple cycles of flow cytometry sorting. Once initial cross-reactive clones are identified, sequential rounds of mutagenesis and two-pressure selection strategies are applied to engineer cross-reactive antibodies with improved affinity and yet retained or superior cross-reactivity.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Ee Lin Wong
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Monica Chinellato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Tiziano Scaravetti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Alberto Caregnato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Veronica Cacco
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Zhanna Romanyuk
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy.
- European Centre for Living Technology (ECLT), Ca' Bottacin, Venice, Italy.
| |
Collapse
|
45
|
Yalcinkaya M, Liu W, Islam MN, Kotini AG, Gusarova GA, Fidler TP, Papapetrou EP, Bhattacharya J, Wang N, Tall AR. Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Sci Rep 2021; 11:24432. [PMID: 34952919 PMCID: PMC8709866 DOI: 10.1038/s41598-021-04133-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1β and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1β, levels of IL-1β and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mohammad N Islam
- Lung Biology Lab, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Galina A Gusarova
- Lung Biology Lab, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Trevor P Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jahar Bhattacharya
- Lung Biology Lab, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
47
|
Du Y, Broering R, Li X, Zhang X, Liu J, Yang D, Lu M. In Vivo Mouse Models for Hepatitis B Virus Infection and Their Application. Front Immunol 2021; 12:766534. [PMID: 34777385 PMCID: PMC8586444 DOI: 10.3389/fimmu.2021.766534] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of effective vaccination, hepatitis B virus (HBV) infection continues to be a major challenge worldwide. Research efforts are ongoing to find an effective cure for the estimated 250 million people chronically infected by HBV in recent years. The exceptionally limited host spectrum of HBV has limited the research progress. Thus, different HBV mouse models have been developed and used for studies on infection, immune responses, pathogenesis, and antiviral therapies. However, these mouse models have great limitations as no spread of HBV infection occurs in the mouse liver and no or only very mild hepatitis is present. Thus, the suitability of these mouse models for a given issue and the interpretation of the results need to be critically assessed. This review summarizes the currently available mouse models for HBV research, including hydrodynamic injection, viral vector-mediated transfection, recombinant covalently closed circular DNA (rc-cccDNA), transgenic, and liver humanized mouse models. We systematically discuss the characteristics of each model, with the main focus on hydrodynamic injection mouse model. The usefulness and limitations of each mouse model are discussed based on the published studies. This review summarizes the facts for considerations of the use and suitability of mouse model in future HBV studies.
Collapse
Affiliation(s)
- Yanqin Du
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoran Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Horst A, Smakaj E, Natali EN, Tosoni D, Babrak LM, Meier P, Miho E. Machine Learning Detects Anti-DENV Signatures in Antibody Repertoire Sequences. Front Artif Intell 2021; 4:715462. [PMID: 34708197 PMCID: PMC8542978 DOI: 10.3389/frai.2021.715462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dengue infection is a global threat. As of today, there is no universal dengue fever treatment or vaccines unreservedly recommended by the World Health Organization. The investigation of the specific immune response to dengue virus would support antibody discovery as therapeutics for passive immunization and vaccine design. High-throughput sequencing enables the identification of the multitude of antibodies elicited in response to dengue infection at the sequence level. Artificial intelligence can mine the complex data generated and has the potential to uncover patterns in entire antibody repertoires and detect signatures distinctive of single virus-binding antibodies. However, these machine learning have not been harnessed to determine the immune response to dengue virus. In order to enable the application of machine learning, we have benchmarked existing methods for encoding biological and chemical knowledge as inputs and have investigated novel encoding techniques. We have applied different machine learning methods such as neural networks, random forests, and support vector machines and have investigated the parameter space to determine best performing algorithms for the detection and prediction of antibody patterns at the repertoire and antibody sequence levels in dengue-infected individuals. Our results show that immune response signatures to dengue are detectable both at the antibody repertoire and at the antibody sequence levels. By combining machine learning with phylogenies and network analysis, we generated novel sequences that present dengue-binding specific signatures. These results might aid further antibody discovery and support vaccine design.
Collapse
Affiliation(s)
- Alexander Horst
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Erand Smakaj
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Eriberto Noel Natali
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Deniz Tosoni
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar Marie Babrak
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Patrick Meier
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- School of Life Sciences, Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,aiNET GmbH, Basel, Switzerland
| |
Collapse
|
49
|
Babamale AO, Chen ST. Nod-like Receptors: Critical Intracellular Sensors for Host Protection and Cell Death in Microbial and Parasitic Infections. Int J Mol Sci 2021; 22:11398. [PMID: 34768828 PMCID: PMC8584118 DOI: 10.3390/ijms222111398] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death is an essential immunological apparatus of host defense, but dysregulation of mutually inclusive cell deaths poses severe threats during microbial and parasitic infections leading to deleterious consequences in the pathological progression of infectious diseases. Nucleotide-binding oligomerization domain (NOD)-Leucine-rich repeats (LRR)-containing receptors (NLRs), also called nucleotide-binding oligomerization (NOD)-like receptors (NLRs), are major cytosolic pattern recognition receptors (PRRs), their involvement in the orchestration of innate immunity and host defense against bacteria, viruses, fungi and parasites, often results in the cleavage of gasdermin and the release of IL-1β and IL-18, should be tightly regulated. NLRs are functionally diverse and tissue-specific PRRs expressed by both immune and non-immune cells. Beyond the inflammasome activation, NLRs are also involved in NF-κB and MAPK activation signaling, the regulation of type I IFN (IFN-I) production and the inflammatory cell death during microbial infections. Recent advancements of NLRs biology revealed its possible interplay with pyroptotic cell death and inflammatory mediators, such as caspase 1, caspase 11, IFN-I and GSDMD. This review provides the most updated information that caspase 8 skews the NLRP3 inflammasome activation in PANoptosis during pathogen infection. We also update multidimensional roles of NLRP12 in regulating innate immunity in a content-dependent manner: novel interference of NLRP12 on TLRs and NOD derived-signaling cascade, and the recently unveiled regulatory property of NLRP12 in production of type I IFN. Future prospects of exploring NLRs in controlling cell death during parasitic and microbial infection were highlighted.
Collapse
Affiliation(s)
- Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Parasitology Unit, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Szu-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
- Cancer Progression Research Center, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
| |
Collapse
|
50
|
Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proc Natl Acad Sci U S A 2021; 118:2100104118. [PMID: 34507983 DOI: 10.1073/pnas.2100104118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline-revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.
Collapse
|