1
|
Guo X, Zhang Y, Huang B, Han L. Organophosphorus Hydrolase-like Nanozyme with an Activity-Quenched Aggregation-Induced Emission Effect: A Self-Reporting and Specific Assay of Nerve Agents. Anal Chem 2024; 96:16695-16705. [PMID: 39369390 DOI: 10.1021/acs.analchem.4c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Given the promising prospect of aggregation-induced emission luminogens (AIEgens) in fluorescence assays, it is interesting and significant to endow AIEgens with molecular recognition capability (such as enzyme-like activity). Here, an AIE nanomaterial with intrinsic enzyme-like activity (named as "AIEzyme") is designed and synthesized via a facile coordination polymerization of Zr4+ and AIE ligands. AIEzyme possesses enhanced and stable fluorescence in different solvents because of the AIE effect of ligands in the rigid structure of a coordination polymer. On the other hand, the organophosphorus hydrolase (OPH)-mimicking activity of AIEzyme exhibits excellent affinity and specific activity. Interestingly, the OPH-like activity can quench the inherent fluorescence of AIEzyme by the hydrolysate of a typical organophosphorus nerve agent (OPNA), diethyl-4-nitrophenylphosphate. Due to the sensitive activity-induced quenching effect for AIE, the self-reporting fluorescence assay method based on AIEzyme was established, which shows ultrahigh sensitivity, high selectivity, good storage stability, and acceptable reliability for a real sample assay. Moreover, the simultaneous colorimetric method broadens the detection range and the application scenarios. The proposed assay method avoided the interference of O2 during detection because the OPH-like activity does not derive from the generation of ROS. As a bonus, AIEzyme can also be used for the degradation of OPNAs by OPH-like activity, and the process can be self-monitored by AIE quenching. This work would provide a new opportunity for expanding the application of AIEgens and artificial enzymes by endowing AIEgens with enzyme-like activity.
Collapse
Affiliation(s)
- Xinyan Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| |
Collapse
|
2
|
Gibbons B, Johnson EM, Javed MK, Yang X, Morris AJ. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52703-52711. [PMID: 39292638 PMCID: PMC11450694 DOI: 10.1021/acsami.4c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Zirconium-based metal-organic frameworks (MOFs) have become one of the most promising materials for the adsorption and destruction of chemical warfare agents. While numerous studies have shown differences in reactivity based on MOF topology and postsynthetic modification, the understanding of how modifying MOF macromorphology is less understood. MOF xerogels demonstrate modified defect levels and larger porosity, which increase the number of and access to potential active sites. Indeed, UiO-66 and NU-901 xerogels display reaction rates 2 and 3 times higher, respectively, for the hydrolysis of DMNP relative to their powder morphologies. Upon recycling, MOF-808 xerogel outperforms MOF-808 powder, previously noted as the fastest Zr6 MOF for hydrolysis of organophosphate nerve agents. The increase in reactivity is largely driven by a higher external surface area and the introduction of mesoporosity to previously microporous materials.
Collapse
Affiliation(s)
| | | | | | - Xiaozhou Yang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Couzon N, Hardy P, Ferreira M, Hammi N, Dhainaut J, Pourpoint F, Royer S, Loiseau T, Campagne C, Volkringer C. Green synthesis of MOF-based textile composites for the degradation of a chemical warfare agent simulant. Dalton Trans 2024; 53:5784-5787. [PMID: 38451138 DOI: 10.1039/d3dt03359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A green synthesis of UiO-66-NH2 embedded in chitosan and deposited on textiles has been investigated for the degradation of chemical warfare agents. This method requires no heating or use of toxic solvents. The composite synthesized presents an interesting efficiency in detoxifying common simulants of chemical warfare agents, such as DMNP. In parallel, resistance and permeability tests were also realized in order to confirm the suitability of the composites for further applications.
Collapse
Affiliation(s)
- Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Pauline Hardy
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Manuela Ferreira
- Univ. Lille, Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France
| | - Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Christine Campagne
- Univ. Lille, Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| |
Collapse
|
5
|
Binyamin S, Shimoni R, Liberman I, Ifraemov R, Tashakory A, Hod I. Nickel-Iron-Modified 2D Metal-Organic Framework as a Tunable Precatalyst for Electrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13849-13857. [PMID: 38469800 DOI: 10.1021/acsami.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Mixed-metal metal-organic framework (MOF)-based water oxidation precatalysts have aroused a great deal of attention due to their remarkable catalytic performance. Yet, despite significant advancement in this field, there is still a need to design new MOF platforms that allow simple and systematic control over the final catalyst's metal composition. Here, we show that a Zr-BTB 2D-MOF could be used to construct a series of Ni-Fe-based oxide hydroxide water oxidation precatalysts with diverse Ni-Fe compositions. In situ Raman spectroscopy characterization revealed that the MOF precatalysts could be electrochemically converted to the active catalysts (NiFeOOH). In turn, it was found that the highest water oxidation activity was obtained with a catalyst containing a 47:53 Ni:Fe molar ratio. Additionally, the obtained catalyst is also active toward electrochemical methanol oxidation, exhibiting high selectivity toward the formation of formic acid. Hence, these results could pave the way for the development of efficient electrocatalytic materials for a variety of oxidative reactions.
Collapse
Affiliation(s)
- Shahar Binyamin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ayelet Tashakory
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Shen X, Wang Z, Gao XJ, Gao X. Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211151. [PMID: 36641629 DOI: 10.1002/adma.202211151] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
"Nanozymes" usually refers to inorganic nanomaterials with enzyme-like catalytic activities. The research into nanozymes is one of the hot topics on the horizon of interdisciplinary science involving materials, chemistry, and biology. Although great progress has been made in the design, synthesis, characterization, and application of nanozymes, the study of the underlying microscopic mechanisms and kinetics is still not straightforward. Density functional theory (DFT) calculations compute the potential energy surfaces along the reaction coordinates for chemical reactions, which can give atomistic-level insights into the micro-mechanisms and kinetics for nanozymes. Therefore, DFT calculations have been playing an increasingly important role in exploring the mechanisms and kinetics for nanozymes in the past years. The calculations either predict the microscopic details for the catalytic processes to complement the experiments or further develop theoretical models to depict the physicochemical rules. In this review, the corresponding research progress is summarized. Particularly, the review focuses on the computational studies that closely interplay with the experiments. The relevant experimental results without DFT calculations will be also briefly discussed to offer a historic overview of how the computations promote the understanding of the microscopic mechanisms and kinetics of nanozymes.
Collapse
Affiliation(s)
- Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Ma K, Cheung YH, Kirlikovali KO, Xie H, Idrees KB, Wang X, Islamoglu T, Xin JH, Farha OK. Fibrous Zr-MOF Nanozyme Aerogels with Macro-Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300951. [PMID: 37310697 DOI: 10.1002/adma.202300951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr-MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr-MOF nanozymes embedded in the structure, and hierarchical macro-micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine-tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus-based nerve agent simulants and pesticides from contaminated water.
Collapse
Affiliation(s)
- Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yuk Ha Cheung
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Marlar T, Harb JN. MOF-Enabled Electrochemical Sensor for Rapid and Robust Sensing of V-Series Nerve Agents at Low Concentrations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9569-9580. [PMID: 38329224 DOI: 10.1021/acsami.3c19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Among nerve agents, V-series nerve agents are some of the most toxic, making low-concentration detection critical for the protection of individuals, populations, and strategic resources. Electrochemical sensors are ideally suited for the real-time and in-field sensing of these agents. While V-series nerve agents are inherently nonelectroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials that have been shown to rapidly catalyze the hydrolysis of nerve agents. This work makes use of these nanomaterials to develop, for the first time, an MOF-enabled electrochemical sensor for V-series nerve agents. Our work demonstrates that the VX thiol hydrolysis product can be electrochemically detected at low concentrations using commercially available gold electrodes. We demonstrate that low-concentration thiol oxidation is an irreversible reaction that is dependent on both mass transport and adsorption. Demeton-S-methylsulfon, a VX simulant, is used to demonstrate the full range of sensor operation that includes hydrolysis and electrochemical detection. We demonstrate that MOF-808 rapidly, selectively, and completely hydrolyzes demeton-S-methylsulfon to less-hazardous dimethyl phosphate and 2-ethylsulfonylethanethiol. Low-concentration measurements of 2-ethylsulfonylethanethiol are performed by using electrochemical techniques. This sensor has a limit of detection of 30 nM or 7.87 μg/L for 2-ethylsulfonylethanethiol, which is near the nerve agent exposure limit for water samples established by the United States military. Our work demonstrates the feasibility of rapid, robust electrochemical sensing of V-series nerve agents at low concentrations for in-field applications.
Collapse
Affiliation(s)
- Tyler Marlar
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
9
|
Tao CA, Wang B, Zhao H, Yang X, Huang J, Wang J. Starfruit-Shaped Zirconium Metal-Organic Frameworks: From 3D Intermediates to 2D Nanosheet Petals with Enhanced Catalytic Activity. Chemistry 2024; 30:e202302835. [PMID: 38116892 DOI: 10.1002/chem.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
We present the fabrication of a novel Starfruit-shaped metal-organic framework (SMOF) composed of zirconium and Tetra(4-carboxyphenyl)porphine linkers. The SMOF exhibits a unique morphology with edge-sharing two-dimensional (2D) nanosheet petals. Our investigation unravels a captivating transformation process, wherein three-dimensional (3D) shuttle-shaped MOFs form initially and subsequently evolve into 2D nanosheet-based SMOF structures. The distinct morphology of SMOF showcases superior catalytic activity in detoxifying G-type nerve agent and blister agent simulants, surpassing that of its 3D counterparts. This discovery of the 3D-to-2D transition growth pathway unlocks exciting opportunities for exploring novel strategies in advanced MOF nanostructure development, not only for catalysis but also for various other applications.
Collapse
Affiliation(s)
- Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Beibei Wang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - He Zhao
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Xuheng Yang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Jian Huang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
10
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
11
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
12
|
Dai J, Wang D, Yang J, Tian R, Wang Q, Li Y. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. J Colloid Interface Sci 2023; 652:1156-1169. [PMID: 37657216 DOI: 10.1016/j.jcis.2023.08.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Hydrolytic destruction of toxic organophosphorus nerve agents by metal-organic framework (MOF) catalysts is commonly reliant on bulk water and volatile liquid base, preventing real-world implementation. Poor accessibility to MOF-based active sites in heterogeneous catalysis is also a crucial factor since reactants diffusion is limited by inherently small micropores. To overcome these practical limitations, a ligand-selective pyrolysis strategy was used to construct unsaturated Zr defects and additional mesopores in UiO-66(Zr). Owing to synergistic effect of Zr defects and hierarchical pores, hydrolysis rate constant (k) of nerve agent simulant DMNP (dimethyl 4-nitrophenyl phosphate) on optimal DHP-UiO-30% (defective hierarchical porous UiO-66) is 3.2 times higher than counterpart UiO-30% in N-ethylmorpholine buffer. Encapsulating imidazole (Im) into DHP-UiO-30% affords Im@DHP-UiO, mimicking phosphotriesterase. Im-72@DHP-UiO exhibits rapid DMNP detoxification with 99% conversion in 12 min and initial half-life (t1/2) of 1.8 min in nonbuffered water. As the first example of 'three-in-one' detoxifier, Im@DHP-UiO is further integrated onto nonwoven fabric to construct Im@DHP/Fiber, achieving solid-phase detoxification at ambient humidity with t1/2 of 19.6 min and final conversion of 91%. This is comparable to many powdered catalysts in aqueous solution buffered by volatile bases. This unified strategy is critical and viable to efficiently hydrolyze nerve agents in practical settings.
Collapse
Affiliation(s)
- Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dazhao Wang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ran Tian
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yao Li
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
13
|
de Koning MC, Dadon L, Rozing LCM, van Grol M, Bross R. High Capacity Adsorption and Degradation of a Nerve Agent Simulant and a Pesticide by a Nickel Pyrazolate Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55877-55884. [PMID: 37983091 DOI: 10.1021/acsami.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The development of materials that enable the efficient removal of toxic compounds is important for the improvement of current protective materials or decontamination technologies. Current materials rely either on agent removal by adsorption or by effecting (catalytic) degradation. Ideally, both of these mechanisms are combined in a single material in order to target a more broad spectrum of toxic agents and to improve the performance of the materials. Recent attempts to combine materials with either adsorptive or catalytic properties into a composite material are promising, although the overall performance often suffers from competition for the agent between the adsorptive and catalytic domains in the composites. In this work, we propose that metal-organic frameworks (MOFs) could feature both adsorptive properties as well as catalytic properties in a single structural domain, thereby avoiding a reduction in the overall performance originating from competitive agent interactions. We showcase this concept using the MOF Ni3(BTP)2, which exhibits strong affinity and high capacity for the storage of a nerve agent simulant and a pesticide. Moreover, it is demonstrated that the adsorbed agents are efficiently degraded and that the nontoxic degradation products are rapidly expelled from the MOF pores. Its ability to catalyze the hydrolytic degradation of both organophosphate and organophosphorothioate compounds highlights another unique feature of this material. The presented concept illustrates the feasibility for developing materials that target a broader spectrum of agents via adsorption, catalysis, or both and by their broader reactivity toward different types of agents.
Collapse
Affiliation(s)
- Martijn C de Koning
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Linn Dadon
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Laura C M Rozing
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Marco van Grol
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| | - Rowdy Bross
- Department CBRN Protection, TNO, Lange Kleiweg 137, 2288GJ Rijswijk, The Netherlands
| |
Collapse
|
14
|
Shekhar P, Datta Devulapalli VS, Reji R, Singh HD, Jose A, Singh P, Torris A, Vinod CP, Tokarz JA, Mahle JJ, Peterson GW, Borguet E, Vaidhyanathan R. COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis. iScience 2023; 26:108088. [PMID: 37942004 PMCID: PMC10628716 DOI: 10.1016/j.isci.2023.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF's structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF. 3D X-ray tomography captures the micron-sized channels connecting the well-dispersed zirconium clusters on the COF. The crystalline ZrOx(OH)y@COF's nanostructure was model-optimized via simulated annealing methods. Using 0.8 mol % of the catalyst yielded a turnover number of 100-120 and a turnover frequency of 160-360 h-1 for Knoevenagel condensation in aqueous medium. Additionally, 2.2 mol % of catalyst catalyzes the hydrolysis of dimethyl nitrophenyl phosphate, a simulant of nerve agent Soman, with a conversion rate of 37% in 180 min. The hydrolytic detoxification of the live agent Soman is also achieved. Our study unveils COF-stabilized ZrOx(OH)y as a new class of zirconium-based Lewis + Bronsted-acid catalysts.
Collapse
Affiliation(s)
- Pragalbh Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | | | - Reshma Reji
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Himan Dev Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Aleena Jose
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Piyush Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| | - Arun Torris
- CSIR-NCL, Polymer Science and Engineering (PSE), Pune 411008, India
| | | | - John A. Tokarz
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - John J. Mahle
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W. Peterson
- U.S. Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Centre for Energy Science, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
15
|
Wu Y, Chen W, Wang C, Xing D. Overview of nanozymes with phosphatase-like activity. Biosens Bioelectron 2023; 237:115470. [PMID: 37413827 DOI: 10.1016/j.bios.2023.115470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Nanomaterials with intrinsic enzyme activity, referred to as nanozymes, have attracted substantial attention in recent years. Among them, phosphatase-mimicking nanozymes have become an increasingly important focus for future research, considering that phosphatase is not only one of key enzymes for phosphorous metabolism, which is essential for many biological processes (e.g., cellular regulation and signaling), but also one of extensively used biocatalytic labels in the enzyme-linked assays as well as a powerful tool enzyme in molecular biology laboratories. Nevertheless, compared with extensive oxidoreductase-mimicking nanozymes, there are a very limited number of nanozymes with phosphatase-like activity have been explored at present. The increasing demand of complex and individualized phosphatase-involved catalytic behaviors is pushing the development of more advanced phosphatase-mimicking nanozymes. Thus, we present an overview on recently reported phosphatase-like nanozymes, providing guidelines and new insights for designing more advanced phosphatase-mimicking nanozyme with superior properties.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
17
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Kulisiewicz AM, Garibay SJ, Pozza GR, Browe MA, Sparr O, Singh S, Kelly LA, DeCoste JB. Tunable Photocatalytic Singlet Oxygen Generation by Metal-Organic Frameworks via Functionalization of Pyrene-Containing Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40727-40734. [PMID: 37531584 DOI: 10.1021/acsami.3c06011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Metal-organic frameworks (MOFs) are highly versatile materials that have shown great promise in chemical warfare agent (CWA) adsorption and decontamination. Sulfur mustard has been one of the most prominently used CWAs over the last century; therefore, the development of effective detoxification strategies is of utmost importance. However, typical routes of detoxification are slow and/or result in the production of harmful byproducts. NU-1000 has previously shown promise as a "soft" oxidizer that can readily detoxify sulfur mustard and its simulant 2-chloroethyl ethyl sulfide (2-CEES) through the generation of singlet oxygen in the presence of either UV (396 nm) or blue (465 nm) light. Several variants of NU-1000 were synthesized (MOF-R, R = -Cl, -NO2, -CH3) with functional groups positioned either ortho or meta to the carboxylic acid on the linker. NU-1000-o-(Cl)4 and NU-1000-m-(Cl)4 showed significant enhancement of photooxidation of 2-CEES due to spin-orbit coupling, enhancing the intersystem crossing into the MOF triplet (T1) state. Furthermore, substitution of MOF linkers led to pyrene-phenyl rotation. Linkers with substituents in the ortho-position were shown to have smaller pyrene-phenyl torsion angles, leading to enhanced conjugation between the rings and a subsequent red shift in the absorption spectra. This red shift leads to enhanced reactivity of NU-1000-o-(Cl)4 under blue light conditions and gives perspective on making materials with enhanced reactivity utilizing visible light.
Collapse
Affiliation(s)
- Ann M Kulisiewicz
- Protection Division, U.S. Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Sergio J Garibay
- Protection Division, U.S. Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Leidos, Inc., P.O. Box 68, Gunpowder, Maryland 21010, United States
| | - Gabrielle R Pozza
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Matthew A Browe
- Protection Division, U.S. Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Owen Sparr
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Sukhvir Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Lisa A Kelly
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Jared B DeCoste
- Protection Division, U.S. Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
19
|
Xu R, Wu T, Jiao X, Chen D, Li C. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311009 DOI: 10.1021/acsami.3c06032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of protective fabrics that are capable of capturing and detoxifying a wide range of lethal chemical warfare agents (CWAs) in an efficient way is of great importance for individual protection gears/clothing. In this work, unique metal-organic framework (MOF)-on-MOF nanofabrics were fabricated through facile self-assembly of UiO-66-NH2 and MIL-101(Cr) crystals on electrospun polyacrylonitrile (PAN) nanofabrics and exhibited intriguing synergistic effects between the MOF composites on the detoxification of both nerve agent and blistering agent simulants. MIL-101(Cr), although not catalytic, facilitates the enrichment of CWA simulants from solution or air, thereby delivering a high concentration of reactants to catalytic UiO-66-NH2 coated on its surface and providing an enlarged contact area for CWA simulants with the Zr6 nodes and aminocarboxylate linkers compared to solid substrates. Consequently, the as-prepared MOF-on-MOF nanofabrics showed a fast hydrolysis rate (t1/2 = 2.8 min) for dimethyl 4-nitrophenylphosphate (DMNP) in alkaline solutions and a high removal rate (90% within 4 h) of 2-(ethylthio)-chloroethane (CEES) under environmental conditions, considerably surpassing their single-MOF counterparts and the mixture of two MOF nanofabrics. This work demonstrates synergistic detoxification of CWA simulants using MOF-on-MOF composites for the first time and has the potential to be extended to other MOF/MOF pairs, which provides new ideas for the development of highly efficient toxic gas-protective materials.
Collapse
Affiliation(s)
- Ran Xu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Ting Wu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
20
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Yan Z, Liu X, Ding B, Yu J, Si Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat Commun 2023; 14:2116. [PMID: 37055384 PMCID: PMC10101950 DOI: 10.1038/s41467-023-37693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Collapse
Affiliation(s)
- Zishuo Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
22
|
Wang L, Jiang P, Liu W, Li J, Chen Z, Guo T. Molecularly imprinted self-buffering double network hydrogel containing bi-amidoxime functional groups for the rapid hydrolysis of organophosphates. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130332. [PMID: 36423451 DOI: 10.1016/j.jhazmat.2022.130332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The development of high-performance catalyst materials with high catalytic activity for the hydrolysis of organophosphorus toxicants without additional pH buffer conditions has become an urgent need for practical application. Here, a multifunctional molecularly imprinted polymer double network hydrogel (MIP-DN) material has been prepared by integrating the first polymer network containing the functional group of bi-amidoxime as the catalytic active center and the cationic polymer polyethyleneimine (PEI) with pH buffer function as the main component of the second network. Advantageously, the resultant MIP-DN hydrogel showed excellent catalytic performance without additional pH buffer conditions, exhibiting a half-life of 25 min for the hydrolysis of paraoxon in pure water. Together with multi-functions of high catalytic activity, self-buffering function and excellent processability, the MIP-DN hydrogel prepared in this work provides a new strategy for the preparation of catalytic materials with practical application value toward toxic organophosphates.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weijie Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Zhao H, Tao CA, Zhao S, Zou X, Wang F, Wang J. Porphyrin-Moiety-Functionalized Metal-Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3297-3306. [PMID: 36608147 DOI: 10.1021/acsami.2c18126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of very efficient bifunctional catalysts for the simultaneous detoxification of two kinds of the deadliest chemical warfare agents (CWAs), nerve agent and blister agent, is highly desirable. In this study, two porphyrin-based ligands [tetrakis(4-carboxyphenyl) porphyrin (TCPP) and protoporphyrin IX (PPIX)] are introduced into 2D Zr-1,3,5-tris(4-carboxyphenyl)benzene (BTB) metal-organic layers (MOLs), composed of six-connected Zr6 nodes and the tritopic carboxylate ligand BTB, by a solvent-assisted ligand incorporation method. The loads of TCPP and PPIX are 6.4 and 10.9 wt %, respectively. The detoxification of simulants of the nerve agent and the blister agent was conducted to investigate the catalytic activity of porphyrin-moiety-functionalized MOLs. The reaction half-life of optimal TCPP-functionalized MOL catalyzing the hydrolysis of a nerve agent simulant is only 2.8 min, meanwhile, the half-life of the selective catalytic oxidation of a blister agent simulant is only 1.2 min under LED illumination. More importantly, such a degradation half-life is only about 4 min under natural sunlight (∼60 mW/cm2). To our knowledge, TCPP-functionalized MOL is by far the most efficient catalyst for blister agent simulant degradation under solar light. Therefore, 2D ultrathin MOLs on demand appear to be a promising and efficient material platform for the development of bifunctional catalysts for CWA protection.
Collapse
Affiliation(s)
- He Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Shiyin Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaorong Zou
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
24
|
Luo HB, Lin FR, Liu ZY, Kong YR, Idrees KB, Liu Y, Zou Y, Farha OK, Ren XM. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2933-2939. [PMID: 36602325 PMCID: PMC9869327 DOI: 10.1021/acsami.2c18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been demonstrated as potent catalysts for the hydrolytic detoxification of organophosphorus nerve agents and their simulants. However, the practical implementation of these Zr-MOFs is limited by the poor processability of their powdered form and the necessity of water media buffered by a volatile liquid base in the catalytic reaction. Herein, we demonstrate the efficient solid-state hydrolysis of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) catalyzed by Zr-MOF-based mixed matrix membranes. The mixed matrix membranes were fabricated by incorporating MOF-808 into the blending matrix of poly(vinylidene fluoride) (PVDF), poly(vinylpyrrolidone) (PVP), and imidazole (Im), in which MOF-808 provides highly active catalytic sites, the hydrophilic PVP helps to retain water for promoting the hydrolytic reaction, and Im serves as a base for catalytic site regeneration. Impressively, the mixed matrix membranes displayed excellent catalytic performance for the solid-state hydrolysis of DMNP under high humidity, representing a significant step toward the practical application of Zr-MOFs in chemical protective layers against nerve agents.
Collapse
Affiliation(s)
- Hong-Bin Luo
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Fang-Ru Lin
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhi-Yuan Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Karam B. Idrees
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yang Zou
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xiao-Ming Ren
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Wu T, Qiu F, Xu R, Zhao Q, Guo L, Chen D, Li C, Jiao X. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1265-1275. [PMID: 36594244 DOI: 10.1021/acsami.2c19039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of functional materials that can detoxify multiple chemical warfare agents (CWAs) at the same time is of great significance to cope with the uncertainty of CWA use in real-world situations. Although many catalysts capable of detoxifying CWAs have been reported, there is still a lack of effective means to integrate these catalytic-active materials on practical fibers/fabrics to achieve effective protection against coexistence of a variety of CWAs. In this work, by a combination of electrospinning and in situ solvothermal reaction, PAN@Zr(OH)4@MOF-808 nanofiber membranes were prepared for detoxification of both nerve agent and blistering agent simulants dimethyl 4-nitrophenyl phosphate (DMNP) and 2-chloroethyl ethyl sulfide (CEES). Under the catalytic effect of the MOF-808 component, DMNP hydrolysis with a half-life as short as 1.19 min was achieved. Meanwhile, an 89.3% CEES removal rate was obtained within 12 h by adsorption and catalysis of MOF-808 and Zr(OH)4 components at ambient conditions, respectively. PAN@Zr(OH)4@MOF-808 nanofiber membranes also showed a superior blocking effect on CEES compared to bare PAN and PAN@Zr(OH)4 nanofiber membranes. Simultaneous protection against DMNP and CEES showed effective inhibition of both simulants for at least 2 h. The preparation method also imparted intrinsically good interfacial adhesion between the components, contributing to the excellent recycling stability of PAN@Zr(OH)4@MOF-808 nanofiber membranes. Therefore, the prepared composite nanofabrics have great application potential, which provides a new idea for the construction of broad-spectrum protective detoxification materials.
Collapse
Affiliation(s)
- Ting Wu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Feng Qiu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Ran Xu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Qi Zhao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
26
|
Li QZ, Fan H, Wang Z, Zheng JJ, Fan K, Yan X, Gao X. Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| |
Collapse
|
27
|
Bukowski BC, Snurr RQ. Insights and Heuristics for Predicting Diffusion Rates of Chemical Warfare Agents in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55608-55615. [PMID: 36475611 DOI: 10.1021/acsami.2c17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing nanoporous catalysts to destroy chemical warfare agents (CWAs) and environmental contaminants requires consideration of both intrinsic catalytic activity and the mass transfer of molecules in and out of the pores. Polar adsorbates such as CWAs experience a heterogeneous environment in many metal-organic frameworks (MOFs) due to the arrangement of the metal nodes and organic linkers of the MOF. However, quantitative relationships between the pore architecture and the resulting diffusion properties of polar molecules have not been established. We used molecular dynamics simulations to calculate the diffusion coefficients of the CWA simulant dimethyl methyl phosphonate (DMMP) in a diverse set of 776 MOFs with Zr6 nodes. We developed a 4-parameter machine learning model to predict DMMP diffusivities in Zr6 MOFs and found the model to be transferable to the CWA sarin. We then developed a simplified heuristic based on the machine learning model that the node-node distance and accessible surface area should be maximized to find MOFs with rapid CWA diffusion.
Collapse
Affiliation(s)
- Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS NANO 2022; 16:18232-18243. [PMID: 36286233 PMCID: PMC9706657 DOI: 10.1021/acsnano.2c05710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jiang Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Zhangjiang Laboratory, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg
Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Bikash Baruah J. Coordination polymers in adsorptive remediation of environmental contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Wu S, Wang L, Zhu H, Liang J, Ge L, Li C, Miao T, Li J, Cheng Z. Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical warfare agents, such as nerve agents (GD and VX) and blister agents (HD), have strong toxicities to mankind. In recent years, zirconium-based metal-organic frameworks have been found to be attractive materials for chemical warfare agent degradation. Among them, metal-organic framework-808 (MOF-808) and porous coordination network-222 (PCN-222) were the best. However, few papers pay attention to their practical application. In this work, we prepared MOF-808 and PCN-222 using water phase and organic solvothermal methods, respectively. Their performance for the catalytic degradation of chemical warfare agents under practical decontamination conditions was studied. The results showed that MOF-808 displayed a high potency for catalytic hydrolysis of VX (10,000 mg L−1) in unbuffered solution. PCN-222 exhibited weaker reactivity with a half-life ( t1/2) of 28.8 min. Their different performances might stem from the different connectivity of the Zr6 nodes and framework structures. The results illustrated that the hydrolysis of high-concentration GD required a strong alkaline buffer to neutralize the hydrolysis product of hydrofluoric acid (HF) to avoid catalyst poisoning. When H2O2 was used as the oxidant instead of O2, both zirconium-based metal-organic frameworks performed with effective catalytic potency for HD degradation without any special lighting and so was suitable for practical application, whereas the products obtained from HD, such as HDO2 and V-HDO2, still possessed vesicant toxicity. Overall, MOF-808 prepared via a water-phase synthesis performed with effective catalysis for the degradation of high-concentration VX, GD, and HD with t1/2 of < 0.5, 3.1 and 2.2 min, respectively, exhibiting its potential for practical applications.
Collapse
Affiliation(s)
| | | | - Haiyan Zhu
- Institute of NBC Defence, Beijing, P. R. China
| | - Jing Liang
- Institute of NBC Defence, Beijing, P. R. China
| | - Liang Ge
- Institute of NBC Defence, Beijing, P. R. China
| | - Cong Li
- Institute of NBC Defence, Beijing, P. R. China
| | - Ting Miao
- Institute of NBC Defence, Beijing, P. R. China
| | - Jian Li
- Institute of NBC Defence, Beijing, P. R. China
| | | |
Collapse
|
31
|
Zhang J, Shen Y, Jin N, Zhao X, Li H, Ji N, Li Y, Zha B, Li L, Yao X, Zhang S, Huo F, Zhang W. Chemo-Biocascade Reactions Enabled by Metal–Organic Framework Micro-Nanoreactor. Research (Wash D C) 2022; 2022:9847698. [PMID: 36072270 PMCID: PMC9414180 DOI: 10.34133/2022/9847698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022] Open
Abstract
The one-pot combination of biocatalytic and chemocatalytic reactions represents an economically and ecologically attractive concept in the emerging cascade processes for manufacturing. The mutual incompatibility of biocatalysis and chemocatalysis, however, usually causes the deactivation of catalysts, the mismatching of reaction dynamic, and further challenges their integration into concurrent chemo-biocascades. Herein, we have developed a convenient strategy to construct versatile functional metal–organic framework micro-nanoreactors (MOF–MNRs), which can realize not only the encapsulation and protection of biocatalysts but also the controllable transmission of substances and the mutual communication of the incompatible chemo-biosystems. Importantly, the MOFs serving as the shell of MNRs have the capability of enriching the chemocatalysts on the surface and improving the activity of the chemocatalysts to sufficiently match the optimum aqueous reaction system of biocatalysts, which greatly increase the efficiency in the combined concurrent chemo-biocatalysis. Such strategy of constructing MOF–MNRs provides a unique platform for connecting the “two worlds” of chemocatalysis and biocatalysis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Xiaopeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yingjie Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Baoli Zha
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005 Fujian, China
| | - Xikuang Yao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005 Fujian, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| |
Collapse
|
32
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO 2 Reduction in a Fe-Porphyrin-Based Metal-Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202206085. [PMID: 35674328 PMCID: PMC9401588 DOI: 10.1002/anie.202206085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) are promising platforms for heterogeneous tethering of molecular CO2 reduction electrocatalysts. Yet, to further understand electrocatalytic MOF systems, one also needs to consider their capability to fine-tune the immediate chemical environment of the active site, and thus affect its overall catalytic operation. Here, we show that electrostatic secondary-sphere functionalities enable substantial improvement of CO2 -to-CO conversion activity and selectivity. In situ Raman analysis reveal that immobilization of pendent positively-charged groups adjacent to MOF-residing Fe-porphyrin catalysts, stabilize weakly-bound CO intermediates, allowing their rapid release as catalytic products. Also, by varying the electrolyte's ionic strength, systematic regulation of electrostatic field magnitude was achieved, resulting in essentially 100 % CO selectivity. Thus, this concept provides a sensitive molecular-handle that adjust heterogeneous electrocatalysis on demand.
Collapse
Affiliation(s)
- Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Zhuocheng Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Shahar Binyamin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
- Shanghai Institute of Pollution Control and Ecological SecurityDepartment of Environmental Science & EngineeringShanghai200092China
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| |
Collapse
|
33
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary‐Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe‐Porphyrin‐Based Metal‐Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Shimoni
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Zhuocheng Shi
- Fudan University Environmental Science and Engineering CHINA
| | | | - Yang Yang
- Fudan University Environmental Science and Engineering CHINA
| | | | | | | | - Liwu Zhang
- Fudan University Environmental Science and Engineering CHINA
| | - Idan Hod
- Ben-Gurion University of the Negev Chemistry Ben-Gurion Ave 1 Beer-Sheva ISRAEL
| |
Collapse
|
35
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
36
|
Johnson EM, Boyanich MC, Gibbons B, Sapienza NS, Yang X, Karim AM, Morris JR, Troya D, Morris AJ. Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorg Chem 2022; 61:8585-8591. [PMID: 35613459 DOI: 10.1021/acs.inorgchem.2c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mikaela C Boyanich
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S Sapienza
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Zhou C, Yuan B, Zhang S, Yang G, Lu L, Li H, Tao CA. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH 2 Metal-Organic Gels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23383-23391. [PMID: 35549001 DOI: 10.1021/acsami.2c02401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been considered as prospective materials for the degradation of nerve chemical warfare agents (CWAs) but show poor catalytic performance toward blister agents. Moreover, the powder issues and the poor adsorption capability also remain as the major challenges for the application of Zr-MOFs in practical CWA detoxification. Herein, a series of defected granular UiO-66-NH2 metal-organic gels are synthesized via adjusting the amount of added concentrated hydrochloric acid for the decontamination of 2-chloroethyl ethyl sulfide (2-CEES), a sulfur mustard simulant. The half-life of 2-CEES decontaminated by defected granular UiO-66-NH2 metal-organic gels can be shortened to 7.6 min, which is the highest reported value for MOFs under ambient conditions. The mechanism of decontamination is that the amino group on the linkers in UiO-66-NH2 MOGs undergoes a substitution reaction with 2-CEES to yield 2-(2-(ethylthio)ethylamino)terephthalic acid, which is less toxic and fixed in the frameworks. The recycling test corroborates that the granular UiO-66-NH2 xerogels possess good stability and reusability. Static adsorption and desorption tests show that UiO-66-NH2 xerogels possess a high 2-CEES vapor adsorption capacity of 802 mg/g after exposure for 1 d and only 28 wt % desorption capacity after air exposure for 7 d. The dual function of ultrafast degradation and high adsorption capability provide a firm foundation for using UiO-66-NH2 xerogels as a future protection media.
Collapse
Affiliation(s)
- Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Bo Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Guang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Lin Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
38
|
Kotagiri YG, Sandhu SS, Morales JF, Fernando PUAI, Tostado N, Harvey SP, Moores LC, Wang J. Sensor array chip for real‐time field detection and discrimination of organophosphorus neurotoxins. ChemElectroChem 2022. [DOI: 10.1002/celc.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yugender G. Kotagiri
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Samar S. Sandhu
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Jose F. Morales
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - P. U. Ashvin I. Fernando
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 1100 Crescent Green, #250 27518 Cary UNITED STATES
| | - Nicholas Tostado
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Steven P. Harvey
- US Army Combat Capabilities Development Command Chemical Biological Center Department of Defense U.S. Army Combat Capabilities and Development Command-Chemical Biological Center 21010 Aberdeen Proving Ground UNITED STATES
| | - Lee C. Moores
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 3909 Halls Ferry Road 39180 Vicksburg UNITED STATES
| | - Joseph Wang
- UCSD Department of Nanoengineering 9500 Gilman Drive 92093-0403 La Jolla UNITED STATES
| |
Collapse
|
39
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022; 61:e202202207. [PMID: 35212125 DOI: 10.1002/anie.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
40
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
41
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - Gregory W. Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - John H. Xin
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
42
|
Chen C, Vázquez-González M, O'Hagan MP, Ouyang Y, Wang Z, Willner I. Enzyme-Loaded Hemin/G-Quadruplex-Modified ZIF-90 Metal-Organic Framework Nanoparticles: Bioreactor Nanozymes for the Cascaded Oxidation of N-hydroxy-l-arginine and Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104420. [PMID: 35037383 DOI: 10.1002/smll.202104420] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Indexed: 05/21/2023]
Abstract
Biocatalytic cascades are challenging to operate in homogeneous solution, where diffusional mass transport hinders efficient communication between the reactive components. There is great interest in developing devices to perform such transformations in confined environments, which increase the efficiency of the cascaded process by generating high local concentrations of the reactive species. Herein, a bioreactor-nanozyme assembly is introduced for the cascaded aerobic oxidation of N-hydroxy-l-arginine (NOHA) to citrulline in the presence of glucose. The reaction mimics a key step in the nitric oxide synthase oxidation of l-arginine in nature. The system consists of glucose oxidase (GOx)-loaded hemin/G-quadruplex (hemin/G4)-modified ZIF-90 metal-organic framework nanoparticles. The aerobic oxidation of glucose by GOx yields H2 O2 that fuels the hemin/G4-catalyzed oxidation of NOHA into citrulline. The process driven by the bioreactor-nanozyme system is ≈sixfold enhanced compared to the homogeneous mixture of the biocatalysts, due to its operation in the confined environment of the nanoparticles. Extension to a three-step cascade is then demonstrated using a bioreactor composed of β-galactosidase/GOx-loaded hemin/G4-modified ZIF-90 nanoparticles activating the cascaded oxidation of NOHA to citrulline, in the presence of lactose. Moreover, the bioreactor-nanozyme hybrid is applied as a functional optical sensor of glucose, using fluorescence or chemiluminescence as readout signals.
Collapse
Affiliation(s)
- Chaochao Chen
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, P. R. China
| | - Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, P. R. China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
43
|
Hall JN, Li M, Bollini P. Light alkane oxidation over well-defined active sites in metal–organic framework materials. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01876k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We review structure–catalytic property relationships for MOF materials used in the direct oxidation of light alkanes, focusing specifically on the elucidation of active site structures and probes for reaction mechanisms.
Collapse
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Mengying Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
44
|
Van Le D, Nguyen MB, Dang PT, Lee T, Nguyen TD. Synthesis of a UiO-66/g-C 3N 4 composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon. RSC Adv 2022; 12:22367-22376. [PMID: 36105971 PMCID: PMC9364156 DOI: 10.1039/d2ra03483b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
In our study, Zr-based UiO-66 (Zr) was synthesized using terephthalic acid obtained from waste plastic. Thereafter, UiO-66/g-C3N4 composites were prepared by the solvothermal method, and their photocatalytic activity in the photodegradation of the chemical warfare agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was evaluated. The as-synthesized UiO-66/g-C3N4 exhibited a high surface area (1440 m2 g−1) and a high capillary volume (1.49 cm3 g−1). The UiO-66/g-C3N4 samples absorbed a visible light band with bandgap energies of 2.13–2.88 eV. The as-synthesized UiO-66/g-C3N4 composites exhibited highly efficient degradation of DMNP with a short half-life (t1/2 of 2.17 min) at pH 7 under visible light irradiation. The trapping experiments confirmed that the h+ and ˙O2− radicals played an important role in the photocatalytic degradation of DMNP. The UiO-66/g-C3N4 catalyst simultaneously performed two processes: the hydrolysis and photocatalytic oxidation of DMNP in water. During irradiation, a p–n heterojunction between UiO-66 and g-C3N4 restricted the recombination of photogenerated electrons and holes, resulting in the enhancement in the degradation rate of DMNP. UiO-66/g-C3N4 with a high surface area (1440 m2 g−1) and a high capillary volume (1.49 cm3 g−1) exhibited highly efficient degradation of dimethyl 4-nitrophenyl phosphate with t1/2 = 2.17 min.![]()
Collapse
Affiliation(s)
- Dung Van Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
- Center for Technology Environmental Treatment, 282 Lac Long Quan Street, Tay Ho, Ha Noi, Vietnam
| | - Manh B. Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Phuong T. Dang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
45
|
Feng X, Jena HS, Krishnaraj C, Leus K, Wang G, Chen H, Jia C, Van Der Voort P. Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60715-60735. [PMID: 34874167 DOI: 10.1021/acsami.1c13525] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UiO-66 is regarded as an epitome of metal-organic frameworks (MOFs) because of its stability. Defect engineering has been used as a toolbox to alter the performance of MOFs. UiO-66 is among the most widely explored MOFs because of its capability to bear a high number of defects without undergoing structural collapse. Several representative works in the field of MOF-based defect engineering are available based on UiO-66. In this review, more emphasis is given toward the construction of catalytic sites by engineering defects in UiO-66 as a representative including all the detailed synthesis procedures for inducing defects, and the characterization techniques used to analyze these defects in UiO-66 are discussed. Furthermore, a comprehensive review for the defects themselves and the support using defects in catalysis is provided to accentuate the importance of defect engineering.
Collapse
Affiliation(s)
- Xiao Feng
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Himanshu Sekhar Jena
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Guangbo Wang
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Jinan 250014, China
| | - Hui Chen
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chunmei Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| |
Collapse
|
46
|
Su H, Huang P, Wu FY. Visualizing the degradation of nerve agent simulants using functionalized Zr-based MOFs: from solution to hydrogels. Chem Commun (Camb) 2021; 57:11681-11684. [PMID: 34673857 DOI: 10.1039/d1cc05199g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Visual monitoring of the degradation of nerve agent simulants based on the switchable fluorescence of UiO-66-NH2 was developed. In the hydrolysis, the decomposition products perturbed the linker-to-cluster charge transfer and stimulated the fluorescence recovery. Moreover, a "soft" solid-state platform utilizing agarose hydrogels was proposed to visualize the degradation of gaseous simulants without bulk water.
Collapse
Affiliation(s)
- Hongyan Su
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
47
|
Sandhu SS, Kotagiri YG, Fernando I PUAI, Kalaj M, Tostado N, Teymourian H, Alberts EM, Thornell TL, Jenness GR, Harvey SP, Cohen SM, Moores LC, Wang J. Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. J Am Chem Soc 2021; 143:18261-18271. [PMID: 34677965 DOI: 10.1021/jacs.1c08356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid and robust sensing of nerve agent (NA) threats is necessary for real-time field detection to facilitate timely countermeasures. Unlike conventional phosphotriesterases employed for biocatalytic NA detection, this work describes the use of a new, green, thermally stable, and biocompatible zirconium metal-organic framework (Zr-MOF) catalyst, MIP-202(Zr). The biomimetic Zr-MOF-based catalytic NA recognition layer was coupled with a solid-contact fluoride ion-selective electrode (F-ISE) transducer, for potentiometric detection of diisopropylfluorophosphate (DFP), a F-containing G-type NA simulant. Catalytic DFP degradation by MIP-202(Zr) was evaluated and compared to the established UiO-66-NH2 catalyst. The efficient catalytic DFP degradation with MIP-202(Zr) at near-neutral pH was validated by 31P NMR and FT-IR spectroscopy and potentiometric F-ISE and pH-ISE measurements. Activation of MIP-202(Zr) using Soxhlet extraction improved the DFP conversion rate and afforded a 2.64-fold improvement in total percent conversion over UiO-66-NH2. The exceptional thermal and storage stability of the MIP-202/F-ISE sensor paves the way toward remote/wearable field detection of G-type NAs in real-world environments. Overall, the green, sustainable, highly scalable, and biocompatible nature of MIP-202(Zr) suggests the unexploited scope of such MOF catalysts for on-body sensing applications toward rapid on-site detection and detoxification of NA threats.
Collapse
Affiliation(s)
- Samar S Sandhu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yugender Goud Kotagiri
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicholas Tostado
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Erik M Alberts
- Simetri, Inc., 7005 University Boulevard, Winter Park, Florida 32792, United States
| | - Travis L Thornell
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Glen R Jenness
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command-Chemical Biological Center (CCDC-CBC), Aberdeen Proving Ground, Maryland 21010, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Lee C Moores
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
48
|
Gibbons B, Bartlett EC, Cai M, Yang X, Johnson EM, Morris AJ. Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorg Chem 2021; 60:16378-16387. [PMID: 34672622 DOI: 10.1021/acs.inorgchem.1c02224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defect engineering in metal-organic frameworks (MOFs) has recently become an area of significant research due to the possibility of enhancing material properties such as internal surface area and catalytic activity while maintaining stable 3D structures. Through a modulator screening study, the model Zr4+ MOF, UiO-66, has been synthesized with control of particle sizes (100-1900 nm) and defect levels (2-24%). By relating these properties, two series were identified where one property remained constant, allowing for independent analysis of the defect level or particle size, which frequently change coincident with the modulator choice. The series were used to compare UiO-66 reactivity for the hydrolysis of a chemical warfare agent simulant, dimethyl 4-nitrophenylphosphate (DMNP). The rate of DMNP hydrolysis displayed high dependence on the external surface area, supporting a reaction dominated by surface interactions. Moderate to high concentrations of defects (14-24%) allow for the accessibility of some interior MOF nodes but do not substantially promote diffusion into the framework. Individual control of defect levels and particle sizes through modulator selection may provide useful materials for small molecular catalysis and provide a roadmap for similar engineering of other zirconium frameworks.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eamon C Bartlett
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
49
|
Ruan X, Yang Y, Liu W, Ma X, Zhang C, Meng Q, Wang Z, Cui F, Feng J, Cai F, Yuan Y, Zhu G. Mechanical Bond Approach to Introducing Self-Adaptive Active Sites in Covalent Organic Frameworks for Zinc-Catalyzed Organophosphorus Degradation. ACS CENTRAL SCIENCE 2021; 7:1698-1706. [PMID: 34729413 PMCID: PMC8554822 DOI: 10.1021/acscentsci.1c00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Mechanically interlocked molecules (MIMs) with discrete molecular components linked through a mechanical bond in space can be harnessed for the operation of molecular switches and machines, which shows huge potential to imitate the dynamic response of natural enzymes. In this work, rotaxane compounds were adopted as building monomers for the synthesis of a crown-ether ring mechanically intercalated covalence organic framework (COF). This incorporation of MIMs into open architecture implemented large amplitude motions, whose wheel slid along the axle in response to external stimulation. After impregnation with Zn2+ ions, the relative locations of two zinc active sites (crown-ether coordinated Zn(II) and bipyridine coordinated Zn(II)) are endowed with great flexibility to fit the conformational transformation of an organophosphorus agent during the hydrolytic process. Notably, the resulting self-adaptive binuclear zinc center in a crown-ether-threaded COF network is endowed with a record catalytic ability, with a rate over 85.5 μM min-1 for organophosphorus degradation. The strategy of synthesis for porous artificial enzymes through the introduction of mechanically bound crown ether will enable significant breakthroughs and new synthetic concepts for the development of advanced biomimetic catalysts.
Collapse
|
50
|
Sharp CH, Bukowski BC, Li H, Johnson EM, Ilic S, Morris AJ, Gersappe D, Snurr RQ, Morris JR. Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev 2021; 50:11530-11558. [PMID: 34661217 DOI: 10.1039/d1cs00558h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Conor H Sharp
- National Research Council Associateship Program and Electronic Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongyu Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Dilip Gersappe
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|