1
|
Maldonado-Muñoz MA, Gavino-Vergara A, Rebolledo-Solleiro D. Kabuki syndrome: a comprehensive clinical portrait and genetic insight. BMJ Case Rep 2024; 17:e262515. [PMID: 39719388 DOI: 10.1136/bcr-2024-262515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
This report details the case of a preadolescent female patient diagnosed with Kabuki syndrome, a rare genetic disorder characterised by distinctive facial features, growth delay and cognitive impairment. The patient's medical history includes perinatal complications, alongside challenges in developmental milestones, feeding and psychomotor skills since infancy, prompting further investigation. Genetic testing confirmed the diagnosis, revealing a full deletion of KDM6AThe patient underwent a multidisciplinary approach, addressing various aspects of her condition, which resulted in significant improvements in several areas. However, despite progress, challenges persist in daily tasks and the acquisition of advanced motor skills. This underscores the necessity of integrated management strategies, emphasizing the diagnostic importance of genetic testing that contributes to a deeper understanding of the clinical spectrum and guides targeted therapeutic interventions. Continued research is crucial to further unravel the complexities of this rare genetic disorder and enhance patient care.
Collapse
Affiliation(s)
| | - Alejandro Gavino-Vergara
- Clinical Geneticist, Centro de Rehabilitacion e Inclusion Infantil Teleton Quintana Roo, Cancun, Quintana Roo, Mexico
| | - Daniela Rebolledo-Solleiro
- Facultad de Medicina, Universidad Anahuac Cancun, Cancún, Quintana Roo, Mexico
- Universidad Politecnica de Quintana Roo, Cancun, Quintana Roo, Mexico
| |
Collapse
|
2
|
Li Q, Zheng Y, Guo X, Xue J. Extremely Low Birth Weight Infant (Gestational Age of 29 Weeks) With Kabuki Syndrome Type I: Case Report and Literature Review. Mol Genet Genomic Med 2024; 12:e70025. [PMID: 39400990 PMCID: PMC11476741 DOI: 10.1002/mgg3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND This paper aimed to investigate the clinical phenotype of Kabuki syndrome (KS) in premature infants. METHODS This paper presents a case of an extremely low birth weight infant (gestational age 29 weeks) with KS1 caused by a variant in the KMT2D gene. The clinical, pathological, and differential diagnostic findings were comprehensively analyzed. A thorough literature review was also performed to enhance the understanding of KS, revealing its unique features and prognostic significance. RESULTS The infant was a male with a gestational age of 29 weeks and a birth weight of 850 g. He had intrauterine growth retardation, characterized by cleft palate, sacrococcygeal skin depressions, and recurrent metabolic acidosis. Whole-exome sequencing revealed the c.4267C > T (p.Arg1423Cys) variant in the KMT2D gene, which was absent in his parents. The patient was discharged after 67 days of treatment, and he was followed up to 19 months of corrected gestational age, with growth retardation and expression language delay. Ten previous studies on preterm infants were retrieved, with 10 preterm infants. They all had characteristic facial features, such as long blepharophimosis, sparse and lateral 1/3 eyebrows, and large and prominent/cupped ears. Other manifestations were extrauterine growth delay (7/10), abnormal development of the cardiovascular system (7/10), abnormal development of the nervous system (5/10), and cleft palate (2/10). CONCLUSIONS Kabuki syndrome is a rare hereditary disorder involving multiple organs and systems. Genetic assessment for preterm infants with congenital abnormalities is recommended.
Collapse
Affiliation(s)
- Qi Li
- Neonatal PediatricsShandong University Second HospitalJinanShandongChina
- PediatricThe Fourth Affiliated of Soochow UniversitySuzhouJiangsuChina
| | - Yuzhu Zheng
- Pediatric EndocrinologyShandong University Second HospitalJinanShandongChina
| | - Xinyuan Guo
- Neonatal PediatricsShandong University Second HospitalJinanShandongChina
| | - Jiang Xue
- Neonatal PediatricsShandong University Second HospitalJinanShandongChina
| |
Collapse
|
3
|
Yoon JH, Hwang S, Bae H, Kim D, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Kim GH, Kim JH, Choi JH, Lee BH. Clinical and molecular characteristics of Korean patients with Kabuki syndrome. J Hum Genet 2024; 69:417-423. [PMID: 38824232 DOI: 10.1038/s10038-024-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Kabuki syndrome (KS) is a rare disorder characterized by typical facial features, skeletal anomalies, fetal fingertip pad persistence, postnatal growth retardation, and intellectual disabilities. Heterozygous variants of the KMT2D and KDM6A genes are major genetic causes of KS. This study aimed to report the clinical and genetic characteristics of KS. METHODS This study included 28 Korean patients (14 boys and 14 girls) with KS through molecular genetic testing, including direct Sanger sequencing, whole-exome sequencing, or whole-genome sequencing. RESULTS The median age at clinical diagnosis was 18.5 months (IQR 7-58 months), and the median follow-up duration was 80.5 months (IQR 48-112 months). Molecular genetic testing identified different pathogenic variants of the KMT2D (n = 23) and KDM6A (n = 3) genes, including 15 novel variants. Patients showed typical facial features (100%), such as long palpebral fissure and eversion of the lower eyelid; intellectual disability/developmental delay (96%); short stature (79%); and congenital cardiac anomalies (75%). Although 71% experienced failure to thrive in infancy, 54% of patients showed a tendency toward overweight/obesity in early childhood. Patients with KDM6A variants demonstrated severe genotype-phenotype correlation. CONCLUSION This study enhances the understanding of the clinical and genetic characteristics of KS.
Collapse
Affiliation(s)
- Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University of School of Medicine, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc., Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lee CL, Chuang CK, Chen MR, Lin JL, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Genetic and Phenotypic Spectrum of KMT2D Variants in Taiwanese Case Series of Kabuki Syndrome. Diagnostics (Basel) 2024; 14:1815. [PMID: 39202303 PMCID: PMC11353766 DOI: 10.3390/diagnostics14161815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by distinct facial features, intellectual disability, and multiple congenital anomalies. We conducted a comprehensive analysis of the genetic and phenotypic spectrum of KS in a Taiwanese patient group of 23 patients. KMT2D variants were found in 22 individuals, with missense (26.1%), nonsense (21.7%), and frameshift (17.4%) variants being the most prevalent. One patient had a KMT2D variant of uncertain significance. The most common clinical characteristics included distinct facial features (100%), intellectual disability (100%), developmental delay (95.7%), speech delay (78.3%), hypotonia (69.6%), congenital heart abnormalities (69.6%), and recurrent infections (65.2%). Other abnormalities included hearing loss (39.1%), seizures (26.1%), cleft palate (26.1%), and renal anomalies (21.7%). This study broadens the mutational and phenotypic spectrum of KS in the Taiwanese population, highlighting the importance of comprehensive genetic testing and multidisciplinary clinical evaluations for diagnosis and treatment.
Collapse
Grants
- MMH-MM-113-13, MMH-E-113-13, MMH-MM-112-14, MMH-E-112-13, and MMH-E-111-13 Mackay Memorial Hospital
- NSTC-112-2314-B-195-014-MY3, NSTC-112-2811-B-195-001, NSTC-112-2314-B-195-003, NSTC-111-2314-B-195-017, NSTC-111-2811-B-195-002, NSTC-111-2811-B-195-001, NSTC-110-2314-B-195-014, NSTC-110-2314-B-195-010-MY3, and NSTC-110-2314-B-195-029 Ministry of Science and Technology
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ming-Ren Chen
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ju-Li Lin
- Division of Endocrine & Medical Genetics, Department of Pediatrics, Chang Gung Children’s Medical Center, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
5
|
Qu X, Xue F, Liu W, Chen Y, Ju M, Sun T, Dong H, Dai X, Gu W, Li H, Wang W, Chi Y, Yang R, Liu X, Zhang L, Fu R. Kabuki syndrome complicated by severe immune thrombocytopenia and autoimmune thyroiditis: Identification of a novel pathogenic mutation. Br J Haematol 2024; 205:347-351. [PMID: 38590024 DOI: 10.1111/bjh.19461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Xinmiao Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
6
|
Becht DC, Mohid SA, Lee JE, Zandian M, Benz C, Biswas S, Sinha VK, Ivarsson Y, Ge K, Zhang Y, Kutateladze TG. MLL4 binds TET3. Structure 2024; 32:706-714.e3. [PMID: 38579707 PMCID: PMC11162309 DOI: 10.1016/j.str.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sk Abdul Mohid
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Roberts JB, Rice SJ. Osteoarthritis as an Enhanceropathy: Gene Regulation in Complex Musculoskeletal Disease. Curr Rheumatol Rep 2024; 26:222-234. [PMID: 38430365 PMCID: PMC11116181 DOI: 10.1007/s11926-024-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE OF REVIEW Osteoarthritis is a complex and highly polygenic disease. Over 100 reported osteoarthritis risk variants fall in non-coding regions of the genome, ostensibly conferring functional effects through the disruption of regulatory elements impacting target gene expression. In this review, we summarise the progress that has advanced our knowledge of gene enhancers both within the field of osteoarthritis and more broadly in complex diseases. RECENT FINDINGS Advances in technologies such as ATAC-seq have facilitated our understanding of chromatin states in specific cell types, bolstering the interpretation of GWAS and the identification of effector genes. Their application to osteoarthritis research has revealed enhancers as the principal regulatory element driving disease-associated changes in gene expression. However, tissue-specific effects in gene regulatory mechanisms can contribute added complexity to biological interpretation. Understanding gene enhancers and their altered activity in specific cell and tissue types is the key to unlocking the genetic complexity of osteoarthritis. The use of single-cell technologies in osteoarthritis research is still in its infancy. However, such tools offer great promise in improving our functional interpretation of osteoarthritis GWAS and the identification of druggable targets. Large-scale collaborative efforts will be imperative to understand tissue and cell-type specific molecular mechanisms underlying enhancer function in disease.
Collapse
Affiliation(s)
- Jack B Roberts
- Skeletal Research Group, International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Sarah J Rice
- Skeletal Research Group, International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
8
|
Gao CW, Lin W, Riddle RC, Chopra S, Kim J, Boukas L, Hansen KD, Björnsson HT, Fahrner JA. Growth deficiency in a mouse model of Kabuki syndrome 2 bears mechanistic similarities to Kabuki syndrome 1. PLoS Genet 2024; 20:e1011310. [PMID: 38857303 PMCID: PMC11192384 DOI: 10.1371/journal.pgen.1011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/21/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Sheetal Chopra
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hans T. Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Rosenfeld E, Mitteer LM, Boodhansingh K, Sanders VR, McKnight H, De Leon DD. Clinical and Molecular Characterization of Hyperinsulinism in Kabuki Syndrome. J Endocr Soc 2024; 8:bvae101. [PMID: 38859884 PMCID: PMC11163021 DOI: 10.1210/jendso/bvae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 06/12/2024] Open
Abstract
Context Kabuki syndrome (KS) is associated with congenital hyperinsulinism (HI). Objective To characterize the clinical and molecular features of HI in children with KS. Design Retrospective cohort study of children with KS and HI evaluated between 1998 and 2023. Setting The Congenital Hyperinsulinism Center of the Children's Hospital of Philadelphia. Patients Thirty-three children with KS and HI. Main Outcome Measures HI presentation, treatment, course, and genotype. Results Hypoglycemia was recognized on the first day of life in 25 children (76%). Median age at HI diagnosis was 1.8 months (interquartile range [IQR], 0.6-6.1 months). Median age at KS diagnosis was 5 months (IQR, 2-14 months). Diagnosis of HI preceded KS diagnosis in 20 children (61%). Twenty-four children (73%) had a pathogenic variant in KMT2D, 5 children (15%) had a pathogenic variant in KDM6A, and 4 children (12%) had a clinical diagnosis of KS. Diazoxide trial was conducted in 25 children, 92% of whom were responsive. HI treatment was discontinued in 46% of the cohort at median age 2.8 years (IQR, 1.3-5.7 years). Conclusion Hypoglycemia was recognized at birth in most children with KS and HI, but HI diagnosis was often delayed. HI was effectively managed with diazoxide in most children. In contrast to prior reports, the frequency of variants in KMT2D and KDM6A were similar to their overall prevalence in individuals with KS. Children diagnosed with KS should undergo evaluation for HI, and, because KS features may not be recognized in infancy, KMT2D and KDM6A should be included in the genetic evaluation of HI.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Mitteer
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Boodhansingh
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria R Sanders
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Heather McKnight
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
11
|
Wang Y, Xu Y, Chen Y, Hu Y, Li Q, Liu S, Wang J, Wang X. Sex-specific difference in phenotype of Kabuki syndrome type 2 patients: a matched case-control study. BMC Pediatr 2024; 24:133. [PMID: 38373926 PMCID: PMC10875883 DOI: 10.1186/s12887-024-04562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a monogenic disorder leading to special facial features, mental retardation, and multiple system malformations. Lysine demethylase 6A, (KDM6A, MIM*300128) is the pathogenic gene of Kabuki syndrome type 2 (KS2, MIM#300867), which accounts for only 5%-8% of KS. Previous studies suggested that female patients with KS2 may have a milder phenotype. METHOD We summarized the phenotype and genotype of KS2 patients who were diagnosed in Shanghai Children's Medical Center since July 2017 and conducted a 1:3 matched case-control study according to age and sex to investigate sex-specific differences between patients with and without KS2. RESULTS There were 12 KS2 cases in this study, and 8 of them matched with 24 controls. The intelligence quotient (IQ) score of the case group was significantly lower than that of the control group (P < 0.001). In addition, both the incidence of intellectual disability (ID) (IQ < 70) and moderate-to-severe ID (IQ < 55) were significantly higher in the case group than those in the control group. No sex-specific difference was found in the incidence of ID or moderate-to-severe ID between the female cases and female controls, whereas there was a significant difference between male cases and male controls. Furthermore, the rate of moderate-to-severe ID and congenital heart disease (CHD) was significantly higher in the male group than that in the female group. CONCLUSIONS Our results showed that a sex-specific difference was exhibited in the clinical phenotypes of KS2 patients. The incidence of CHD was higher in male patients, and mental retardation was significantly impaired. However, the female patients' phenotype was mild.
Collapse
Affiliation(s)
- Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Hu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Nishi E, Miyake N, Kawamura R, Hosoki K, Hasegawa Y, Matsumoto N, Okamoto N. Craniosynostosis in molecularly diagnosed Kabuki syndrome: Prevalence and clinical implications. Am J Med Genet A 2024; 194:268-278. [PMID: 37815018 DOI: 10.1002/ajmg.a.63424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.
Collapse
Affiliation(s)
- Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rie Kawamura
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kana Hosoki
- Department of Molecular Medicine, Reserch Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
- Department of Molecular Medicine, Reserch Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
13
|
Larsen LA, Hitz MP. Human Genetics of Atrial Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:467-480. [PMID: 38884726 DOI: 10.1007/978-3-031-44087-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.
Collapse
Affiliation(s)
- Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marc-Phillip Hitz
- Institute of Medical Genetics, University Medicine Oldenburg, Oldenburg, Germany.
- Department for Paediatric Cardiology, University Hospital Kiel, Kiel, Germany.
| |
Collapse
|
14
|
Miyake N. Identifying novel disease genes and revealing the pathomechanism of monogenic diseases. Pediatr Int 2024; 66:e15760. [PMID: 38641939 DOI: 10.1111/ped.15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/06/2024] [Accepted: 02/27/2024] [Indexed: 04/21/2024]
Abstract
Diseases are caused by genetic and/or environmental factors. It is important to understand the pathomechanism of monogenic diseases that are caused only by genetic factors, especially prenatal- or childhood-onset diseases for pediatricians. Identifying "novel" disease genes and elucidating how genomic changes lead to human phenotypes would develop new therapeutic approaches for rare diseases for which no fundamental cure has yet been established. Genomic analysis has evolved along with the development of analytical techniques, from Sanger sequencing (first-generation sequencing) to techniques such as comparative genomic hybridization, massive parallel short-read sequencing (using a next-generation sequencer or second-generation sequencer) and long-read sequencing (using a next-next generation sequencer or third-generation sequencer). I have been researching human genetics using conventional and new technologies, together with my mentors and numerous collaborators, and have identified genes responsible for more than 60 diseases. Here, an overview of genomic analyses of monogenic diseases that aims to identify novel disease genes, and several examples using different approaches depending on the disease characteristics are presented.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
16
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
17
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
18
|
Negri ML, D'Annunzio S, Vitali G, Zippo A. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions. Bioessays 2023; 45:e2300075. [PMID: 37530178 DOI: 10.1002/bies.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.
Collapse
Affiliation(s)
- Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Vitali
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
19
|
Gracia-Diaz C, Zhou Y, Yang Q, Maroofian R, Espana-Bonilla P, Lee CH, Zhang S, Padilla N, Fueyo R, Waxman EA, Lei S, Otrimski G, Li D, Sheppard SE, Mark P, Harr MH, Hakonarson H, Rodan L, Jackson A, Vasudevan P, Powel C, Mohammed S, Maddirevula S, Alzaidan H, Faqeih EA, Efthymiou S, Turchetti V, Rahman F, Maqbool S, Salpietro V, Ibrahim SH, di Rosa G, Houlden H, Alharbi MN, Al-Sannaa NA, Bauer P, Zifarelli G, Estaras C, Hurst ACE, Thompson ML, Chassevent A, Smith-Hicks CL, de la Cruz X, Holtz AM, Elloumi HZ, Hajianpour MJ, Rieubland C, Braun D, Banka S, French DL, Heller EA, Saade M, Song H, Ming GL, Alkuraya FS, Agrawal PB, Reinberg D, Bhoj EJ, Martínez-Balbás MA, Akizu N. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat Commun 2023; 14:4109. [PMID: 37433783 PMCID: PMC10336078 DOI: 10.1038/s41467-023-39645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Paula Espana-Bonilla
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Chul-Hwan Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisa A Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Mark
- Department of Pediatrics, Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Margaret H Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | - Corrina Powel
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Fatima Rahman
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Shazia Maqbool
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Shahnaz H Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Gabriella di Rosa
- Child Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Messina, 98100, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Maha Nasser Alharbi
- Maternity and Children Hospital Buraidah, Qassim Health Cluster, Buraydah, Saudi Arabia
| | | | | | | | - Conchi Estaras
- Center for Translational Medicine, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Anna C E Hurst
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Anna Chassevent
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
| | - Constance L Smith-Hicks
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander M Holtz
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - M J Hajianpour
- Division of Medical Genetics and Genomics, Department of Pediatrics, Albany Medical College, Albany, NY, USA
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Deborah L French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murielle Saade
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami School of Medicine and Holtz Children's Hospital, Jackson Heath System, Miami, FL, USA
| | | | - Elizabeth J Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Wei J, Alfajaro MM, Cai WL, Graziano VR, Strine MS, Filler RB, Biering SB, Sarnik SA, Patel S, Menasche BL, Compton SR, Konermann S, Hsu PD, Orchard RC, Yan Q, Wilen CB. The KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression. PLoS Pathog 2023; 19:e1011351. [PMID: 37410700 PMCID: PMC10325096 DOI: 10.1371/journal.ppat.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Vincent R. Graziano
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sylvia A. Sarnik
- University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Sonam Patel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bridget L. Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Susan R. Compton
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Silvana Konermann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Arc Institute, Palo Alto, California, United States of America
| | - Patrick D. Hsu
- Arc Institute, Palo Alto, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
21
|
Priestley JRC, Rippert AL, Condit C, Izumi K, Kallish S, Drivas TG. Unmasking the challenges of Kabuki syndrome in adulthood: A case series. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023. [PMID: 37296540 DOI: 10.1002/ajmg.c.32054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Kabuki syndrome is a recognizable Mendelian disorder characterized by the clinical constellation of childhood hypotonia, developmental delay or intellectual impairment, and characteristic dysmorphism resulting from monoallelic pathogenic variants in KMT2D or KDM6A. In the medical literature, most reported patients are children, and data is lacking on the natural history of the condition across the lifespan, with little known about adult-specific presentations and symptoms. Here, we report the results of a retrospective chart review of eight adult patients with Kabuki syndrome, seven of whom are molecularly confirmed. We use their trajectories to highlight the diagnostic challenges unique to an adult population, expand on neurodevelopmental/psychiatric phenotypes across the lifespan, and describe adult-onset medical complications, including a potential cancer risk and unusual and striking premature/accelerated aging phenotype.
Collapse
Affiliation(s)
- Jessica R C Priestley
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Courtney Condit
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Kaiser Permanente, Tysons Corners Medical Center, Virginia, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore G Drivas
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Shah SS, Fulton A, Jabroun M, Brightman D, Simpson BN, Bodamer OA. Insights into the genotype-phenotype relationship of ocular manifestations in Kabuki syndrome. Am J Med Genet A 2023; 191:1325-1338. [PMID: 36891680 DOI: 10.1002/ajmg.a.63155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023]
Abstract
We aim to assess if genotype-phenotype correlations are present within ocular manifestations of Kabuki syndrome (KS) among a large multicenter cohort. We conducted a retrospective, medical record review including clinical history and comprehensive ophthalmological examinations of a total of 47 individuals with molecularly confirmed KS and ocular manifestations at Boston Children's Hospital and Cincinnati Children's Hospital Medical Center. We assessed information regarding ocular structural, functional, and adnexal elements as well as pertinent associated phenotypic features associated with KS. For both type 1 KS (KS1) and type 2 KS (KS2), we observed more severe eye pathology in nonsense variants towards the C-terminus of each gene, KMT2D and KDM6A, respectively. Furthermore, frameshift variants appeared to be not associated with structural ocular elements. Between both types of KS, ocular structural elements were more frequently identified in KS1 compared with KS2, which only involved the optic disc in our cohort. These results reinforce the need for a comprehensive ophthalmologic exam upon diagnosis of KS and regular follow-up exams. The specific genotype may allow risk stratification of the severity of the ophthalmologic manifestation. However, additional studies involving larger cohorts are needed to replicate our observations and conduct powered analyses to more formally risk-stratify based on genotype, highlighting the importance of multicenter collaborations in rare disease research.
Collapse
Affiliation(s)
- Suraj S Shah
- Tufts University School of Medicine, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mireille Jabroun
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona, USA
| | - Diana Brightman
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Brittany N Simpson
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Dolgopolov IS, Grivtsova LY, Ustinova OK, Rykov MY. Primary immunodeficiency in a patient with Kabuki syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-104-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Kabuki syndrome is a well-known disease characterized by postnatal growth failure, dysmorphic facial features, skeletal abnormalities, and mental retardation associated with one of the pathogenic mutations in the KMT2D or KDM6A genes. At least 50% of individuals with Kabuki syndrome tend to develop recurrent infections and immune abnormalities, primarily hypogammaglobulinemia. The article describes the clinical course of resistant infectious syndrome in an 18-month-old child without typical dysmorphic and dermatoglyphic manifestations characteristic of Kabuki syndrome. A long history of resistant bacterial infection, enterocolitis, microcephaly, autistic-like behavior, hyperkinetic disorder, CT scan patterns of granulomatous lymphocytic interstitial lung disease (GLILD), suggested the immunodeficiency as part of a hereditary genetically determined syndrome. At the same time, the patient did not experience hypogammaglobulinemia characteristic of Kabuki syndrome. The upper normal response to previously received vaccination and a polyclonal repertoire of B-lymphocytes indicated the absence of disturbances in the humoral immunity. Immunophenotyping revealed the absence of T-regulatory cells (CD4+CD25++CD127–) as well as effector NK cells (CD16+CD56+CD3–) in the peripheral blood. The significant reduction of CD4+CD3+ T-lymphocytes and CD4+/CD8+ index was observed. In addition, no expression of integrin-beta (CD18) on neutrophils revealed.Conclusion. In children under the age of 2, Kabuki syndrome may present difficulties for clinical diagnosis due to the absence of distinctive phenotypic signs. Patients with mental disorders, congenital malformations, recurrent infections suspected of immunodeficiency should be carried out using molecular genetic exploration, including testing for mutations in the KMT2D and KDM6A.
Collapse
Affiliation(s)
| | - L. Yu. Grivtsova
- A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre
| | | | | |
Collapse
|
24
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
26
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
27
|
Larson JK, Hunter‐Schlichting DN, Crowgey EL, Mills LJ, Druley TE, Marcotte EL. KMT2A‐D
pathogenicity, prevalence, and variation according to a population database. Cancer Med 2022; 12:7234-7245. [PMID: 36479909 PMCID: PMC10067056 DOI: 10.1002/cam4.5443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The KMT2 family of genes is essential epigenetic regulators promoting gene expression. The gene family contains three subgroups, each with two paralogues: KMT2A and KMT2B; KMT2C and KMT2D; KMT2F and KMT2G. KMT2A-D are among the most frequent somatically altered genes in several different cancer types. Somatic KMT2A rearrangements are well-characterized in infant leukemia (IL), and growing evidence supports the role of additional family members (KMT2B, KMT2C, and KMT2D) in leukemogenesis. Enrichment of rare heterozygous frameshift variants in KMT2A and C has been reported in acute myeloid leukemia (AML), IL, and solid tumors. Currently, the non-synonymous variation, prevalence, and penetrance of these four genes are unknown. METHODS This study determined the prevalence of pathogenic/likely pathogenic (P/LP) germline KMT2A-D variants in a cancer-free adult population from the Genome Aggregation Database (gnomAD). Two methods of variant interpretation were utilized: a manual genomic variant interpretation and an automated ACMG pipeline. RESULTS The ACMG pipeline identified considerably fewer P/LP variants (n = 89) compared to the manual method (n = 660) in all 4 genes. Consequently, the total P/LP prevalence and allele frequency (AF) were higher in the manual method (1:112, AF = 4.46E-03) than in ACMG (1:832, AF = 6.01E-04). Multiple ancestry-exclusive P/LP variants were identified along with an increased frequency in males compared to females. Many of these variants identified in this population database are also associated with severe juvenile conditions. CONCLUSION These data demonstrate that putatively functional germline variation in these developmentally important genes is more common than previously appreciated and identification in cancer-free adults may indicate incomplete penetrance for many of these variants. Future research should examine a genetic predisposing role in IL and other pediatric cancers.
Collapse
Affiliation(s)
- Jenna K. Larson
- Deparatment of Genetic Counseling University of Minnesota Minneapolis Minnesota USA
| | - DeVon N. Hunter‐Schlichting
- Masonic Cancer Center University of Minnesota Minneapolis Minnesota USA
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
| | | | - Lauren J. Mills
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
| | | | - Erin L. Marcotte
- Masonic Cancer Center University of Minnesota Minneapolis Minnesota USA
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics University of Minnesota Minneapolis Minnesota USA
- Brain Tumor Program University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
28
|
Sun Y, Qian Y, Sun HX, Chen M, Luo Y, Xu X, Yan K, Wang L, Hu J, Dong M. Case Report: De novo DDX3X mutation caused intellectual disability in a female with skewed X-chromosome inactivation on the mutant allele. Front Genet 2022; 13:999442. [PMID: 36299587 PMCID: PMC9589230 DOI: 10.3389/fgene.2022.999442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2023] Open
Abstract
Skewed XCI plays an important role in the phenotypic heterogeneities of many X-linked disorders, even involving in diseases caused by XCI-escaping genes. DDX3X-related intellectual disability is more common in females and less common in males, who usually inherit from unaffected heterozygous mothers. As an X inactivation (XCI) escaping gene, the role of skewed XCI in the phenotype of DDX3X mutant female is unknown. Here we reported a DDX3X: c.694_711dup18 de novo heterozygous mutation in a female with intellectual disability on the maternal X chromosome on the basis of SNPs detected by PCR-sanger sequencing. AR assay revealed that the maternal mutant X chromosome was extremely inactivated in the proband. Using RNA sequencing and whole-exome sequencing, we quantified allelic read counts and allele-specific expression, and confirmed that the mutant X chromosome was inactive. Further, we verified that the mutant DDX3X allele had a lower expression level by RNA sequencing and RT-PCR, and the normal and mutated DDX3X expression accounted for respectively 70% and 30% of total. In conclusion, we found a symptomatic female with extreme skewing XCI in the DDX3X mutant allele. It was discovered that XCI in the mutant allele was insufficient to reverse the phenotype of DDX3X-related neurodevelopmental disorder. It contributed to a better understanding of the role of skewed XCI in phenotypic differences, which can aid in the genetic counseling and prenatal diagnosis of disorders in females with DDX3X defects.
Collapse
Affiliation(s)
- Yixi Sun
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangwen Qian
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yan
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Wang
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Hu
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Usluer E, Sayın GY, Güneş N, Kasap B, Tüysüz B. Investigation of genetic and phenotypic heterogeneity in 37 Turkish patients with Kabuki and Kabuki-like phenotype. Am J Med Genet A 2022; 188:2976-2987. [PMID: 36097644 DOI: 10.1002/ajmg.a.62944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.
Collapse
Affiliation(s)
- Esra Usluer
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Bezmialem University, Medical School, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Buşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
30
|
Barry KK, Tsaparlis M, Hoffman D, Hartman D, Adam MP, Hung C, Bodamer OA. From Genotype to Phenotype-A Review of Kabuki Syndrome. Genes (Basel) 2022; 13:1761. [PMID: 36292647 PMCID: PMC9601850 DOI: 10.3390/genes13101761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Kabuki syndrome (KS) is a rare neuro-developmental disorder caused by variants in genes of histone modification, including KMT2D and KDM6A. This review assesses our current understanding of KS, which was originally named Niikawa-Kuroki syndrome, and aims to guide surveillance and medical care of affected individuals as well as identify gaps in knowledge and unmet patient needs. Ovid MEDLINE and EMBASE databases were searched from 1981 to 2021 to identify reports related to genotype and systems-based phenotype characterization of KS. A total of 2418 articles were retrieved, and 152 were included in this review, representing a total of 1369 individuals with KS. Genotype, phenotype, and the developmental and behavioral profile of KS are reviewed. There is a continuous clinical phenotype spectrum associated with KS with notable variability between affected individuals and an emerging genotype-phenotype correlation. The observed clinical variability may be attributable to differences in genotypes and/or unknown genetic and epigenetic factors. Clinical management is symptom oriented, fragmented, and lacks established clinical care standards. Additional research should focus on enhancing understanding of the burden of illness, the impact on quality of life, the adult phenotype, life expectancy and development of standard-of-care guidelines.
Collapse
Affiliation(s)
- Kelly K. Barry
- Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | - Margaret P. Adam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Olaf A. Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
Identification of unique DNA methylation sites in Kabuki syndrome using whole genome bisulfite sequencing and targeted hybridization capture followed by enzymatic methylation sequencing. J Hum Genet 2022; 67:711-720. [PMID: 36167771 DOI: 10.1038/s10038-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Kabuki syndrome (KS) is a congenital malformation syndrome caused by mutations in the KMT2D and KDM6A genes that encode histone modification enzymes. Although KS is considered a single gene disorder, its symptoms vary widely. Recently, disease-specific DNA methylation patterns, or episignatures, have been recognized and used as a diagnostic tool for KS. Because of various crosstalk mechanisms between histone modifications and DNA methylation, DNA methylation analysis may have high potential for investigations into the pathogenesis of KS. RESULTS In this study, we investigated altered CpG-methylation sites that were specific to KS to find important genes associated with the various phenotypes or pathogenesis of KS. Whole genome bisulfite sequencing (WGBS) was performed to select target CpG islands, and enzymatic conversion technology was applied after hybridization capture to confirm KS-specific episignatures of 130 selected differently methylated target regions (DMTRs) in DNA samples from the 65 participants, 31 patients with KS and 34 unaffected individuals, in this study. We identified 26 candidate genes in 22 DMTRs that may be associated with KS. Our results indicate that disease-specific methylation sites can be identified from a small number of WGBS samples, and hybridization capture followed by enzymatic methylation sequencing can simultaneously test the sites. CONCLUSIONS Although DNA methylation can be tissue-specific, our results suggest that methylation profiling of DNA extracted from peripheral blood may be a powerful approach to study the pathogenesis of diseases.
Collapse
|
32
|
Jefri M, Zhang X, Stumpf PS, Zhang L, Peng H, Hettige N, Theroux JF, Aouabed Z, Wilson K, Deshmukh S, Antonyan L, Ni A, Alsuwaidi S, Zhang Y, Jabado N, Garcia BA, Schuppert A, Bjornsson HT, Ernst C. Kabuki syndrome stem cell models reveal locus specificity of histone methyltransferase 2D (KMT2D/MLL4). Hum Mol Genet 2022; 31:3715-3728. [PMID: 35640156 PMCID: PMC9616574 DOI: 10.1093/hmg/ddac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Kabuki syndrome is frequently caused by loss-of-function mutations in one allele of histone 3 lysine 4 (H3K4) methyltransferase KMT2D and is associated with problems in neurological, immunological and skeletal system development. We generated heterozygous KMT2D knockout and Kabuki patient-derived cell models to investigate the role of reduced dosage of KMT2D in stem cells. We discovered chromosomal locus-specific alterations in gene expression, specifically a 110 Kb region containing Synaptotagmin 3 (SYT3), C-Type Lectin Domain Containing 11A (CLEC11A), Chromosome 19 Open Reading Frame 81 (C19ORF81) and SH3 And Multiple Ankyrin Repeat Domains 1 (SHANK1), suggesting locus-specific targeting of KMT2D. Using whole genome histone methylation mapping, we confirmed locus-specific changes in H3K4 methylation patterning coincident with regional decreases in gene expression in Kabuki cell models. Significantly reduced H3K4 peaks aligned with regions of stem cell maps of H3K27 and H3K4 methylation suggesting KMT2D haploinsufficiency impact bivalent enhancers in stem cells. Preparing the genome for subsequent differentiation cues may be of significant importance for Kabuki-related genes. This work provides a new insight into the mechanism of action of an important gene in bone and brain development and may increase our understanding of a specific function of a human disease-relevant H3K4 methyltransferase family member.
Collapse
Affiliation(s)
- Malvin Jefri
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Patrick S Stumpf
- Institute for Computational Biomedicine, RWTH Aachen University, Aachen 52056, Germany
| | - Li Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Jean-Francois Theroux
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Khadija Wilson
- Department of Biochemistry and Molecular, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shriya Deshmukh
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Verdun, Montreal, QC H4H 1R3, Canada,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, QC H4H 1R3, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada,Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada,Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Andreas Schuppert
- Institute for Computational Biomedicine, RWTH Aachen University, Aachen 52056, Germany
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Faculty of Medicine, University of Iceland, Reykjavik, Iceland,Department of Genetics and Molecular Medicine, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Carl Ernst
- To whom correspondence should be addressed at: Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle boulevard, Frank Common building, Room 2101.2 Verdun, QC H4H 1R3, Canada. Tel: +1 514-761-6131 ext 3382; Fax: +1 514-762-3023;
| |
Collapse
|
33
|
Structural Bioinformatics Enhances the Interpretation of Somatic Mutations in KDM6A Found in Human Cancers. Comput Struct Biotechnol J 2022; 20:2200-2211. [PMID: 35615018 PMCID: PMC9111933 DOI: 10.1016/j.csbj.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
|
34
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
35
|
Li S, Liu J, Yuan Y, Lu A, Liu F, Sun L, Shen Q, Wang L. Case report: A study on the de novo KMT2D variant of Kabuki syndrome with Goodpasture's syndrome by whole exome sequencing. Front Pediatr 2022; 10:933693. [PMID: 36090579 PMCID: PMC9459111 DOI: 10.3389/fped.2022.933693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by dysmorphic facial features, skeletal abnormalities, and intellectual disability. KMT2D and KDM6A were identified as the main causative genes. To our knowledge, there exist no cases of KS, which were reported with pneumorrhagia. In this study, a 10-month-old male was diagnosed to have KS with typical facial features, skeletal anomalies, and serious postnatal growth retardation. Whole exome sequencing of the trio family revealed the presence of a de novo KMT2D missense variant (c.15143G > A, p. R5048H). The child was presented to the pediatric emergency department several times because of cough, hypoxemia, and anemia. After performing chest CT and fiberoptic bronchoscopy, we found that the child had a pulmonary hemorrhage. During research on the cause of pulmonary hemorrhage, the patient's anti-GBM antibodies gradually became positive, and the urine microalbumin level was elevated at the age of 12-month-old. After glucocorticoids and immunosuppressant therapy, the patient became much better. But he had recurrent pulmonary hemorrhage at the age of 16 months. Therefore, the patient underwent digital subtraction angiography (DSA). However, the DSA showed three abnormal bronchial arteries. This single case expands the phenotypes of patients with KS and Goodpasture's syndrome, which were found to have a de novo KMT2D missense variant.
Collapse
Affiliation(s)
- Shuolin Li
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Liu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Yuan Yuan
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Liu
- Department of Cardiovascular, Children's Hospital of Fudan University, Shanghai, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quanli Shen
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
36
|
Guo HX, Li BW, Hu M, Si SY, Feng K. Novel KDM6A mutation in a Chinese infant with Kabuki syndrome: A case report. World J Clin Cases 2021; 9:10257-10264. [PMID: 34904097 PMCID: PMC8638061 DOI: 10.12998/wjcc.v9.i33.10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a rare syndrome characterized by multisystem congenital anomalies and developmental disorder. KMT2D and KDM6A mutations were identified as the main causative genes in KS patients. There are few case reports and genetic analyses, especially of KDM6A gene mutation, in China.
CASE SUMMARY This study reports a de novo KDM6A mutation in a Chinese infant with KS. A 2-month-old Chinese baby was diagnosed with KS, which manifested as hypoglycemia, congenital anal atresia at birth, feeding difficulties, hypotonia, and serious postnatal growth retardation. He died of recurrent respiratory infections at age 13 mo. DNA sequencing of his blood DNA revealed a novel KDM6A frameshift mutation (c.704_705delAG, p. N236Sfs*26) (GRCh37/hg19).
CONCLUSION We present a Chinese KS patient with a novel KDM6A frameshift mutation (c.704_705delAG, p. N236Sfs*26) (GRCh37/hg19), broadening the mutation spectrum.
Collapse
Affiliation(s)
- Hong-Xian Guo
- Department of Paediatrics, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Bao-Wei Li
- Department of ENT, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Mei Hu
- ICU, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Shao-Yan Si
- Special Medical Center, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Kai Feng
- Special Medical Center, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| |
Collapse
|
37
|
Wright A, Hall A, Daly T, Fontelonga T, Potter S, Schafer C, Lindsley A, Hung C, Bodamer O, Gussoni E. Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB J 2021; 35:e21955. [PMID: 34613626 PMCID: PMC8500524 DOI: 10.1096/fj.202100823r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d‐deficient muscle stem cells were transplanted in vivo in a physiologic non‐Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
Collapse
Affiliation(s)
- Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Potter
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Caitlin Schafer
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Amgen, Thousand Oaks, California, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
39
|
Mushino T, Hiroi T, Yamashita Y, Suzaki N, Mishima H, Ueno M, Kinoshita A, Minami K, Imai K, Yoshiura KI, Sonoki T, Tamura S. Progressive Massive Splenomegaly in an Adult Patient with Kabuki Syndrome Complicated with Immune Thrombocytopenic Purpura. Intern Med 2021; 60:1927-1933. [PMID: 33518579 PMCID: PMC8263171 DOI: 10.2169/internalmedicine.6694-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Kabuki syndrome is characterized by multiple systemic anomalies and intellectual disability. It is complicated with immunodeficiencies and autoimmune disorders. The syndrome is caused by a mutation in the KMT2D gene. We herein report a case of a Kabuki syndrome with developing immune thrombocytopenic purpura (ITP) and progressive splenomegaly. Laparoscopic splenectomy was performed and the patients' symptoms quickly disappeared with platelet recovery. After this operation, the patient had no severe complications. A sequence analysis of the KMT2D gene identified a pathogenic mutation frequently associated with ITP. Laparoscopic splenectomy is therefore considered to be a good therapeutic option for recurrent ITP and symptomatic splenomegaly with Kabuki syndrome.
Collapse
Affiliation(s)
- Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | - Takayuki Hiroi
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | - Norihiko Suzaki
- Second Department of Surgery, Wakayama Medical University, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Koichi Minami
- Department of Pediatrics, Wakayama Medical University, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Japan
| | - Ko-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| |
Collapse
|
40
|
Yan S, Lu J, Jiao K. Epigenetic Regulation of Cardiac Neural Crest Cells. Front Cell Dev Biol 2021; 9:678954. [PMID: 33968946 PMCID: PMC8097001 DOI: 10.3389/fcell.2021.678954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.
Collapse
Affiliation(s)
| | | | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
41
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
42
|
Faundes V, Goh S, Akilapa R, Bezuidenhout H, Bjornsson HT, Bradley L, Brady AF, Brischoux-Boucher E, Brunner H, Bulk S, Canham N, Cody D, Dentici ML, Digilio MC, Elmslie F, Fry AE, Gill H, Hurst J, Johnson D, Julia S, Lachlan K, Lebel RR, Byler M, Gershon E, Lemire E, Gnazzo M, Lepri FR, Marchese A, McEntagart M, McGaughran J, Mizuno S, Okamoto N, Rieubland C, Rodgers J, Sasaki E, Scalais E, Scurr I, Suri M, van der Burgt I, Matsumoto N, Miyake N, Benoit V, Lederer D, Banka S. Clinical delineation, sex differences, and genotype-phenotype correlation in pathogenic KDM6A variants causing X-linked Kabuki syndrome type 2. Genet Med 2021; 23:1202-1210. [PMID: 33674768 PMCID: PMC8257478 DOI: 10.1038/s41436-021-01119-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. Methods Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. Results Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. Conclusion We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.
Collapse
Affiliation(s)
- Víctor Faundes
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Stephanie Goh
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rhoda Akilapa
- NW Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Heidre Bezuidenhout
- Clinical Unit of Medical Genetics and Genetic Counselling, Tygerberg Academic Hospital, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Hans T Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lisa Bradley
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Angela F Brady
- NW Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, Centre Hospitalier et Universitaire, Université de Franche-Comté, Besançon, France
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Bulk
- Centre de Génétique Humaine, CHU de Liège, Liège, Belgium
| | - Natalie Canham
- NW Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK.,Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Crown Street, Liverpool, UK
| | - Declan Cody
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Maria Lisa Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Frances Elmslie
- SW Thames Regional Genetics Service, St George's, University of London, London, UK
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Harinder Gill
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jane Hurst
- NE Thames Genetics Service, Great Ormond Street Hospital, London, UK
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Northern General Hospital, Sheffield, UK
| | - Sophie Julia
- Departments of Pathology, Neurosurgery, Oncopediatry, Genetics and Molecular Biology, Toulouse University Hospital, Toulouse, France
| | - Katherine Lachlan
- Wessex Clinical Genetics Service and Division of Human Genetics, Princess Anne Hospital, Southampton, UK
| | - Robert Roger Lebel
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Melissa Byler
- Department of Pediatrics, Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eric Gershon
- Department of Pediatrics, Yale New Haven Health, New Haven, CT, USA
| | - Edmond Lemire
- Department of Pediatrics, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Antonia Marchese
- Service de Pédiatrie, Centre Hospitalier Régional de Namur, Namur, Belgium
| | - Meriel McEntagart
- SW Thames Regional Genetics Service, St George's, University of London, London, UK
| | - Julie McGaughran
- Genetic Health Queensland c/-Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan.,Department of Molecular Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Claudine Rieubland
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonathan Rodgers
- Genetic Health Queensland c/-Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Erina Sasaki
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Emmanuel Scalais
- Department of Pediatric Neurology, National Hospital, Luxembourg City, Luxembourg
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Bristol, UK
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, City Hospital Campus, Nottingham, UK
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. .,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.
| |
Collapse
|
43
|
Khodaeian M, Jafarinia E, Bitarafan F, Shafeii S, Almadani N, Daneshmand MA, Garshasbi M. Kabuki Syndrome: Identification of Two Novel Variants in KMT2D and KDM6A. Mol Syndromol 2021; 12:118-126. [PMID: 34012382 DOI: 10.1159/000513199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by the following 5 crucial symptoms: dysmorphic facial features, growth retardation, skeletal abnormalities, intellectual disability, and dermatoglyphic malformations. Studies show that most of the KS cases are caused by mutations or large deletions in the KMT2D gene, while the other cases show mutations in KDM6A. We studied 2 patients with suspected KS in 2 unrelated families by whole-exome sequencing to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants and check the segregation in other members of the families. Finally, the potential effects of the variants on the structure and function of respective proteins were tested using in silico predictions. Both affected members of the families showed typical manifestations of KS including intellectual disability, developmental delay, and abnormal facial characteristics. A novel heterozygous frameshift variant in the KMT2D gene, c.4981del; p.(Glu1661Serfs*61), and a novel hemizygote missense variant in the KDM6A gene, c.3301G>A; p.(Glu1101Lys), were detected in patients 1 and 2, respectively. The frameshift variant identified in the first family was de novo, while in the second family, the mother was also heterozygous for the missense variant. The frameshift variant in KMT2D is predicted to lead to a truncated protein which is functionally impaired. The Glu1101 residue of KDM6A (UTX) affected in the second patient is located in a conserved region on the surface of the Jumonji domain and predicted to be causative. Our findings provide evidence on the possible pathogenicity of these 2 variants; however, additional functional studies are necessary to confirm their impacts.
Collapse
Affiliation(s)
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| | | | | | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| |
Collapse
|
44
|
Basinski BW, Balikov DA, Aksu M, Li Q, Rao RC. Ubiquitous Chromatin Modifiers in Congenital Retinal Diseases: Implications for Disease Modeling and Regenerative Medicine. Trends Mol Med 2021; 27:365-378. [PMID: 33573910 DOI: 10.1016/j.molmed.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Retinal congenital malformations known as microphthalmia, anophthalmia, and coloboma (MAC) are associated with alterations in genes encoding epigenetic proteins that modify chromatin. We review newly discovered functions of such chromatin modifiers in retinal development and discuss the role of epigenetics in MAC in humans and animal models. Further, we highlight how advances in epigenomic technologies provide foundational and regenerative medicine-related insights into blinding disorders. Combining knowledge of epigenetics and pluripotent stem cells (PSCs) is a promising avenue because epigenetic factors cooperate with eye field transcription factors (EFTFs) to direct PSC fate - a foundation for congenital retinal disease modeling and cell therapy.
Collapse
Affiliation(s)
- Brian W Basinski
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Balikov
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael Aksu
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA; Section of Ophthalmology, Surgery Service, Veterans Administration Ann Arbor Healthsystem, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Chi YI, Stodola TJ, De Assuncao TM, Leverence EN, Tripathi S, Dsouza NR, Mathison AJ, Basel DG, Volkman BF, Smith BC, Lomberk G, Zimmermann MT, Urrutia R. Molecular mechanics and dynamic simulations of well-known Kabuki syndrome-associated KDM6A variants reveal putative mechanisms of dysfunction. Orphanet J Rare Dis 2021; 16:66. [PMID: 33546721 PMCID: PMC7866879 DOI: 10.1186/s13023-021-01692-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kabuki syndrome is a genetic disorder that affects several body systems and presents with variations in symptoms and severity. The syndrome is named for a common phenotype of faces resembling stage makeup used in a Japanese traditional theatrical art named kabuki. The most frequent cause of this syndrome is mutations in the H3K4 family of histone methyltransferases while a smaller percentage results from genetic alterations affecting the histone demethylase, KDM6A. Because of the rare presentation of the latter form of the disease, little is known about how missense changes in the KDM6A protein sequence impact protein function. RESULTS In this study, we use molecular mechanic and molecular dynamic simulations to enhance the annotation and mechanistic interpretation of the potential impact of eleven KDM6A missense variants found in Kabuki syndrome patients. These variants (N910S, D980V, S1025G, C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W, and R1351Q) are predicted to be pathogenic, likely pathogenic or of uncertain significance by sequence-based analysis. Here, we demonstrate, for the first time, that although Kabuki syndrome missense variants are found outside the functionally critical regions, they could affect overall function by significantly disrupting global and local conformation (C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W and R1351Q), chemical environment (C1153R, C1153Y, P1195L, L1200F, Q1212R, Q1248R, R1255W and R1351Q), and/or molecular dynamics of the catalytic domain (all variants). In addition, our approaches predict that many mutations, in particular C1153R, could allosterically disrupt the key enzymatic interactions of KDM6A. CONCLUSIONS Our study demonstrates that the KDM6A Kabuki syndrome variants may impair histone demethylase function through various mechanisms that include altered protein integrity, local environment, molecular interactions and protein dynamics. Molecular dynamics simulations of the wild type and the variants are critical to gain a better understanding of molecular dysfunction. This type of comprehensive structure- and MD-based analyses should help develop improved impact scoring systems to interpret the damaging effects of variants in this protein and other related proteins as well as provide detailed mechanistic insight that is not currently predictable from sequence alone.
Collapse
Affiliation(s)
- Young-In Chi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy J Stodola
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago M De Assuncao
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elise N Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Swarnendu Tripathi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikita R Dsouza
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donald G Basel
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Pediatric Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA. .,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, WI, USA. .,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA. .,Division of Pediatric Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
46
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
47
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Yokotsuka-Ishida S, Nakamura M, Tomiyasu Y, Nagai M, Kato Y, Tomiyasu A, Umehara H, Hayashi T, Sasaki N, Ueno SI, Sano A. Positional cloning and comprehensive mutation analysis identified a novel KDM2B mutation in a Japanese family with minor malformations, intellectual disability, and schizophrenia. J Hum Genet 2021; 66:597-606. [PMID: 33402700 DOI: 10.1038/s10038-020-00889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
The importance of epigenetic control in the development of the central nervous system has recently been attracting attention. Methylation patterns of lysine 4 and lysine 36 in histone H3 (H3K4 and H3K36) in the central nervous system are highly conserved among species. Numerous complications of body malformations and neuropsychiatric disorders are due to abnormal histone H3 methylation modifiers. In this study, we analyzed a Japanese family with a dominant inheritance of symptoms including Marfan syndrome-like minor physical anomalies (MPAs), intellectual disability, and schizophrenia (SCZ). We performed positional cloning for this family using a single nucleotide polymorphism (SNP) array and whole-exome sequencing, which revealed a missense coding strand mutation (rs1555289644, NM_032590.4: c.2173G>A, p.A725T) in exon 15 on the plant homeodomain of the KDM2B gene as a possible cause of the disease in the family. The exome sequencing revealed that within the coding region, only a point mutation in KDM2B was present in the region with the highest logarithm of odds score of 2.41 resulting from whole genome linkage analysis. Haplotype analysis revealed co-segregation with four affected family members (IV-9, III-4, IV-5, and IV-8). Lymphoblastoid cell lines from the proband with this mutation showed approximately halved KDM2B expression in comparison with healthy controls. KDM2B acts as an H3K4 and H3K36 histone demethylase. Our findings suggest that haploinsufficiency of KDM2B in the process of development, like other H3K4 and H3K36 methylation modifiers, may have caused MPAs, intellectual disability, and SCZ in this Japanese family.
Collapse
Affiliation(s)
- Saeko Yokotsuka-Ishida
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masayuki Nakamura
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Yoko Tomiyasu
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mio Nagai
- Division of Psychiatry, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Yuko Kato
- Division of Psychiatry, Jiundo Hospital, Tokyo, Japan
| | - Akiyuki Tomiyasu
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Umehara
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Hayashi
- Department of Social Welfare, The International University of Kagoshima, Kagoshima, Japan
| | - Natsuki Sasaki
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine Toon, Kagoshima, Japan
| | - Akira Sano
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
49
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
50
|
Cheon CK, Choi HY, Park SH, Jung JH, Kim SJ. Ocular manifestations in kabuki syndrome: A report of 10 cases and literature review. Ophthalmic Genet 2020; 42:101-104. [PMID: 33334222 DOI: 10.1080/13816810.2020.1861308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: We investigated the ocular manifestations in patients with Kabuki syndrome(KS).Methods: A retrospective chart review was performed in 10 patients with KS were referred to the Department of Ophthalmology for evaluation of ocular manifestations. Data were collected from patient interviews, clinical examinations, and laboratory investigations. Ophthalmologic examinations included best-corrected visual acuity, intraocular pressure, anterior segment, adnexal examination, and dilated fundus examination.Results: Mutations in the KMT2D gene were identified in all of the 10 patients with KS. No deletion or point mutation was found in the KDM6A gene. In our patients, 20% had ptosis, 60% had strabismus, 90% had lid changes and 10% had amblyopia. Five patients did not undergo the visual acuity test due to intellectual disability.Conclusions: Ophthalmic abnormalities are frequently associated with KS. The importance of ophthalmological examination in all patients with KS for early detection of ocular anomalies to prevent visual impairment cannot be underemphasized.Abbreviations: KS: Kabuki syndrome.
Collapse
Affiliation(s)
- Chong Kun Cheon
- Division of Medical Genetics, Department of Pediatrics, School of Medicine, Pusan National University, Children's Hospital, Yangsan-si, South Korea
| | - Hee Young Choi
- Department of Ophthalmology, School of Medicine, Pusan National University, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Su Hwan Park
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jae Ho Jung
- Department of Ophthalmology, School of Medicine, Seoul National University, Seoul, South Korea
| | - Su Jin Kim
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|