1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Zhang X, Liu P, Zhang R, Zheng W, Qin D, Liu Y, Wang X, Sun T, Gao Y, Li LL. Action Programmed Nanoantibiotics with pH-Induced Collapse and Negative-Charged-Surface-Induced Deformation against Antibiotic-Resistant Bacterial Peritonitis. Adv Healthc Mater 2024; 13:e2401470. [PMID: 38924797 DOI: 10.1002/adhm.202401470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The incorporation of well-designed antibiotic nanocarriers, along with an antibiotic adjuvant effect, in combination with various antibiotics, offers an opportunity to combat drug-resistant strains. However, precise control over morphology and encapsulated payload release can significantly impact their antibacterial efficacy and synergistic effects when used alongside antibiotics. Here, this study focuses on developing lipopeptide-based nanoantibiotics, which demonstrate an antibiotic adjuvant effect by inducing pH-induced collapse and negative-charged-surface-induced deformation. This enhances the disruption of the bacterial outer membrane and facilitates drug penetration, effectively boosting the antimicrobial activity against drug-resistant strains. The modulation regulations of the lipopeptide nanocarriers with modular design are governed by the authors. The nanoantibiotics, made from lipopeptide and ciprofloxacin (Cip), have a drug loading efficiency of over 80%. The combination with Cip results in a significantly low fractional inhibitory concentration index of 0.375 and a remarkable reduction in the minimum inhibitory concentration of Cip against multidrug-resistant (MDR) Escherichia coli (clinical isolated strains) by up to 32-fold. The survival rate of MDR E. coli peritonitis treated with nanoantibiotics is significantly higher, reaching over 87%, compared to only 25% for Cip and no survival for the control group. Meanwhile, the nanoantibiotic shows no obvious toxicity to major organs.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Penghui Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Ran Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Wenhong Zheng
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Di Qin
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Yinghang Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xin Wang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Tongyi Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Yuanyuan Gao
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Li-Li Li
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Liu Y, Xue Y, Tang J, Zhang P, Liu C, Wu D, Liu J. Porphyrin-Camptothecin (CPT) Grafted Polyoxazoline Amphiphiles for Tumor Photodynamic-Chemotherapy Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64617-64627. [PMID: 39547789 DOI: 10.1021/acsami.4c17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Porphyrin-based photosensitizers are extensively utilized in the realm of photodynamic therapy, capitalizing on their advantageous optical, chemical, and electronic properties. Nonetheless, their application is often constrained by their pronounced hydrophobicity. Structures with a high load capacity and excellent biocompatibility are preferred options to circumvent this obstacle. Herein, we constructed a novel porphyrin-camptothecin (CPT) polymer, which is composed of amphiphilic oxazoline segments, and the drug monomers containing disulfide bonds are modified on the hydrophobic chain of polyoxazoline. The polyoxazoline-porphyrin-CPT (OPC) polymer can self-assemble into nanoparticles in the aqueous phase, possesses excellent stability, and generates abundant singlet oxygen (1O2) under laser irradiation. Additionally, the OPC nanoparticles exhibit satisfactory biocompatibility and high light toxicity against 4T1 cells. In the microenvironment of the tumor, drugs were released from the OPC nanoparticles owing to the high concentration of GSH, causing direct damage to the tumor cell, achieving the combination of photo-chemotherapy. The findings of this research indicate that polyoxazoline porphyrin demonstrates adaptability as a nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
4
|
Guo C, Gao F, Wu G, Li J, Sheng C, He S, Hu H. Precise HER2 Protein Degradation via Peptide-Conjugated Photodynamic Therapy for Enhanced Breast Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410778. [PMID: 39555704 DOI: 10.1002/advs.202410778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Breast cancer, the most prevalent malignancy among women, frequently exhibits high HER2 expression, making HER2 a critical therapeutic target. Traditional treatments combining the anti-HER2 antibody trastuzumab with immunotherapy face limitations due to toxicity and tumor microenvironment immunosuppression. This study introduces an innovative strategy combining HER2-targeting peptides with the photosensitizer (PSs) pyropheophorbide-a (Pha) via a gelatinase-cleavable linker, forming self-assembling nanoparticles. These nanoparticles actively target breast cancer cells and generate reactive oxygen species (ROS) under near-infrared light, effectively degrading HER2 proteins. Upon internalization, the linker is cleaved, releasing Pha-PLG and enhancing intracellular photodynamic therapy (PDT). The Pha-PLG molecules self-assemble into nanofibers, prolonging circulation, boosting immune induction, and activating CD8+ T cells, thus promoting a robust anti-tumor immune response. In vivo, studies confirm superior biosafety, tumor targeting, and HER2 degradation, with increased cytotoxic T cell activity and improved antitumor immunity. This integrated strategy offers a promising new avenue for breast cancer treatment.
Collapse
Affiliation(s)
- Changyong Guo
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Fei Gao
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Guoyuan Wu
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jinqiu Li
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Shipeng He
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Honggang Hu
- School of Medicine or Institute of Translational Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
5
|
Song BL, Wang JQ, Zhang GX, Yi NB, Zhang YJ, Zhou L, Guan YH, Zhang XH, Zheng WF, Qiao ZY, Wang H. A Coupling-Induced Assembly Strategy for Constructing Artificial Shell on Mitochondria in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202411725. [PMID: 39045805 DOI: 10.1002/anie.202411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.
Collapse
Affiliation(s)
- Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia-Qi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin, 150001, China
| | - Guang-Xu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ning-Bo Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Jin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Hua Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wen-Fu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Huang Y, Chen C, Yu Z, Cao W, Peng S, Zhang G, Zhang Q, Zhang G, Jiang J, Yuan Y. A Simple Binary Supramolecular Co-Assembly Platform for Enhanced Tumor Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402763. [PMID: 39183531 DOI: 10.1002/smll.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/10/2024] [Indexed: 08/27/2024]
Abstract
The primary challenges in tumor imaging and therapy revolve around improving targeting efficiency, enhancing probe/drug delivery efficacy, and minimizing off-target signals and toxicity. Although various carriers have been developed, many are difficult to synthesize, costly, and not universally applicable. Furthermore, numerous carriers exhibit limited delivery rates in solid tumors, particularly larger nanocarriers. To address these challenges, a simple binary co-assembly drug delivery platform has been designed using the readily synthesized small molecule Cys(SEt)-Lys-CBT (CKCBT) as the self-assembly building block. CKCBT can effectively penetrate tumor cells due to its positively charged Lys side chain and small size. Upon glutathione reduction, CKCBT co-assembles with Nile red or Chlorin e6 to form nanofibers inside tumor cells. This enables their specific accumulation in tumor cells rather than normal cells and extends their exposure time, resulting in precise and enhanced tumor imaging and treatment. Hence, this uncomplicated and highly efficient binary co-assembly drug delivery platform can be easily adapted to a broad spectrum of probes and drugs, presenting a novel approach for advancing clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, China
| | - Guangtao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Qianzijing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Yuan
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Gan S, Yang L, Heng Y, Chen Q, Wang D, Zhang J, Wei W, Liu Z, Njoku DI, Chen JL, Hu Y, Sun H. Enzyme-Directed and Organelle-Specific Sphere-to-Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells. SMALL METHODS 2024; 8:e2301551. [PMID: 38369941 PMCID: PMC11579569 DOI: 10.1002/smtd.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme-responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co-assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase-induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme-responsive nanoplatform is expanded to selectively target mitochondria by mitochondria-specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co-assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme-instructed in situ fibrillar transformation of peptide/photosensitizers co-assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme-responsive biomaterials for cancer therapy.
Collapse
Affiliation(s)
- Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Liu Yang
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Yiyuan Heng
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610072China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Demian Ifeanyi Njoku
- Department of Applied ScienceHong Kong Metropolitan UniversityHo Man TinKowloonHong Kong999077China
| | - Jian Lin Chen
- Department of Applied ScienceHong Kong Metropolitan UniversityHo Man TinKowloonHong Kong999077China
| | - Yi Hu
- State Key Laboratory of ComplexSevereand Rare DiseasesBiomedical Engineering Facility of National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijing100730China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| |
Collapse
|
8
|
Li Q, Wu A, Zhang M, Zhang X, Zang H. Adaptive covalently assembled thymopentin/hyaluronic acid based anti-inflammatory drug carrier with injectability and controlled release. Int J Biol Macromol 2024; 282:136923. [PMID: 39490872 DOI: 10.1016/j.ijbiomac.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Developing bioactive delivery carriers with anti-inflammatory functions, long-term administration, and controlled release of multiple drugs is highly desirable owing to disease persistence over an extended period. In this study, a dynamically induced covalent assembly approach was used to fabricate thymopentin (TP5)-based carrier particles (TGCP) with biocompatibility and autofluorescence. The size and dispersibility of TGCP can be modulated by non-covalent interactions with hyaluronic acid (HA), endowing the system with excellent injectability and synergistic anti-inflammatory activity. Interestingly, the carrier can load a wide range of guest molecules with varying solubilities and achieve controlled gradient release in pathological and physiological environments. In addition, traditional Chinese-medicine-loaded TGCP/HA can effectively reduce the level of the inflammatory factor IL-6, indicating its potential anti-inflammatory properties. The TP5/HA-based material possesses excellent carrier properties and immunoreactivity, making it attractive for reducing inflammation at disease sites and long-term drug delivery in various chronic diseases.
Collapse
Affiliation(s)
- Qin Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Xu D, Bi S, Li J, Ma S, Yu ZA, Wang Y, Chen H, Zhan J, Song X, Cai Y. Legumain-Guided Ferulate-Peptide Self-Assembly Enhances Macrophage-Endotheliocyte Partnership to Promote Therapeutic Angiogenesis After Myocardial Infarction. Adv Healthc Mater 2024:e2402056. [PMID: 39252665 DOI: 10.1002/adhm.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Promoting angiogenesis and modulating the inflammatory microenvironment are promising strategies for treating acute myocardial infarction (MI). Macrophages are crucial in regulating inflammation and influencing angiogenesis through interactions with endothelial cells. However, current therapies lack a comprehensive assessment of pathological and physiological subtleties, resulting in limited myocardial recovery. In this study, legumain-guided ferulate-peptide nanofibers (LFPN) are developed to facilitate the interaction between macrophages and endothelial cells in the MI lesion and modulate their functions. LFPN exhibits enhanced ferulic acid (FA) aggregation and release, promoting angiogenesis and alleviating inflammation. The multifunctional role of LFPN is validated in cells and an MI mouse model, where it modulated macrophage polarization, attenuated inflammatory responses, and induces endothelial cell neovascularization compare to FA alone. LFPN supports the preservation of border zone cardiomyocytes by regulating inflammatory infiltration in the ischemic core, leading to significant functional recovery of the left ventricle. These findings suggest that synergistic therapy exploiting multicellular interaction and enzyme guidance may enhance the clinical translation potential of smart-responsive drug delivery systems to treat MI. This work emphasizes macrophage-endothelial cell partnerships as a novel paradigm to enhance cell interactions, control inflammation, and promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- Delong Xu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shenghui Bi
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
10
|
Zhan J, Huang J, Xiao Q, Yu ZA, Wang Y, Wang X, Liu F, Cai Y, Yang Z, Zheng L. Optimized Two-Photon Imaging by Stimuli-Responsive Peptide Self-Assembly Facilitates Self-Assisted Counteraction of Cisplatin-Resistance in Cancer Cells. Anal Chem 2024; 96:12630-12639. [PMID: 39058331 DOI: 10.1021/acs.analchem.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Accurate diagnosis and effective treatment of tumors remain significant clinical challenges. While fluorescence imaging is essential for tumor detection, it has limitations in terms of specificity, penetration depth, and emission wavelength. Here, we report a novel glutathione (GSH)-responsive peptide self-assembly excimer probe (pSE) that optimizes two-photon tumor imaging and self-assisted counteraction of the cisplatin resistance in cancer cells. The GSH-responsive self-assembly of pSE induces a monomer-excimer transition of coumarin, promoting a near-infrared redshift of fluorescence emission under two-photon excitation. This process enhances penetration depth and minimizes interference from biological autofluorescence. Moreover, the intracellular self-assembly of pSE impacts GSH homeostasis, modulates relevant signaling pathways, and significantly reduces GSTP1 expression, resulting in decreased cisplatin efflux in cisplatin-resistant cancer cells. The proposed self-assembled excimer probe not only distinguishes cancer cells from normal cells but also enhances the efficacy of cisplatin chemotherapy, offering significant potential in tumor diagnosis and overcoming cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuqun Xiao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Wang ZQ, Qu TR, Zhang ZS, Zeng FS, Song HJ, Zhang K, Guo P, Tong Z, Hou DY, Liu X, Wang L, Wang H, Xu W. A Transformable Specific-Responsive Peptide for One-Step Synergistic Therapy of Bladder Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310416. [PMID: 38660815 DOI: 10.1002/smll.202310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.
Collapse
Affiliation(s)
- Zi-Qi Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian-Rui Qu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Shuai Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fan-Shu Zeng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hong-Jian Song
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kuo Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Pengyu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichao Tong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiao Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lu Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
12
|
Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. Cell Mol Immunol 2024; 21:826-841. [PMID: 38871810 PMCID: PMC11291639 DOI: 10.1038/s41423-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Sang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jian Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
13
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
15
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
17
|
Sha XL, Lv GT, Chen QH, Cui X, Wang L, Cui X. A peptide selectively recognizes Gram-negative bacteria and forms a bacterial extracellular trap (BET) through interfacial self-assembly. J Mater Chem B 2024; 12:3676-3685. [PMID: 38530749 DOI: 10.1039/d3tb02559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
An innate immune system intricately leverages unique mechanisms to inhibit colonization of external invasive Bacteria, for example human defensin-6, through responsive encapsulation of bacteria. Infection and accompanying antibiotic resistance stemming from Gram-negative bacteria aggregation represent an emerging public health crisis, which calls for research into novel anti-bacterial therapeutics. Herein, inspired by naturally found host-defense peptides, we design a defensin-like peptide ligand, bacteria extracellular trap (BET) peptide, with modular design composed of targeting, assembly, and hydrophobic motifs with an aggregation-induced emission feature. The ligand specifically recognizes Gram-negative bacteria via targeting cell wall conserved lipopolysaccharides (LPS) and transforms from nanoparticles to nanofibrous networks in situ to trap bacteria and induce aggregation. Importantly, treatment of the BET peptide was found to have an antibacterial effect on the Pseudomonas aeruginosa strain, which is comparable to neomycin. Animal studies further demonstrate its ability to trigger aggregation of bacteria in vivo. This biomimetic self-assembling BET peptide provides a novel approach to fight against pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiao-Ling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gan-Tian Lv
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qing-Hua Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin Cui
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
- Department of Graduate, Hebei North University, No. 11 Diamond South Road, High-tech Zone, Zhangjiakou, Hebei Province, 075000, P.R. China
| |
Collapse
|
18
|
Yan H, Liu X, Ding C, Liang G. Enzyme-Instructed Host-Guest Assembly/Disassembly for Biomedical Applications. Chembiochem 2024; 25:e202300648. [PMID: 37984845 DOI: 10.1002/cbic.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Compared with the normal assembly/disassembly approaches, enzyme-instructed host-guest assembly/disassembly strategies due to their superior biocompatibility and specificity for specific substrates, can more effectively and precisely release molecules at lesions for reflecting in vivo biological events. Specifically, due to the over-expression of enzymes in specific tissues, the assembly/disassembly processes can directly occur on the pathological sites (or regions of interest), thus these enzyme-instructed processes are widely and effectively used for disease treatment or precise bioimaging. Based on it, we introduce the concept and major strategies of enzyme-instructed host-guest assembly/disassembly, illustrate their importance in the diagnosis and treatment of diseases, and review their advances in biomedical applications. Further, the challenges of these strategies in the clinic and future tendencies are also prospected.
Collapse
Affiliation(s)
- Hongzhe Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
19
|
Guo XY, Yi L, Yang J, An HW, Yang ZX, Wang H. Self-assembly of peptide nanomaterials at biointerfaces: molecular design and biomedical applications. Chem Commun (Camb) 2024; 60:2009-2021. [PMID: 38275083 DOI: 10.1039/d3cc05811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Self-assembly is an important strategy for constructing ordered structures and complex functions in nature. Based on this, people can imitate nature and artificially construct functional materials with novel structures through the supermolecular self-assembly pathway of biological interfaces. Among the many assembly units, peptide molecular self-assembly has received widespread attention in recent years. In this review, we introduce the interactions (hydrophobic interaction, hydrogen bond, and electrostatic interaction) between peptide nanomaterials and biological interfaces, summarizing the latest advancements in multifunctional self-assembling peptide materials. We systematically demonstrate the assembly mechanisms of peptides at biological interfaces, such as proteins and cell membranes, while highlighting their application potential and challenges in fields like drug delivery, antibacterial strategies, and cancer therapy.
Collapse
Affiliation(s)
- Xin-Yuan Guo
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Jia Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Zi-Xin Yang
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
20
|
Dai Q, Xie L, Ren E, Liu G. Cathepsin B Responsive Peptide-Purpurin Conjugates Assembly-Initiated in Situ Self-Aggregation for Cancer Sonotheranostics. NANO LETTERS 2024; 24:950-957. [PMID: 38198622 DOI: 10.1021/acs.nanolett.3c04371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.
Collapse
Affiliation(s)
- Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - En Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
21
|
Liu S, Sun Y, Ye J, Li C, Wang Q, Liu M, Cui Y, Wang C, Jin G, Fu Y, Xu J, Liang X. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS NANO 2024; 18:1516-1530. [PMID: 38172073 DOI: 10.1021/acsnano.3c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yu Sun
- Heilongjiang Vocational Institute Ecological Engineering, Harbin, 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chen Wang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Guanqiao Jin
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinqiang Liang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
22
|
Lin Z, Garcia BA, Lv D. Bifunctional Peptide Nanofibrils for Targeted Protein Degradation. Angew Chem Int Ed Engl 2024; 63:e202316581. [PMID: 38059785 PMCID: PMC11017838 DOI: 10.1002/anie.202316581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Proteolysis targeting chimera (PROTAC) is a state-of-the-art technology for ablating undruggable targets. A PROTAC degrader achieves targeted protein degradation (TPD) through the simultaneous binding of a protein of interest (POI) and an E3 ligase to form a ternary complex. A nanofibril-based PROTAC strategy to form a polynary (E3)m : PROTAC : (POI)n complex has not been reported in the TPD field up to this point. A recent innovation shows that a POI ligand and E3 ligase ligand don't have to be within a fused degrader molecule. Instead, they can be recruited to cellular proximity by a self-assembly-driving peptide and click chemistry. The resulting nanofibrils can recruit multiple POI and E3 ligase molecules to form a polynary complex as a degradation center. The so-called Nano-PROTAC provides a novel approach for TPD in cancer therapy.
Collapse
Affiliation(s)
- Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO 63110, USA
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Wang C, Zhu J, Wang S, Zhao L, Wei P, Yi T. Self-Assembled Nano-CT Contrast Agent Leveraging Size Aggregation for Improved In Vivo Tumor CT Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309789. [PMID: 37971929 DOI: 10.1002/adma.202309789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Computed tomography (CT) is a widely utilized noninvasive diagnostic tool in clinical practice. However, the commonly employed small molecular iodinated contrast agents (ICAs) in clinical CT imaging have limitations such as nonspecific distribution in body, rapid clearance through kidneys, etc., leading to a narrow imaging time window. In contrast, existing nano-sized ICAs face challenges like structural uncertainty, poor reproducibility, low iodine content, and uniformity issues. In this study, a novel approach is presented utilizing the aggregation-induced emission luminogen (AIEgen) to design and fabricate a kind of monocomponent nano-sized ICA (namely, BioDHU-CT NPs) that exhibits a unique aggregation effect upon activation. The small sized BioDHU-CT nanoparticles exhibit excellent tumor targeting capabilities and can release ICA modified with AIEgen with a high release efficiency up to 88.45%, under the activation of reactive oxygen species highly expressed in tumor regions. The released ICA performs in situ aggregation capability in the tumor region, which can enhance the retention efficiency of CT contrast agents, extending the imaging time window and improving the imaging quality in tumor regions.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
24
|
Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, Jain N, Srinivasarao DA, Rajinikanth PS, Raghuvanshi RS, Srivastava S. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452. [PMID: 38042321 DOI: 10.1016/j.ijbiomac.2023.128452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.
Collapse
Affiliation(s)
- Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
25
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Hu XJ, Zhang NY, Hou DY, Wang ZJ, Wang MD, Yi L, Song ZZ, Liang JX, Li XP, An HW, Xu W, Wang H. An In Vivo Self-Assembled Bispecific Nanoblocker for Enhancing Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303831. [PMID: 37462447 DOI: 10.1002/adma.202303831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 10/11/2023]
Abstract
Anti-PD-L1 monoclonal antibody has achieved substantial success in tumor immunotherapy by T-cells activation. However, the excessive accumulation of extracellular matrix components induced by unsatisfactory T-cells infiltration and poor tumor penetration of antibodies make it challenging to realize efficient tumor immunotherapy. Herein, a peptide-based bispecific nanoblocker (BNB) strategy is reported for in situ construction of CXCR4/PD-L1 targeted nanoclusters on the surface of tumor cells that are capable of boosting T-cells infiltration through CXCR4 blockage and enhancing T-cells activation by PD-L1 occupancy, ultimately realizing high-performance tumor immunotherapy. Briefly, the BNB strategy selectively recognizes and bonds CXCR4/PD-L1 with deep tumor penetration, which rapidly self-assembles into nanoclusters on the surface of tumor cells. Compared to the traditional bispecific antibody, BNB exhibits an intriguing metabolic behavior, that is, the elimination half-life (t1/2 ) of BNB in the tumor is 69.3 h which is ≈50 times longer than that in the plasma (1.4 h). The higher tumor accumulation and rapid systemic clearance overcome potential systemic side effects. Moreover, the solid tumor stress generated by excessive extracellular matrix components is substantially reduced to 44%, which promotes T-cells infiltration and activation for immunotherapy efficacy. Finally, these findings substantially strengthen and extend clinical applications of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xing-Jie Hu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Peng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Wang Z, Zhang X, Han M, Jiao X, Zhou J, Wang X, Su R, Wang Y, Qi W. An ultra pH-responsive peptide nanocarrier for cancer gene therapy. J Mater Chem B 2023; 11:8974-8984. [PMID: 37700728 DOI: 10.1039/d3tb01311a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The tumor microenvironment is a very complex and dynamic ecosystem. Although a variety of pH-responsive peptides have been reported to deliver nucleic acid drugs for cancer treatment, these responses typically only target the acidic microenvironment of the tumor or the lysosome, and the carrier suffers from issues such as low transfection efficiency and poor lysosomal escape within the cell. To address this problem, we have developed an ultra pH-responsive peptide nanocarrier that can efficiently deliver siRNA, pDNA, and mRNA into cancer cells by performing progressive dynamic assembly in response to pH changes in the acidic tumor microenvironment (pH 6.5-6.8) and the acidic intracellular lysosomal environment (pH 5.0-6.0). The maximum transfection efficiency was 87.1% for pDNA and 74.9% for mRNA, which is higher than that of peptide-based nanocarrier reported to date. In addition, the targeting sequence on the surface allows the peptide@siRNA complex to efficiently enter cancer cells, causing 96% of cancer cell mortality. The carrier has high biocompatibility and low cytotoxicity, making it highly promising for application in immunotherapy and gene therapy of tumors.
Collapse
Affiliation(s)
- Zixuan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xuelin Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Mingshan Han
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinhao Jiao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Jialin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinyao Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
- Beyonpep Biotechnology Limited, Tianjin 300110, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
29
|
Zhang NY, Hou DY, Hu XJ, Liang JX, Wang MD, Song ZZ, Yi L, Wang ZJ, An HW, Xu W, Wang H. Nano Proteolysis Targeting Chimeras (PROTACs) with Anti-Hook Effect for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202308049. [PMID: 37486792 DOI: 10.1002/anie.202308049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanhai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
30
|
Wang Z, Zhao C, Li Y, Wang J, Hou D, Wang L, Wang Y, Wang X, Liu X, Wang H, Xu W. Photostable Cascade-Activatable Peptide Self-Assembly on a Cancer Cell Membrane for High-Performance Identification of Human Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210732. [PMID: 37172955 DOI: 10.1002/adma.202210732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high-contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade-activatable peptide, a target reaction-induced aggregation peptide (TRAP) system, which can construct polypeptide-based nanofibers in situ on the cell membrane to achieve long-term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction-induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high-performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade-activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.
Collapse
Affiliation(s)
- Ziqi Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Changhao Zhao
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yaowei Li
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiaqi Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Dayong Hou
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Yueze Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xunwei Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Xiao Liu
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
31
|
Jana B, Jin S, Go EM, Cho Y, Kim D, Kim S, Kwak SK, Ryu JH. Intra-Lysosomal Peptide Assembly for the High Selectivity Index against Cancer. J Am Chem Soc 2023; 145:18414-18431. [PMID: 37525328 DOI: 10.1021/jacs.3c04467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
32
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
33
|
Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. MEDICAL REVIEW (2021) 2023; 3:321-342. [PMID: 38235406 PMCID: PMC10790212 DOI: 10.1515/mr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 01/19/2024]
Abstract
Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| |
Collapse
|
34
|
Zhao K, Xu G, Wang L, Wu T, Zhang X, Zhang C, Zhao Y, Li Z, Gao Y, Du F. Using a Dynamic Hydrophilization Strategy to Achieve Nanodispersion, Full Wetting, and Precise Delivery of Hydrophobic Pesticide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37488063 DOI: 10.1021/acsami.3c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Various strategies have been developed to improve the applicability of hydrophobic pesticides for better effectiveness in agriculture. However, existing formulations of hydrophobic pesticides still suffer from complicated processing, abused organic solvents, indispensable surfactants, or inescapable ecotoxicity, which strictly limit their applications. Herein, a dynamic covalent bond tailored pesticide (fipronil) amphiphile is constructed to address the above issues, which accomplishes the nanodispersion, full wetting, and precise delivery without organic solvents, surfactants, and materials simultaneously. By introducing a hydrophilic ligand on the hydrophobic fipronil through an imine bond, the cleavable fipronil amphiphile (FPP) exhibits superior water solubility and can even self-assemble into micelles at higher concentrations, which can be directly applied in powder form without organic solvents. Attributed to the suitable hydrophilic/hydrophobic ratio, FPP achieves full wetting and effective deposition on superhydrophobic rice leaves without surfactants. Moreover, benefiting from the unique dynamic nature of the imine bond, FPP maintains good storage stability while sensitively releasing back to fipronil under the humidity and pH trigger, consequently implementing the precise delivery for nontarget Apis cerana and target Chilo suppressalis without materials. To our knowledge, this dynamic covalent bond tailored amphiphile strategy is the first idea that simultaneously takes the dispersibility, wettability, and responsiveness of hydrophobic pesticides into account, providing a possibility to control the entire journey of field application and even promising to be incorporated into the synthesis process, thus paving the way for modern sustainable agriculture.
Collapse
Affiliation(s)
- Kefei Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Guangchun Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Tianyue Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Xingyu Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Chenhui Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yuhang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Zilu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
35
|
Sun Y, Lyu B, Yang C, He B, Zhang H, Wang X, Zhang Q, Dai W. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact Mater 2023; 22:47-59. [PMID: 36203955 PMCID: PMC9519467 DOI: 10.1016/j.bioactmat.2022.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 12/07/2022] Open
Abstract
Mild photothermal therapy combined with immune checkpoint blockade has received increasing attention for the treatment of advanced or metastatic cancers due to its good therapeutic efficacy. However, it remains a challenge to facilely integrate the two therapies and make it potential for clinical translation. This work designed a peptide-photosensitizer conjugate (PPC), which consisted of a PD-L1 antagonist peptide (CVRARTR), an MMP-2 specific cleavable sequence, a self-assembling motif, and the photosensitizer Purpurin 18. The single-component PPC can self-assemble into nanospheres which is suitable for intravenous injection. The PPC nanosphere is cleaved by MMP-2 when it accumulates in tumor sites, thereby initiating the cancer-specific release of the antagonist peptide. Simultaneously, the nanospheres gradually transform into co-assembled nanofibers, which promotes the retention of the remaining parts within the tumor. In vivo studies demonstrated that PPC nanospheres under laser irradiation promote the infiltration of cytotoxic T lymphocytes and maturation of DCs, which sensitize 4T1 tumor cells to immune checkpoint blockade therapy. Therefore, PPC nanospheres inhibit tumor growth efficiently both in situ and distally and blocked the formation of lung metastases. The present study provides a simple and efficient integrated strategy for breast cancer photoimmunotherapy. A peptide-photosensitizer conjugate (PPC) with self-assembled ability. Self-assembled PPC realized enzyme-responsive PD-L1 blocking peptide release. Shape transformation from nanospheres to co-assembled nanofibers. Efficient integrated strategy for breast cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bochen Lyu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| |
Collapse
|
36
|
Hu Y, Shi H, Ma X, Xia T, Wu Y, Chen L, Ren Z, Lei L, Jiang J, Wang J, Li X. Highly stable fibronectin-mimetic-peptide-based supramolecular hydrogel to accelerate corneal wound healing. Acta Biomater 2023; 159:128-139. [PMID: 36708851 DOI: 10.1016/j.actbio.2023.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Without timely treatment, poor wound healing in corneal injuries can seriously impair vision and lead to blindness. Thus, it is vital to develop a therapeutic strategy to accelerate corneal re-epithelialization. The conjugation of self-assembled motifs with a fibronectin-mimetic peptide sequence (PHSRN) drastically improves the chemical stability of PHSRN against protease hydrolysis and minimally affects its biological activity to promote the migration of corneal epithelial cells. The optimized Nap-FFPHSRN self-assembled into bioactive supramolecular hydrogels increases cell motility by remolding F-actin and boosts the tight junction of the corneal epithelium by increasing the expression of zonula occludens-1 (ZO-1). An in vivo experiment showed that a Nap-FFPHSRN hydrogel provided extended precorneal retention with good ocular tolerance after topical instillation. An animal model of corneal scrape showed that a single daily dose of Nap-FFPHSRN hydrogel had a superior therapeutic effect in facilitating corneal re-epithelialization with complete morphological and architectural recovery. With a rational approach to mimic bioactive proteins, this study presents a new strategy to demonstrate the potential of peptide-based supramolecular hydrogels for use in clinical treatment of corneal injury. STATEMENT OF SIGNIFICANCE: Here we systematically investigate the self-assembly behavior and chemical stability of designed peptide amphiphiles (Nap-FPHRSN, Nap-FFPHSRN and Nap-FFFPHSRN). The introduction of self-assembled motifs (Nap-F, Nap-FF and Nap-FFF) drastically enhances the chemical stability of fibronectin-mimetic peptide (PHSRN). Moreover, topical instillation of Nap-FFPHSRN hydrogel once daily, exhibits a better in vivo effect than PHSRN and the same in vivo effect as fibronectin, both of which are instilled three times daily, for promoting full morphological and architectural recovery after corneal re-epithelialization. As a rational design of conjugating bioactive peptides with self-assembled motifs to mimic bioactive proteins, this work may lead to a new approach that improves the in vivo therapeutic effect for treating corneal injury in clinic settings.
Collapse
Affiliation(s)
- Yuhan Hu
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Hui Shi
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Xiaohui Ma
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Tian Xia
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Yiping Wu
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Chen
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Zhibin Ren
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jun Jiang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China
| | - Jiaqing Wang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| |
Collapse
|
37
|
Abstract
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Collapse
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Lu Z, Liu D, Wei P, Yi T. Activated aggregation strategies to construct size-increasing nanoparticles for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1848. [PMID: 36039701 DOI: 10.1002/wnan.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
The development of novel therapeutic strategies and modalities for tumors is still one of the important areas of current scientific research. Low permeability and short residence time of drugs in solid tumor areas are important reasons for the low efficiency of existing therapeutic strategies. Typically, nanoparticles with large size displayed enhanced residence time but low permeability. Therefore, to prolong the retention time of materials in solid tumors, size-increasing strategies have been developed to directly generate large-scale nanoparticles using small molecular compounds or increase the size of small nanoparticles in solid tumor areas. In this review, we summarize recently reported activatable aggregation systems that could be activated by cancer-related substances for cancer therapy and classify them by the mechanisms that lead to aggregation. In the end, we propose some potential challenges briefly from the view of our opinion. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Dongya Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
39
|
Sun R, Zhang Y, Gao Y, Zhao M, Wang A, Zhu J, Cheng X, Shi H. A tumor-targetable NIR probe with photoaffinity crosslinking characteristics for enhanced imaging-guided cancer phototherapy. Chem Sci 2023; 14:2369-2378. [PMID: 36873836 PMCID: PMC9977396 DOI: 10.1039/d2sc06413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Spatiotemporally manipulating the in situ immobilization of theranostic agents within cancer cells to improve their bioavailability is highly significant yet challenging in tumor diagnosis and treatment. Herein, as a proof-of concept, we for the first time report a tumor-targetable near-infrared (NIR) probe DACF with photoaffinity crosslinking characteristics for enhanced tumor imaging and therapeutic applications. This probe possesses great tumor-targeting capability, intensive NIR/photoacoustic (PA) signals, and a predominant photothermal effect, allowing for sensitive imaging and effective photothermal therapy (PTT) of tumors. Most notably, upon 405 nm laser illumination, DACF could be covalently immobilized within tumor cells through a photocrosslinking reaction between photolabile diazirine groups and surrounding biomolecules resulting in enhanced tumor accumulation and prolonged retention simultaneously, which significantly facilitates the imaging and PTT efficacy of tumor in vivo. We therefore believe that our current approach would provide a new insight for achieving precise cancer theranostics.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Yinjia Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
40
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
41
|
Wu R, Wang K, Gai Y, Li M, Wang J, Wang C, Zhang Y, Xiao Z, Jiang D, Gao Z, Xia X. Nanomedicine for renal cell carcinoma: imaging, treatment and beyond. J Nanobiotechnology 2023; 21:3. [PMID: 36597108 PMCID: PMC9809106 DOI: 10.1186/s12951-022-01761-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The kidney is a vital organ responsible for maintaining homeostasis in the human body. However, renal cell carcinoma (RCC) is a common malignancy of the urinary system and represents a serious threat to human health. Although the overall survival of RCC has improved substantially with the development of cancer diagnosis and management, there are various reasons for treatment failure. Firstly, without any readily available biomarkers, timely diagnosis has been greatly hampered. Secondly, the imaging appearance also varies greatly, and its early detection often remains difficult. Thirdly, chemotherapy has been validated as unavailable for treating renal cancer in the clinic due to its intrinsic drug resistance. Concomitant with the progress of nanotechnological methods in pharmaceuticals, the management of kidney cancer has undergone a transformation in the recent decade. Nanotechnology has shown many advantages over widely used traditional methods, leading to broad biomedical applications ranging from drug delivery, prevention, diagnosis to treatment. This review focuses on nanotechnologies in RCC management and further discusses their biomedical translation with the aim of identifying the most promising nanomedicines for clinical needs. As our understanding of nanotechnologies continues to grow, more opportunities to improve the management of renal cancer are expected to emerge.
Collapse
Affiliation(s)
- Ruolin Wu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Keshan Wang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yongkang Gai
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Mengting Li
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Jingjing Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Chenyang Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Yajing Zhang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Zhiwei Xiao
- grid.413247.70000 0004 1808 0969Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Zairong Gao
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| | - Xiaotian Xia
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022 Hubei People’s Republic of China ,grid.412839.50000 0004 1771 3250Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| |
Collapse
|
42
|
Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat Commun 2022; 13:7739. [PMID: 36517520 PMCID: PMC9751304 DOI: 10.1038/s41467-022-35472-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular accumulation of reactive oxygen species (ROS) leads to oxidative stress, which is closely associated with many diseases. Introducing artificial organelles to ROS-imbalanced cells is a promising solution, but this route requires nanoscale particles for efficient cell uptake and micro-scale particles for long-term cell retention, which meets a dilemma. Herein, we report a deoxyribonucleic acid (DNA)-ceria nanocomplex-based dynamic assembly system to realize the intracellular in-situ construction of artificial peroxisomes (AP). The DNA-ceria nanocomplex is synthesized from branched DNA with i-motif structure that responds to the acidic lysosomal environment, triggering transformation from the nanoscale into bulk-scale AP. The initial nanoscale of the nanocomplex facilitates cellular uptake, and the bulk-scale of AP supports cellular retention. AP exhibits enzyme-like catalysis activities, serving as ROS eliminator, scavenging ROS by decomposing H2O2 into O2 and H2O. In living cells, AP efficiently regulates intracellular ROS level and resists GSH consumption, preventing cells from redox dyshomeostasis. With the protection of AP, cytoskeleton integrity, mitochondrial membrane potential, calcium concentration and ATPase activity are maintained under oxidative stress, and thus the energy of cell migration is preserved. As a result, AP inhibits cell apoptosis, reducing cell mortality through ROS elimination.
Collapse
|
43
|
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022; 352:600-618. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Collapse
Affiliation(s)
- Yaru Shao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
44
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
45
|
Molina BG, Vasani RB, Jarvis KL, Armelin E, Voelcker NH, Alemán C. Dual pH- and electro-responsive antibiotic-loaded polymeric platforms for effective bacterial detection and elimination. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Liu Y, Wang Y, Wang C, Dong T, Xu H, Guo Y, Zhao X, Hu Y, Wu J. Hijacking Self-Assembly to Establish Intracellular Functional Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203027. [PMID: 36073796 PMCID: PMC9631083 DOI: 10.1002/advs.202203027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The targeted transport of nanomedicines is often impeded by various biological events in the body. Viruses can hijack host cells and utilize intracellular transcription and translation biological events to achieve their replication. Inspired by this, a strategy to hijack endogenous products of biological events to assemble into intracellular functional nanoparticles is established. It has been shown that, following tumor vessel destruction therapy, injected cell permeable small molecule drugs bisphosphonate can hijack the hemorrhagic product iron and self-assemble into peroxidase-like nanoparticles within tumor-infiltrating macrophages. Unlike free drugs, the generated intercellular nanoparticles can specifically stress mitochondria, resulting in immune activation of macrophages in vitro and polarizing tumor-associated macrophages (TAMs) from immunosuppressive to tumoricidal and increasing the recruitment of T cells deep within tumor. The hijacking self-assembly strategy significantly inhibits tumor growth compared with the treatment of vascular-disrupting agents alone. Using bisphosphonate to hijack the metabolite associated with hemorrhage, iron, to fabricate functional nanoparticles within specific cells, which may open up new nanotechnology for drug delivery and small molecular drug development.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Xiaozhi Zhao
- Department of AndrologyDrum Tower hospitalMedical School of Nanjing UniversityNanjing210093China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
- Jiangsu Key Laboratory for Nano TechnologyNanjing UniversityNanjing210093China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
- Jiangsu Key Laboratory for Nano TechnologyNanjing UniversityNanjing210093China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| |
Collapse
|
47
|
Lin F, Jia C, Wu FG. Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196557. [PMID: 36235094 PMCID: PMC9571778 DOI: 10.3390/molecules27196557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable. In this article, we carefully review the advances in the applications of IEISAP, including the development of various bioimaging techniques, such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, positron-emission tomography imaging, radiation imaging, and multimodal imaging, which are successfully leveraged in visualizing cancer tissues and cells, bacteria, and enzyme activity. We also summarize the utilization of IEISAP in disease treatments, including anticancer, antibacterial, and antiinflammation applications, among others. We present the design, action modes, structures, properties, functions, and performance of IEISAP materials, such as nanofibers, nanoparticles, nanoaggregates, and hydrogels. Finally, we conclude with an outlook towards future developments of IEISAP materials for biomedical applications. It is believed that this review may foster the future development of IEISAP with better performance in the biomedical field.
Collapse
|
48
|
Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Mitochondria-targeted cancer therapy based on functional peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|