1
|
Dai Z, Cai R, Zeng H, Zhu H, Dou Y, Sun S. Exosome may be the next generation of promising cell-free vaccines. Hum Vaccin Immunother 2024; 20:2345940. [PMID: 38714324 PMCID: PMC11086043 DOI: 10.1080/21645515.2024.2345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.
Collapse
Affiliation(s)
- Zelan Dai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Ruiru Cai
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hong Zeng
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hailian Zhu
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Youwei Dou
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Han Z, Ma Y, Meng Q. Advances in macrophage-derived exosomes as immunomodulators in disease progression and therapy. Int Immunopharmacol 2024; 142:113248. [PMID: 39321698 DOI: 10.1016/j.intimp.2024.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Most somatic cells secrete vesicles called exosomes, which contain a variety of biomolecules. Recent research indicates that macrophage-derived exosomes are strongly correlated with tumors, infectious diseases, chronic inflammation, and tissue fibrosis. Therefore, the purpose of this review is to delve into the mechanisms of pathological states and how macrophage-derived exosomes react to them. We also discuss the biological effects of exosomes and how they affect disease. In addition, we have examined the possible uses of exosomes in illness treatment, highlighting both the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Huizhu Chen
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yong Ma
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
3
|
Li Z, Lan J, Wu Y, Ding Y, Zhang T. Homotypic cell membrane-camouflaged biomimetic PLGA nanoparticle loading triptolide for the treatment of hepatocellular carcinoma. Drug Deliv 2024; 31:2354687. [PMID: 38823413 PMCID: PMC11146252 DOI: 10.1080/10717544.2024.2354687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity in vitro and in vivo when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Tian W, Zagami C, Chen J, Blomberg AL, Guiu LS, Skovbakke SL, Goletz S. Cell-based glycoengineering of extracellular vesicles through precise genome editing. N Biotechnol 2024; 83:101-109. [PMID: 39079597 DOI: 10.1016/j.nbt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.
Collapse
Affiliation(s)
- Weihua Tian
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chiara Zagami
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiasi Chen
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Louise Blomberg
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Salse Guiu
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sarah Line Skovbakke
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
7
|
Orooji N, Fadaee M, Kazemi T, Yousefi B. Exosome therapeutics for non-small cell lung cancer tumorigenesis. Cancer Cell Int 2024; 24:360. [PMID: 39478574 PMCID: PMC11523890 DOI: 10.1186/s12935-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an ongoing health concern, with poor treatment options and prognosis for many patients. Typically, individuals with lung cancer are detected at the middle and terminal stages, resulting in poor medical results due to lack of initial diagnosis and treatment. So, finding the initial specific and effective therapy options for lung cancer is necessary. In addition, exosomes are generally small lipid vesicles with a diameter in the nanometer range that are created and released by different cell types. Exosomes have therapeutic potential through delivering bioactive compounds including microRNAs, siRNAs, and therapeutic proteins to tumor cells, modifying the tumor microenvironment, and promoting anti-tumor immune responses. In recent years, exosome-based therapy has become known as an appropriate approach for NSCLC treatment. This review offers an overview of the possibility of exosome-based therapy for NSCLC, with an emphasis on mechanisms of action, preclinical research, and current clinical trials. Preclinical studies have shown that exosome-based therapy can decrease tumor growth, metastasis, and drug resistance in NSCLC models. Furthermore, ongoing clinical trials are looking at the safety and efficacy of exosome-based therapies in NSCLC patients, offering important insights into their translational prospects. Despite promising preclinical evidences, significant obstacles remain, including optimizing exosome isolation and purification techniques, standardizing production strategies, and developing scalable manufacturing processes. Overall, exosome-based therapy shows significant promise as a novel and various methods for treating NSCLC, with the potential to enhance patient outcomes and evolution cancer treatment.
Collapse
Affiliation(s)
- Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
8
|
Granjeiro JM, Borchio PGDM, Ribeiro IPB, Paiva KBS. Bioengineering breakthroughs: The impact of stem cell models on advanced therapy medicinal product development. World J Stem Cells 2024; 16:860-872. [DOI: 10.4252/wjsc.v16.i10.860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The burgeoning field of bioengineering has witnessed significant strides due to the advent of stem cell models, particularly in their application in advanced therapy medicinal products (ATMPs). In this review, we examine the multifaceted impact of these developments, emphasizing the potential of stem cell models to enhance the sophistication of ATMPs and to offer alternatives to animal testing. Stem cell-derived tissues are particularly promising because they can reshape the preclinical landscape by providing more physiologically relevant and ethically sound platforms for drug screening and disease modelling. We also discuss the critical challenges of reproducibility and accuracy in measurements to ensure the integrity and utility of stem cell models in research and application. Moreover, this review highlights the imperative of stem cell models to align with regulatory standards, ensuring using stem cells in ATMPs translates into safe and effective clinical therapies. With regulatory approval serving as a gateway to clinical adoption, the collaborative efforts between scientists and regulators are vital for the progression of stem cell applications from bench to bedside. We advocate for a balanced approach that nurtures innovation within the framework of rigorous validation and regulatory compliance, ensuring that stem cell-base solutions are maximized to promote public trust and patient health in ATMPs.
Collapse
Affiliation(s)
- José Mauro Granjeiro
- Division of Biological Metrology, The National Institute of Metrology, Quality, and Technology, Duque de Caxias 25250020, Rio de Janeiro, Brazil
| | | | - Icaro Paschoal Brito Ribeiro
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, São Paulo, Brazil
| | - Katiucia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, São Paulo, Brazil
| |
Collapse
|
9
|
Dadgar-Zankbar L, Mokhtaryan M, Bafandeh E, Javanmard Z, Asadollahi P, Darbandi T, Afifirad R, Dashtbin S, Darbandi A, Ghanavati R. Microbiome and bladder cancer: the role of probiotics in treatment. Future Microbiol 2024:1-18. [PMID: 39445447 DOI: 10.1080/17460913.2024.2414671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Bladder cancer (BCa) remains a significant global health challenge, with increasing interest in the role of the bladder microbiome in its pathogenesis, progression and treatment outcomes. The complex relationship between bladder cancer and the microbiome, as well as the potential impact of probiotics on treatment effectiveness, is currently under investigation. Research suggests that the microbiota may influence BCa recurrence prevention and enhance the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine. Recent studies reveal differences in the bladder microbiome between individuals without bladder cancer and those with the disease. In the healthy bladder, Streptococcus and Lactobacillus are consistently identified as the most prevalent genera. However, in men, the predominant bacterial genera are Staphylococcus, Corynebacterium and Streptococcus, while in women with bladder cancer, Gardnerella and Lactobacillus are dominant. Probiotics, particularly Lactobacillus spp., can exhibit anti-tumor properties by competing with pathogenic strains involved in carcinogenesis or by producing regulatory substances. They regulate cancer signaling, induce apoptosis, inhibit mutagenic activity, downregulate oncogene expression, induce autophagy, inhibit kinases, reactivate tumor suppressors and prevent metastasis. These mechanisms have shown promising results in both preclinical and some clinical studies.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mokhtaryan
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elnaz Bafandeh
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Taleih Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
10
|
Yi S, Jung E, Kim H, Choi J, Kim S, Lim EK, Kim KS, Kang T, Jung J. Harnessing Lactobacillus reuteri-Derived Extracellular Vesicles for Multifaceted Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406094. [PMID: 39422169 DOI: 10.1002/smll.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) have emerged as valuable biological materials for treating intractable diseases. Extensive studies are conducted on EVs derived from various cellular sources. In this study, EVs derived from Lactobacillus reuteri (L. reuteri), a probiotic, exhibit remarkable cancer therapeutic efficacy when administered orally is reported. These L. reuteri-derived EVs (REVs) demonstrate stability in the gastrointestinal tract and exert significant anti-tumor effects. Using A549 cells and murine models, we confirmed that REVs mediate their therapeutic effects by modulating apoptotic signaling pathways. Furthermore, the combination of REV with drugs enhances tumor ablation and induces immunogenic cell death. In a mouse model, oral administration of REVs encapsulating indocyanine green followed by photothermal therapy led to complete tumor elimination within 32 days. REVs represent a promising biological therapeutic platform for cancer treatment, either independently or in combination with other therapies, depending on the treatment objectives.
Collapse
Grants
- KGM5472413 Korea Research Institute of Bioscience and Biotechnology
- National NanoFab Center
- RS-2024-00401639 Ministry of Agriculture, Food and Rural Affairs
- 2021003370003 Ministry of Environment
- RS-2022-00154853 Ministry of Trade, Industry and Energy
- RS-2024-00403563 Ministry of Trade, Industry and Energy
- RS-2024-00432382 Ministry of Trade, Industry and Energy
- 2021M3H4A1A02051048 Ministry of Science and ICT, South Korea
- 2023R1A2C2005185 Ministry of Science and ICT, South Korea
- 2021M3E5E3080844 Ministry of Science and ICT, South Korea
- 2022R1C1C1008815 Ministry of Science and ICT, South Korea
- RS-2024-00348576 Ministry of Science and ICT, South Korea
- RS-2024-00438316 Ministry of Science and ICT, South Korea
- RS-2024-00459749 Ministry of Science and ICT, South Korea
Collapse
Affiliation(s)
- Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunkyeong Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinsol Choi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro, Geumjeon-gu, Busan, 46241, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Okafor EC, Nielsen K. State of the Field: Cytotoxic Immune Cell Responses in C. neoformans and C. deneoformans Infection. J Fungi (Basel) 2024; 10:712. [PMID: 39452664 PMCID: PMC11508571 DOI: 10.3390/jof10100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is an environmental pathogen that causes life-threatening disease in immunocompromised persons. The majority of immunological studies have centered on CD4+ T-cell dysfunction and associated cytokine signaling pathways, optimization of phagocytic cell function against fungal cells, and identification of robust antigens for vaccine development. However, a growing body of literature exists regarding cytotoxic cells, specifically CD8+ T-cells, Natural Killer cells, gamma/delta T-cells, NK T-cells, and Cytotoxic CD4+ T-cells, and their role in the innate and adaptive immune response during C. neoformans and C. deneoformans infection. In this review, we (1) provide a comprehensive report of data gathered from mouse and human studies on cytotoxic cell function and phenotype, (2) discuss harmonious and conflicting results on cellular responses in mice models and human infection, (3) identify gaps of knowledge in the field ripe for exploration, and (4) highlight how innovative immunological tools could enhance the study of cytotoxic cells and their potential immunomodulation during cryptococcosis.
Collapse
Affiliation(s)
- Elizabeth C. Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech University, Blacksburg, VA 24060, USA
| |
Collapse
|
12
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03479-9. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
13
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
14
|
El-Sheekh M, Alwaleed EA, Kassem WMA, Saber H. Optimizing the fucoidan extraction using Box-Behnken Design and its potential bioactivity. Int J Biol Macromol 2024; 277:134490. [PMID: 39111494 DOI: 10.1016/j.ijbiomac.2024.134490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.
Collapse
Affiliation(s)
- Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Wafaa M A Kassem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
15
|
Zhou L, Zhang X, Wang Z, Li D, Zhou G, Liu H. Extracellular vesicle-mediated delivery of miR-766-3p from bone marrow stromal cells as a therapeutic strategy against colorectal cancer. Cancer Cell Int 2024; 24:330. [PMID: 39354491 PMCID: PMC11443688 DOI: 10.1186/s12935-024-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE As colorectal cancer (CRC) remains one of the leading causes of cancer-related deaths, understanding novel therapeutic mechanisms is crucial. This research focuses on the role of extracellular vesicles (EVs) from bone marrow stromal cells (BMSCs) in delivering miR-766-3p to CRC cells, targeting the MYC/CDK2 signaling axis. METHODS Differentially expressed genes between BMSCs-EVs and CRC were identified using the Gene Expression Omnibus database. miR-766-3p target genes were predicted via TargetScan and RNAInter, with protein interactions analyzed using the STRING database. The analysis included RT-qPCR and Western blot on samples from 52 CRC patients. Characterization of BMSCs-EVs was followed by their functional assessment on CRC cell lines and the normal colon cell line CCD-18CO, evaluating cellular uptake, proliferation, migration, invasion, and apoptosis. RESULTS miR-766-3p was confirmed in BMSCs-EVs and found underexpressed in CRC. BMSCs-EVs transported miR-766-3p to CRC cells, inhibiting their proliferation, migration, and invasion while promoting apoptosis. miR-766-3p targeted MYC, leading to decreased CDK2 transcription. Overexpression of MYC in HCT-116 cells counteracted these effects. In vivo studies showed that BMSCs-EVs carrying miR-766-3p hindered tumor growth. CONCLUSION The study demonstrates the efficacy of BMSCs-EVs in delivering miR-766-3p to CRC cells, leading to the suppression of the MYC/CDK2 signaling pathway and hindering cancer progression.
Collapse
Affiliation(s)
- Linsen Zhou
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yancheng, Jiangsu Province, 224001, China
| | - Xinyi Zhang
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yancheng, Jiangsu Province, 224001, China
| | - Zhiqiang Wang
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yancheng, Jiangsu Province, 224001, China
| | - Dongqing Li
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yancheng, Jiangsu Province, 224001, China
| | - Guangjun Zhou
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University and The First people's Hospital of Yancheng, Yancheng, Jiangsu Province, 224001, China.
| | - Haofeng Liu
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, No.30, Tongyang North Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu Province, 226361, China.
| |
Collapse
|
16
|
Yin M, Sun H, Li Y, Zhang J, Wang J, Liang Y, Zhang K. Delivery of mRNA Using Biomimetic Vectors: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402715. [PMID: 39004872 DOI: 10.1002/smll.202402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Messenger RNA (mRNA) is an emerging class of therapeutic agents for treating a wide range of diseases. However, due to the instability and low cell transfection rate of naked mRNA, the expression of delivered mRNA in target cells or tissues in vivo requires delivery strategies. Biomimetic vectors hold advantages such as high biocompatibility, tissue specific targeting ability and efficient delivery mechanisms, potentially overcoming challenges faced by other delivery vectors. In this review, biomimetic vector-based mRNA delivery systems are summarized and discuss the possible challenges and prospects of such delivery systems, which may contribute to the progress and application of mRNA-based therapy in the biomedical field.
Collapse
Affiliation(s)
- Menghao Yin
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Hanruo Sun
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingge Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinjin Wang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
17
|
Wang L, Tang D. Akkermania muciniphila: a rising star in tumor immunology. Clin Transl Oncol 2024; 26:2418-2430. [PMID: 38653927 DOI: 10.1007/s12094-024-03493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
18
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Rajendran R, Gangadaran P, Oh JM, Hong CM, Ahn BC. Engineering Three-Dimensional Spheroid Culture for Enrichment of Proangiogenic miRNAs in Umbilical Cord Mesenchymal Stem Cells and Promotion of Angiogenesis. ACS OMEGA 2024; 9:40358-40367. [PMID: 39372025 PMCID: PMC11447852 DOI: 10.1021/acsomega.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
In the field of regenerative medicine, umbilical cord-derived mesenchymal stem cells (UC-MSCs) have a plausible potential. However, traditional two-dimensional (2D) culture systems remain limited in replicating the complex in vivo microenvironment. Thus, three-dimensional (3D) cultures offer a more physiologically relevant model. This study explored the impact of 3D culture conditions on the UC-MSC secretome and its ability to promote angiogenesis, both in vitro and in vivo. In this study, using two distinct methods, we successfully cultured UC-MSCs: in a monolayer (2D-UC-MSCs) and as spheroids formed in U-shaped 96-well plates (3D-UC-MSCs). The presence and expression of proangiogenic miRNAs in the conditioned media (CM) of these cultures were investigated, and differential expression patterns were explored. Particularly, the CM of 3D-UC-MSCs revealed significantly higher levels of miR-21-5p, miR-126-5p, and miR-130a-3p compared to 2D-UC-MSCs. Moreover, the CM from 3D-UC-MSCs revealed a higher effect on endothelial cell proliferation, migration, and tube formation than did the CM from 2D-UC-MSCs, indicating their proangiogenic potential. In an in vivo Matrigel plug mouse model, 3D-UC-MSCs (cells) stimulated greater vascular formation compared to 2D-UC-MSCs (cells). 3D culture of UC-MSCs' secretome improves the promotion of angiogenesis.
Collapse
Affiliation(s)
- Ramya
Lakshmi Rajendran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji Min Oh
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chae Moon Hong
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| |
Collapse
|
20
|
Min JY, Kim HM, Lee H, Cho MY, Park HS, Lee SY, Park MS, Ha SK, Kim D, Jeong HG, Kim TD, Hong KS, Han EH. STAT1 as a tool for non-invasive monitoring of NK cell activation in cancer. Commun Biol 2024; 7:1222. [PMID: 39349746 PMCID: PMC11442705 DOI: 10.1038/s42003-024-06917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in immunotherapy for cancer due to their natural ability to target and destroy cancer cells. However, current methods to visualize NK cells' activity against tumors in live organisms are limited. We introduce an imaging method that non-invasively tracks NK cell activation by cancer cells through the STAT1 protein. To achieve this, we modified NK cells to include a specific genetic sequence that binds to STAT1 when activated. These engineered NK cells (GAS-NK) demonstrate their functionality through various biological tests and analysis. Observations of changes in cancer environments and patient-derived cancer organoid models further confirm the effectiveness of this approach. Our method provides a way to monitor NK cell activity, which could improve the prediction and effectiveness of NK cell-based cancer therapies, contributing to advances in cancer treatment.
Collapse
Affiliation(s)
- Jin Young Min
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Hye Min Kim
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Mi Young Cho
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Hye Sun Park
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Sang-Yeop Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Min Sung Park
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sang Keun Ha
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tae-Don Kim
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwan Soo Hong
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea.
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Eun Hee Han
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea.
- Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
21
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
22
|
Tsifintaris M, Kiousi DE, Repanas P, Kamarinou CS, Kavakiotis I, Galanis A. Probio-Ichnos: A Database of Microorganisms with In Vitro Probiotic Properties. Microorganisms 2024; 12:1955. [PMID: 39458265 PMCID: PMC11509836 DOI: 10.3390/microorganisms12101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Probiotics are live microorganisms that, when consumed in adequate amounts, exert health benefits on the host by regulating intestinal and extraintestinal homeostasis. Common probiotic microorganisms include lactic acid bacteria (LAB), yeasts, and Bacillus species. Here, we present Probio-ichnos, the first manually curated, literature-based database that collects and comprehensively presents information on the microbial strains exhibiting in vitro probiotic characteristics (i.e., resistance to acid and bile, attachment to host epithelia, as well as antimicrobial, immunomodulatory, antiproliferative, and antioxidant activity), derived from human, animal or plant microbiota, fermented dairy or non-dairy food products, and environmental sources. Employing a rigorous methodology, we conducted a systematic search of the PubMed database utilizing the keyword 'probiotic' within the abstracts or titles, resulting in a total of 27,715 studies. Upon further manual filtering, 2207 studies presenting in vitro experiments and elucidating strain-specific probiotic attributes were collected and used for data extraction. The Probio-ichnos database consists of 12,993 entries on the in vitro probiotic characteristics of 11,202 distinct strains belonging to 470 species and 143 genera. Data are presented using a binary categorization approach for the presence of probiotic attributes according to the authors' conclusions. Additionally, information about the availability of the whole-genome sequence (WGS) of strains is included in the database. Overall, the Probio-ichnos database aims to streamline the navigation of the available literature to facilitate targeted validation and comparative investigation of the probiotic properties of the microbial strains.
Collapse
Affiliation(s)
- Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece
| | - Ioannis Kavakiotis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| |
Collapse
|
23
|
Nanru P. Immunomodulatory effects of immune cell-derived extracellular vesicles in melanoma. Front Immunol 2024; 15:1442573. [PMID: 39391320 PMCID: PMC11464304 DOI: 10.3389/fimmu.2024.1442573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Melanoma, recognized as one of the most immunogenic malignancies in humans, holds paramount significance in the realm of immunotherapy. However, the emergence of drug resistance and the occurrence of adverse drug reactions underscore the pressing need to explore increasingly personalized immunotherapeutic modalities. Extracellular Vesicles (EVs), pivotal derivatives of immune cells, assume pivotal roles by encapsulating proteins, lipids, and nucleic acids within bilayer lipid structures, thereby facilitating targeted delivery to other immune cells. This orchestrated process orchestrates critical functions including antigen presentation, immune modulation, and the induction of apoptosis in tumor cells. A burgeoning body of evidence underscores the vast therapeutic potential of EVs in melanoma treatment. This comprehensive review aims to delineate the roles of EVs derived from immune cells such as dendritic cells, natural killer cells, macrophages, and T cells in the context of melanoma patients, thereby furnishing invaluable insights for the future direction of melanoma immunotherapy.
Collapse
Affiliation(s)
- Peng Nanru
- Department of Plastic Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou
University, Zhengzhou, China
| |
Collapse
|
24
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
25
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024:10.1007/s13105-024-01050-x. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
26
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
27
|
Chatterjee P, Stevens HY, Kippner LE, Bowles-Welch AC, Drissi H, Mautner K, Yeago C, Gibson G, Roy K. Single-cell transcriptome and crosstalk analysis reveals immune alterations and key pathways in the bone marrow of knee OA patients. iScience 2024; 27:110827. [PMID: 39310769 PMCID: PMC11416684 DOI: 10.1016/j.isci.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES: NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Unlike previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow-an inflammation and immune regulation hub-highlights remote organ impact of OA, identifying cell types and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Additionally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN responses, showing their potentially crucial role in OA onset and progression.
Collapse
Affiliation(s)
- Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E. Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn Yeago
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Liu J, Wang M, Tian X, Wu S, Peng H, Zhu Y, Liu Y. New insights into allergic rhinitis treatment: MSC nanovesicles targeting dendritic cells. J Nanobiotechnology 2024; 22:575. [PMID: 39294599 PMCID: PMC11411834 DOI: 10.1186/s12951-024-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024] Open
Abstract
Allergic rhinitis (AR) is a condition with limited treatment options. This study investigates the potential use of mesenchymal stem cell (MSC) nanovesicles as a novel therapy for AR. Specifically, the study explores the underlying mechanisms of MSC nanovesicle therapy by targeting dendritic cells (DCs). The researchers fabricated DC-targeted P-D2-EVs nanovesicles and characterized their properties. Transcriptomic sequencing and single-cell sequencing analyses were performed to study the impact of P-D2-EVs on AR mice, identifying core genes involved in the treatment. In vitro cell experiments were conducted to validate the effects of P-D2-EVs on DC metabolism, Th2 differentiation, and ILC2 activation. The results showed that P-D2-EVs efficiently targeted DCs. Transcriptomic sequencing analysis revealed differential expression of 948 genes in nasal tissue DCs of mice treated with P-D2-EVs. Single-cell sequencing further revealed that P-D2-EVs had inhibitory effects on DC activation, Th2 differentiation, and ILC2 activation, with Fut1 identified as the core gene. Validation experiments demonstrated that P-D2-EVs improved IL10 metabolism in DCs by downregulating Fut1 expression, thereby suppressing Th2 differentiation and ILC2 activation. Animal experiments confirmed the inhibitory effects of P-D2-EVs and their ability to ameliorate AR symptoms in mice. The study suggests that P-D2-EVs reshape DC metabolism and suppress Th2 differentiation and ILC2 activation through the inhibition of the Fut1/ICAM1/P38 MAPK signaling pathway, providing a potential therapeutic approach for AR.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Meiqun Wang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyan Tian
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shuhong Wu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Haisen Peng
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yaqiong Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
29
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
31
|
Yashar D, Regidor B, Goldwater MS, Bujarski S, Del Dosso A, Berenson JR. Targeting B-cell maturation antigen for treatment and monitoring of relapsed/refractory multiple myeloma patients: a comprehensive review. Ther Adv Hematol 2024; 15:20406207241275797. [PMID: 39290982 PMCID: PMC11406639 DOI: 10.1177/20406207241275797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Despite major therapeutic advancements in recent years, multiple myeloma (MM) remains an incurable disease with nearly all patients experiencing relapsed and refractory disease over the course of treatment. Extending the duration and durability of clinical responses will necessitate the development of therapeutics with novel targets that are capable of robustly and specifically eliminating myeloma cells. B-cell maturation antigen (BCMA) is a membrane-bound protein expressed predominantly on malignant plasma cells and has recently been the target of several novel therapeutics to treat MM patients. This review will focus on recently approved and currently in development agents that target this protein, including bispecific antibodies, antibody-drug conjugates, and chimeric antigen receptor T-cell therapies. In addition, this protein also serves as a novel serum biomarker to predict outcomes and monitor disease status for MM patients; the studies demonstrating this use of BCMA will be discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | | | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, 9201 Sunset Blvd., West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
- ONCOtherapeutics, West Hollywood, CA, USA
| |
Collapse
|
32
|
Osuala U, Goh MH, Mansur A, Smirniotopoulos JB, Scott A, Vassell C, Yousefi B, Jain NK, Sag AA, Lax A, Park KW, Kheradi A, Sapoval M, Golzarian J, Habibollahi P, Ahmed O, Young S, Nezami N. Minimally Invasive Therapies for Knee Osteoarthritis. J Pers Med 2024; 14:970. [PMID: 39338224 PMCID: PMC11432885 DOI: 10.3390/jpm14090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Knee osteoarthritis (KOA) is a musculoskeletal disorder characterized by articular cartilage degeneration and chronic inflammation, affecting one in five people over 40 years old. The purpose of this study was to provide an overview of traditional and novel minimally invasive treatment options and role of artificial intelligence (AI) to streamline the diagnostic process of KOA. This literature review provides insights into the mechanisms of action, efficacy, complications, technical approaches, and recommendations to intra-articular injections (corticosteroids, hyaluronic acid, and plate rich plasma), genicular artery embolization (GAE), and genicular nerve ablation (GNA). Overall, there is mixed evidence to support the efficacy of the intra-articular injections that were covered in this study with varying degrees of supported recommendations through formal medical societies. While GAE and GNA are more novel therapeutic options, preliminary evidence supports their efficacy as a potential minimally invasive therapy for patients with moderate to severe KOA. Furthermore, there is evidentiary support for the use of AI to assist clinicians in the diagnosis and potential selection of treatment options for patients with KOA. In conclusion, there are many exciting advancements within the diagnostic and treatment space of KOA.
Collapse
Affiliation(s)
- Uchenna Osuala
- Georgetown University School of Medicine, Washington, DC 20007, USA; (U.O.); (J.B.S.)
| | - Megan H. Goh
- Harvard Medical School, Cambridge, MA 02115, USA; (M.H.G.); (A.M.)
| | - Arian Mansur
- Harvard Medical School, Cambridge, MA 02115, USA; (M.H.G.); (A.M.)
| | - John B. Smirniotopoulos
- Georgetown University School of Medicine, Washington, DC 20007, USA; (U.O.); (J.B.S.)
- Division of Vascular and Interventional Radiology, MedStar Washington Hospital Center, Washington, DC 20010, USA;
| | - Arielle Scott
- Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (A.S.); (C.V.); (B.Y.)
| | - Christine Vassell
- Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (A.S.); (C.V.); (B.Y.)
| | - Bardia Yousefi
- Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (A.S.); (C.V.); (B.Y.)
| | - Neil K. Jain
- Division of Vascular and Interventional Radiology, MedStar Washington Hospital Center, Washington, DC 20010, USA;
| | - Alan A. Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC 27705, USA;
| | - Allison Lax
- Department of Radiology, MedStar Georgetown University Hospital, Washington, DC 20007, USA;
| | - Kevin W. Park
- Department of Orthopaedic Surgery, MedStar Georgetown University Hospital, Washington, DC 20007, USA;
| | - Alexander Kheradi
- Department of Emergency Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA;
| | - Marc Sapoval
- Hôpital Européen Georges-Pompidou, 75015 Paris, France;
| | - Jafar Golzarian
- North Star Vascular and Interventional Institute, Minnesota, MN 55427, USA;
- Department of Radiology, Division of Vascular and Interventional Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Osman Ahmed
- Division of Interventional Radiology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Shamar Young
- Division of Interventional Radiology, Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ 85712, USA;
| | - Nariman Nezami
- Georgetown University School of Medicine, Washington, DC 20007, USA; (U.O.); (J.B.S.)
- Division of Vascular and Interventional Radiology, MedStar Georgetown University Hospital, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| |
Collapse
|
33
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
34
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
35
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India
| | - Sagnik Das
- Department of Microbiology, St Xavier's College (Autonomous), Kolkata 700016, West Bengal, India
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
36
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2024:10.1007/s00395-024-01077-7. [PMID: 39225869 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
37
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Hoshi K, Imoto K, Yanagisawa Y, Nogami S, Unuma H, Yamauchi K. Periosteal expansion osteogenesis using a tubular dynamic frame device: An experimental study in rats. J Biomed Mater Res B Appl Biomater 2024; 112:e35471. [PMID: 39177324 DOI: 10.1002/jbm.b.35471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Periosteal expansion osteogenesis (PEO) is a technique for augmenting bone by creating a gradual separation between the bone and periosteum. This study assessed PEO-induced bone formation around the femurs of rats using a dynamic frame device (DFD), consisting of a shape memory membrane made of polyethylene terephthalate (PET) formed into a tubular shape. The DFDs, consisting of a PET membrane coated with hydroxyapatite (HA)/gelatin on the bone-contact surface, were inserted between the periosteum and bone of the femurs of rats. In the experimental group, DFDs were suture-fixed to the femur with 4-0 Vicryl Rapid; in the control group, 4-0 silk thread was used for fixation. Five rats per group were euthanized at intervals of 3, 5, and 8 weeks postoperatively. Bone formation was evaluated via micro-CT imaging, histomorphometry, and histological analysis. Morphological analysis revealed new bone between the femur and the periosteum, expanded by the DFD, in all groups. The mean values of new bone were 0.30 mm2 proximally, 0.18 mm2 centrally, and 0.82 mm2 distally in the control group, compared to 1.05 mm2 proximally, 0.27 mm2 centrally, and 0.84 mm2 distally in the experimental group. A significant difference in new bone was observed in the proximal region of the experimental group. Histological examination showed that a single layer of newly formed neoplastic bone was noted on the cortical bone surface across all sites. The proximal portion displayed a bone marrow cavity at the center, encircled by a thick bone cortex with a layered structure. New bone formation was notable between existing cortical bone and the periosteum, particularly at both ends of the DFD. The use of PET in PEO was a viable option for achieving ideal bone morphology.
Collapse
Affiliation(s)
- Karen Hoshi
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Division of Oral and Maxillofacial Reconstructive Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kazuhiro Imoto
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Division of Oral and Maxillofacial Reconstructive Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Yanagisawa
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Division of Oral and Maxillofacial Reconstructive Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinnosuke Nogami
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Division of Oral and Maxillofacial Reconstructive Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hidero Unuma
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Kensuke Yamauchi
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Division of Oral and Maxillofacial Reconstructive Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
39
|
Park B, Kim D, Zhao H, Kim S, Park BC, Lee S, Lee Y, Park HD, Lim D, Ryu S, Hwang JS. Glycogen Phosphorylase Inhibitor Promotes Hair Growth via Protecting from Oxidative-Stress and Regulating Glycogen Breakdown in Human Hair follicles. Biomol Ther (Seoul) 2024; 32:640-646. [PMID: 39103246 PMCID: PMC11392663 DOI: 10.4062/biomolther.2024.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Hair growth cycles are mainly regulated by human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs). Protecting hDPCs from excessive oxidative stress and hORSCs from glycogen phosphorylase (PYGL) is crucial to maintaining the hair growth phase, anagen. In this study, we developed a new PYGL inhibitor, Hydroxytrimethylpyridinyl Methylindolecarboxamide (HTPI) and assessed its potential to prevent hair loss. HTPI reduced oxidative damage, preventing cell death and restored decreased level of anagen marker ALP and its related genes induced by hydrogen peroxide in hDPCs. Moreover, HTPI inhibited glycogen degradation and induced cell survival under glucose starvation in hORSCs. In ex-vivo culture, HTPI significantly enhanced hair growth compared to the control with minoxidil showing comparable results. Overall, these findings suggest that HTPI has significant potential as a therapeutic agent for the prevention and treatment of hair loss.
Collapse
Affiliation(s)
- Bomi Park
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Daeun Kim
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Hairu Zhao
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - SoonRe Kim
- Basic and clinical Hair institute, Dankook University, Cheonan 31116, Republic of Korea
| | - Byung Cheol Park
- Basic and clinical Hair institute, Dankook University, Cheonan 31116, Republic of Korea
- Department of Dermatology, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Sanghwa Lee
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Yurim Lee
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Seoul 04174, Republic of Korea
| | - Sunyoung Ryu
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin 17104, Republic of Korea
| |
Collapse
|
40
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Cho Y, Laird MS, Bishop T, Li R, Jazwinska DE, Ruffo E, Lohmueller J, Zervantonakis IK. CAR T cell infiltration and cytotoxic killing within the core of 3D breast cancer spheroids under the control of antigen sensing in microwell arrays. APL Bioeng 2024; 8:036105. [PMID: 39049849 PMCID: PMC11268919 DOI: 10.1063/5.0207941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The success of chimeric antigen receptor (CAR) T cells in blood cancers has intensified efforts to develop CAR T therapies for solid cancers. In the solid tumor microenvironment, CAR T cell trafficking and suppression of cytotoxic killing represent limiting factors for therapeutic efficacy. Here, we present a microwell platform to study CAR T cell interactions with 3D breast tumor spheroids and determine predictors of anti-tumor CAR T cell function. To precisely control antigen sensing, we utilized a switchable adaptor CAR system that covalently attaches to co-administered antibody adaptors and mediates antigen recognition. Following the addition of an anti-HER2 adaptor antibody, primary human CAR T cells exhibited higher infiltration, clustering, and secretion of effector cytokines. By tracking CAR T cell killing in individual spheroids, we showed the suppressive effects of spheroid size and identified the initial CAR T cell to spheroid area ratio as a predictor of cytotoxicity. We demonstrate that larger spheroids exhibit higher hypoxia levels and are infiltrated by CAR T cells with a suppressed activation state, characterized by reduced expression of IFN-γ, TNF-α, and granzyme B. Spatiotemporal analysis revealed lower CAR T cell numbers and cytotoxicity in the spheroid core compared to the periphery. Finally, increasing CAR T cell seeding density resulted in higher CAR T cell infiltration and cancer cell elimination in the spheroid core. Our findings provide new quantitative insight into CAR T cell function within 3D cancer spheroids. Given its miniaturized nature and live imaging capabilities, our microfabricated system holds promise for screening cellular immunotherapies.
Collapse
Affiliation(s)
- Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Matthew S. Laird
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Teddi Bishop
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
42
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn BC. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
43
|
Cai M, Fu T, Zhu R, Hu P, Kong J, Liao S, Du Y, Zhang Y, Qu C, Dong X, Yin X, Ni J. An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy. Acta Pharm Sin B 2024; 14:4073-4086. [PMID: 39309488 PMCID: PMC11413704 DOI: 10.1016/j.apsb.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered pathway for regulated cell death pathway. However, its efficacy is affected by limited iron content and intracellular ion homeostasis. Here, we designed a metal-organic framework (MOF)-based nanoplatform that incorporates calcium peroxide (CaO2) and oridonin (ORI). This platform can improve the tumor microenvironment and disrupt intracellular iron homeostasis, thereby enhancing ferroptosis therapy. Fused cell membranes (FM) were used to modify nanoparticles (ORI@CaO2@Fe-TCPP, NPs) to produce FM@ORI@CaO2@Fe-TCPP (FM@NPs). The encapsulated ORI inhibited the HSPB1/PCBP1/IREB2 and FSP1/COQ10 pathways simultaneously, working in tandem with Fe3+ to induce ferroptosis. Photodynamic therapy (PDT) guided by porphyrin (TCPP) significantly enhanced ferroptosis through excessive accumulation of reactive oxygen species (ROS). This self-amplifying strategy promoted robust ferroptosis, which could work synergistically with FM-mediated immunotherapy. In vivo experiments showed that FM@NPs inhibited 91.57% of melanoma cells within six days, a rate 5.6 times higher than chemotherapy alone. FM@NPs were biodegraded and directly eliminated in the urine or faeces without substantial toxicity. Thus, this study demonstrated that combining immunotherapy with efficient ferroptosis induction through nanotechnology is a feasible and promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Panxiang Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqiang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
44
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
45
|
Pu D, Xu Y, Yu H, Yang T, Tang L, Tan W, Zhang W, Liu S. Comprehensive pan-cancer analysis reveals CDC6 as a potential immunomodulatory agent and promising therapeutic target in pancreatic cancer. Transl Cancer Res 2024; 13:4096-4112. [PMID: 39262459 PMCID: PMC11384319 DOI: 10.21037/tcr-24-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Abstract
Background CDC6 is critical in DNA replication initiation, but its expression patterns and clinical implications in cancer are underexplored. This study uses multi-omics data from The Cancer Genome Atlas (TCGA) to comprehensively analyze CDC6 across various cancers, aiming to evaluate its potential as a prognostic biomarker and explore its role in immunotherapy. Methods By leveraging multi-omics data from TCGA, we conducted a comprehensive analysis of CDC6 expression across a variety of cancer types. Least absolute shrinkage and selection operator (LASSO) regression was employed to assess the association of CDC6 with key molecules implicated in pancreatic cancer. Results CDC6 expression was found to be significantly upregulated across a broad spectrum of cancers. High levels of CDC6 expression were associated with poor prognosis in several cancer types. Notable associations were observed between CDC6 expression and tumor mutational burden (TMB), microsatellite instability (MSI), as well as immune cell infiltration. Co-expression analysis revealed significant associations between CDC6 and prevalent immune checkpoint genes. A risk model incorporating CDC6-related genes, including CCNA1, CCNA2, CCND1, CCND2, CDC25B, CDC6, and CDK2, was developed for pancreatic cancer. Conclusions CDC6 emerges as a promising prognostic biomarker and a potential target for immunotherapy across various cancers, including pancreatic cancer. It appears to modulate immune responses across cancer types, highlighting its regulatory role. Further exploration into the biological functions and clinical implications of CDC6 is warranted.
Collapse
Affiliation(s)
- Dongyao Pu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Haochen Yu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Department of Breast and Thyroid Surgery, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfeng Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhao Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjie Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Sharun K, Banu SA, Alifsha B, Abualigah L, Pawde AM, Dhama K, Pal A. Mesenchymal stem cell therapy in veterinary ophthalmology: clinical evidence and prospects. Vet Res Commun 2024:10.1007/s11259-024-10522-w. [PMID: 39212813 DOI: 10.1007/s11259-024-10522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mesenchymal stem cell (MSC) therapy presents a promising strategy for treating various ocular conditions in veterinary medicine. This review explores the therapeutic potential of MSCs in managing corneal ulcers, immune-mediated keratitis, chronic superficial keratitis, keratoconjunctivitis sicca, retinal degeneration, and ocular burns in feline, equine, and canine patients. Studies have demonstrated the immunomodulatory and regenerative properties of MSCs, highlighting their ability to mitigate inflammation and promote tissue regeneration. Experimental studies have shown the potential of MSC therapy in reducing corneal opacity and vascularization, indicating significant therapeutic advantages. Delivery methods play a crucial role in optimizing the therapeutic efficacy of MSCs in ocular diseases. Various delivery methods, such as intravitreal injection, subconjunctival injection, topical administration, and scaffold-mediated delivery, are being explored to optimize MSC delivery to the target ocular tissues. Clinical trials have shown significant improvements in clinical signs following MSC therapy, underscoring its efficacy in treating ocular diseases. Additionally, tissue engineering approaches incorporating MSCs, growth factors, and scaffolds offer innovative strategies for corneal regeneration and tissue repair. Despite challenges such as standardization of protocols and long-term safety assessment, ongoing research endeavours seek to unlock the full therapeutic potential of MSC therapy in ocular diseases. Future prospects in MSC therapy involve exploring scaffold and hydrogel-based approaches and cell-free therapies leveraging the bioactive molecules released by MSCs. Continued research and development efforts are essential to unlock the full therapeutic potential of MSCs and realize their transformative impact on ocular diseases in veterinary patients.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - B Alifsha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
47
|
Zhao J, Huang H. Extracellular Vesicle-Derived Non-Coding RNAs: Key Mediators in Remodelling Heart Failure. Curr Issues Mol Biol 2024; 46:9430-9448. [PMID: 39329911 PMCID: PMC11430706 DOI: 10.3390/cimb46090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heart failure (HF), a syndrome of persistent development of cardiac insufficiency due to various heart diseases, is a serious and lethal disease for which specific curative therapies are lacking and poses a severe burden on all aspects of global public health. Extracellular vesicles (EVs) are essential mediators of intercellular and interorgan communication, and are enclosed nanoscale vesicles carrying biomolecules such as RNA, DNA, and proteins. Recent studies have showed, among other things, that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNA), and circular RNAs (circRNAs) can be selectively sorted into EVs and modulate the pathophysiological processes of HF in recipient cells, acting on both healthy and diseased hearts, which makes them promising targets for the diagnosis and therapy of HF. This review aims to explore the mechanism of action of EV-ncRNAs in heart failure, with emphasis on the potential use of differentially expressed miRNAs and circRNAs as biomarkers of cardiovascular disease, and recent research advances in the diagnosis and treatment of heart failure. Finally, we focus on summarising the latest advances and challenges in engineering EVs for HF, providing novel concepts for the diagnosis and treatment of heart failure.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
48
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
49
|
Atashzar MR, Ataollahi MR, Asad AG, Doroudgar P, Amani D. The effects of tumor-derived exosomes enriched with miRNA-211a on B16F10 cells. Contemp Oncol (Pozn) 2024; 28:121-129. [PMID: 39421705 PMCID: PMC11480909 DOI: 10.5114/wo.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Exosomes have emerged as a novel alternative delivery system for transporting small molecules. Tumor-derived exosomes (TEXs) possess anti-cancer properties and serve as natural carriers of microRNAs. Using this knowledge as a foundation, the current study evaluated the efficacy of delivering a miR-211 mimic via B16F10 cell-derived exosomes to block the growth and development of a melanoma cell line. Material and methods After exposing B16F10 cultured cells to serum-free media for 24 hours, we collected the supernatant. Subsequently, we purified the exosomes from the supernatant using a commercial kit. Scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Western blot, and bicinchoninic acid protein assay were used to characterize exosomes. Following that, miR-211 mimic was loaded into exosomes (termed TEXomiR) via a modified calcium chloride procedure. The assessment of miR-211a loading efficiency into exosomes was conducted by analyzing its relative expression. MTT, annexin V/PI, and quantitative real-time polymerase chain reaction were used to measure the proliferation, apoptosis and relative expression of miR-211 target genes, respectively. Results Our study showed that the exosomes can deliver miR-211 mimic efficiently. The treatment of B16F10 cells with miR-211-enriched TEX downregulated miR-211 target genes, including brain-specific homeobox, vascular endothelial growth factor, and transforming growth factor-β receptor. The results indicated the antiproliferative effect of TEXomiR as time-dose-dependent. The flow cytometry evaluation showed that TEXomiR could induce the apoptosis of B16F10 cells. Conclusions Our data indicated that exosomes can be suitable carriers for miR-211 mimic. Moreover, TEXomiR via anti-cancer effects could inhibit the progression of melanoma cancer.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ataollahi
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbari Asad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Doroudgar
- Department of Oral Medicine, School of Dentistry, Tehran, University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Jeyaraman M, Pai SN, Filippo M, Jeyaraman N, Venkatasalam R, Nallakumarasamy A, Khanna M, Patro BP, Sharma S, Rangarajan RV. Informed consent form for platelet rich plasma injections: evidence-based and legally guide for orthopaedic surgeons. Eur J Med Res 2024; 29:422. [PMID: 39152486 PMCID: PMC11330123 DOI: 10.1186/s40001-024-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Regarding medico-legal malpractice suits, lawyers and insurers focus on informed consent documentation. Unfortunately, there is no standard protocol for obtaining informed consent for platelet-rich plasma (PRP) injections. The objective of the present study was to create a pre-designed, evidence-based informed consent form specifically for PRP injections. The current evidence on the medico-legal implications of PRP injections was accessed, as well as informed consent in general and specifically informed consent in PRP injections. Additionally, we interviewed orthopaedic surgeons and patients who had undergone PRP injections in the past year using a semi-structured approach. A legally valid and evidence-based informed consent form for PRP injections ensures rights, encouraging open communication and transparency between the patient and surgeon. Moreover, if a lawsuit arose, informed consent would be a critical document in surgeons' defence and would withstand scrutiny from lawyers and the judiciary. An evidence-based informed consent form for PRP injections was elaborated and reviewed by a legal expert to ensure adherence to legal proprieties. The final form of the informed consent for PRP injection was administered for one year and validated at our institution.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
- Department of Regenerative Medicine, Orange Health Care, Chennai, Tamil Nadu, 600040, India
| | - Satvik N Pai
- Department of Orthopaedics, PES University Institute of Medical Sciences and Research, Bengaluru, Karnataka, 560083, India
| | - Migliorini Filippo
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165, Rome, Italy.
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
| | | | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry, 609602, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Bishnu Prasad Patro
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopaedics, All Indian Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ravi Velamor Rangarajan
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli, Tamil Nadu, 620017, India
| |
Collapse
|