1
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
2
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
3
|
Li Z, Zhi Q, Li J, Zhu B. NLRP12-associated autoinflammatory disease: A novel causal mutation and bioinformatics analyses. Clin Immunol 2024; 265:110278. [PMID: 38878806 DOI: 10.1016/j.clim.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024]
Abstract
Nucleotide-binding leucine-rich repeat-containing receptor 12-associated autoinflammatory disease (NLRP12-AID) is a rare autosomal dominant disorder. In this study, we reported a case of this rare disease with a novel NLRP12 mutation (A218V, rs749659859). The patient displayed typical symptoms, including recurrent fever, arthralgia, and skin allergies. Elevated serum IgE, decreased apolipoprotein A1, high-density lipoprotein cholesterol, and fluctuating levels of various leukocyte subtypes, procalcitonin, IL6, creatine kinase, and 25-hydroxyvitamin D were also detected. Inflammatory lesions were observed in multiple organs using 18F-FDG PET/CT. By mining single-cell transcriptome data, we identified relatively high expression of NLRP12 in monocytes compared to other human peripheral blood mononuclear cells. NLRP12-positive monocytes exhibited reduced expression of IL18, CCL3, and TNFA compared to NLRP12-negative monocytes. Structural analyses suggested that the A218V mutation, along with A218T and F402L, may reduce the ATP-binding affinity of the NLRP12 protein. These findings may provide new insights into the mechanisms of NLRP12-AID, and suggest the potential ATP-based therapy for further investigation.
Collapse
Affiliation(s)
- Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Zhi
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Wei B, Billman ZP, Nozaki K, Goodridge HS, Miao EA. NLRP3, NLRP6, and NLRP12 are inflammasomes with distinct expression patterns. Front Immunol 2024; 15:1418290. [PMID: 39076995 PMCID: PMC11284034 DOI: 10.3389/fimmu.2024.1418290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammasomes are sensors that detect cytosolic microbial molecules or cellular damage, and in response they initiate a form of lytic regulated cell death called pyroptosis. Inflammasomes signal via homotypic protein-protein interactions where CARD or PYD domains are crucial for recruiting downstream partners. Here, we screened these domains from NLR family proteins, and found that the PYD domain of NLRP6 and NLRP12 could activate caspase-1 to induce cleavage of IL-1β and GSDMD. Inflammasome reconstitution verified that full length NLRP6 and NLRP12 formed inflammasomes in vitro, and NLRP6 was more prone to auto-activation. NLRP6 was highly expressed in intestinal epithelial cells (IEC), but not in immune cells. Molecular phylogeny analysis found that NLRP12 was closely related to NLRP3, but the activation mechanisms are different. NLRP3 was highly expressed in monocytes and macrophages, and was modestly but appreciably expressed in neutrophils. In contrast, NLRP12 was specifically expressed in neutrophils and eosinophils, but was not detectable in macrophages. NLRP12 mutations cause a periodic fever syndrome called NLRP12 autoinflammatory disease. We found that several of these patient mutations caused spontaneous activation of caspase-1 in vitro, which likely causes their autoinflammatory disease. Different cell types have unique cellular physiology and structures which could be perturbed by a pathogen, necessitating expression of distinct inflammasome sensors to monitor for signs of infection.
Collapse
Affiliation(s)
- Bo Wei
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Zachary P. Billman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kengo Nozaki
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Helen S. Goodridge
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Chen J, Huang Y, Chen H, Yang Q, Zheng W, Lin Y, Xue M, Wang C. Identification of a Novel NLRP12 Frameshift Mutation (Val730Glyfs ∗41) by Whole-Exome Sequencing in Patients with Crohn's Disease. Hum Mutat 2024; 2024:5573272. [PMID: 40225939 PMCID: PMC11918926 DOI: 10.1155/2024/5573272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
NLRP12 encodes the nucleotide-binding leucine-rich repeat-containing receptor 12 protein and has been linked to familial cold autoinflammatory syndrome 2 (FCAS2). Previous studies have reported that NLRP12 protein can dampen inflammatory responses in DSS-induced mice colitis. To date, only four alterations in the NLRP12 gene have been associated with Crohn's disease (CD). Here, we reported a novel heterozygous NLRP12 frameshift mutation (c.2188dupG, p.Val730Glyfs∗41) identified by whole-exome sequencing in the proband with CD. The Sanger sequencing confirmed that his sister and father also carried this NLRP12 mutation, which cosegregated well with the CD phenotype. In silico analysis predicted this mutation to be disease-causing. Patients heterozygous for this mutation exhibited decreased NLRP12 protein levels in the peripheral blood and colon. Functional assays showed that mutant NLRP12 plasmid-transfected HEK293T cells exhibited significantly lower NLRP12 mRNA and protein levels than wild-type plasmid-transfected cells. The nonsense-mediated decay inhibitor NMDI14 significantly increased NLRP12 mRNA and protein levels in mutant plasmid-transfected cells. Overall, our results demonstrated that this heterozygous NLRP12 mutation (c.2188dupG) resulted in decreased NLRP12 expression, which might contribute to the mechanism underlying CD.
Collapse
Affiliation(s)
- Jintong Chen
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yanni Huang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Huaning Chen
- Department of Rheumatology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qinyu Yang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Weiwei Zheng
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Yanjun Lin
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Mengli Xue
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
| | - Chengdang Wang
- Department of Gastroenterology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou 350005, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
6
|
Papa R, Caorsi R, Volpi S, Gattorno M. Expert Perspective: Diagnostic Approach to the Autoinflammatory Diseases. Arthritis Rheumatol 2024; 76:166-177. [PMID: 37661352 DOI: 10.1002/art.42690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
|
7
|
Coombs JR, Zamoshnikova A, Holley CL, Maddugoda MP, Teo DET, Chauvin C, Poulin LF, Vitak N, Ross CM, Mellacheruvu M, Coll RC, Heinz LX, Burgener SS, Emming S, Chamaillard M, Boucher D, Schroder K. NLRP12 interacts with NLRP3 to block the activation of the human NLRP3 inflammasome. Sci Signal 2024; 17:eabg8145. [PMID: 38261657 DOI: 10.1126/scisignal.abg8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Inflammasomes are multiprotein complexes that drive inflammation and contribute to protective immunity against pathogens and immune pathology in autoinflammatory diseases. Inflammasomes assemble when an inflammasome scaffold protein senses an activating signal and forms a signaling platform with the inflammasome adaptor protein ASC. The NLRP subfamily of NOD-like receptors (NLRs) includes inflammasome nucleators (such as NLRP3) and also NLRP12, which is genetically linked to familial autoinflammatory disorders that resemble diseases caused by gain-of-function NLRP3 mutants that generate a hyperactive NLRP3 inflammasome. We performed a screen to identify ASC inflammasome-nucleating proteins among NLRs that have the canonical pyrin-NACHT-LRR domain structure. Only NLRP3 and NLRP6 could initiate ASC polymerization to form "specks," and NLRP12 failed to nucleate ASC polymerization. However, wild-type NLRP12 inhibited ASC inflammasome assembly induced by wild-type and gain-of-function mutant NLRP3, an effect not seen with disease-associated NLRP12 mutants. The capacity of NLRP12 to suppress NLRP3 inflammasome assembly was limited to human NLRP3 and was not observed for wild-type murine NLRP3. Furthermore, peripheral blood mononuclear cells from patients with an NLRP12 mutant-associated inflammatory disorder produced increased amounts of the inflammatory cytokine IL-1β in response to NLRP3 stimulation. Thus, our findings provide insights into NLRP12 biology and suggest that NLRP3 inhibitors in clinical trials for NLRP3-driven diseases may also be effective in treating NLRP12-associated autoinflammatory diseases.
Collapse
Affiliation(s)
- Jared R Coombs
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Alina Zamoshnikova
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Caroline L Holley
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Madhavi P Maddugoda
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Daniel Eng Thiam Teo
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Camille Chauvin
- U1019, Institut Pasteur de Lille, University of Lille, Centre National de la Recherche Scientifique, INSERM, Centre Hospitalo-Universitaire Lille, Lille 59019, France
| | - Lionel F Poulin
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille 59000, France
| | - Nazarii Vitak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Connie M Ross
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia
| | - Manasa Mellacheruvu
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Rebecca C Coll
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Leonhard X Heinz
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Mathias Chamaillard
- U1019, Institut Pasteur de Lille, University of Lille, Centre National de la Recherche Scientifique, INSERM, Centre Hospitalo-Universitaire Lille, Lille 59019, France
| | - Dave Boucher
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
8
|
Miao J, Zhang J, Huang X, Wu N, Wu D, Shen M. NLRP12-associated autoinflammatory disease in Chinese adult patients: a single-centre study. RMD Open 2023; 9:e003598. [PMID: 38123482 DOI: 10.1136/rmdopen-2023-003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND NLRP12-associated autoinflammatory disease (NLRP12-AID) is an autosomal dominant autoinflammatory disorder caused by variants of NLRP12 gene. We aimed to report a cohort of Chinese adult patients with NLRP12-AID and summarised phenotypes and genotypes. METHODS Twenty patients were diagnosed with NLRP12-AID after performing whole-exome sequencing and were included in our cohort. Demographic information, clinical data and treatment response were collected and evaluated. A literature review of NLRP12-AID was performed, and the clinical features and mutated sites were summarised and compared with our cohort. RESULTS Among the 20 NLRP12-AID patients, the main clinical features of NLRP12-AID included fever, cutaneous rash, arthralgia/arthritis, pharyngitis/tonsillitis, lymphadenopathy, myalgia and abdominal pain/diarrhoea. Thirteen NLRP12 variants were detected as F402L, G39V, R1030X, R7G, E24A, Q90X, A218V, A259V, W581X, G729R, R859W, c.-150T>C and c.*126G>C. Glucocorticoids were used in 14 patients, immunosuppressive agents in 13, and tocilizumab in 2. Seventeen patients had good responses to therapy. When compared with 50 NLRP12-AID patients from other countries, Chinese patients had fewer variants in exon 3, higher incidences of cutaneous rash, pharyngitis/tonsillitis and lymphadenopathy. Among all these 70 NLRP12-AID patients, patients carrying non-exon-3 variants had higher frequencies of ocular involvement, pharyngitis/tonsillitis, headache and lymphadenopathy than those with exon-3 variants. CONCLUSION This is the largest cohort of NLRP12-AID in the world and seven novel variants of NLRP12 were identified. Chinese adult patients of NLRP12-AID had more non-specific symptoms such as pharyngitis/tonsillitis and lymphadenopathy when compared with patients from other countries, for which the less occurrence of exon-3 variants might be one possible reason.
Collapse
Affiliation(s)
- Junke Miao
- Department of Rare Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingyuan Zhang
- Department of Rare Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Huang
- Department of Rare Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Wu
- Department of Rare Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Shen
- Department of Rare Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Cinteza E, Stefan D, Iancu MA, Ioan A, Vasile CM, Vatasescu R, Cochino A. Autoinflammatory Recurrent Pericarditis Associated with a New NLRP12 Mutation in a Male Adolescent. Life (Basel) 2023; 13:2131. [PMID: 38004271 PMCID: PMC10672620 DOI: 10.3390/life13112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Idiopathic recurrent pericarditis (IRP) can be the hallmark of an autoinflammatory syndrome with recurrent attacks of chest pain and symptom-free intervals following an acute episode. The recurrence rate may be 35% in the pediatric population, frequently with less severe manifestations than at the first episode. Pericarditis can be the sole clinical manifestation or may be part of a systemic autoinflammatory disease (SAID), especially in the case of a recurrence. Familial Mediterranean Fever (FMF), Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS), Mevalonate-Kinase Deficiency (MKD), nucleotide-binding oligomerization domain 2 (NOD2)-associated autoinflammatory syndrome, and others are closely related to IRP based on similar clinical manifestations and treatment responses to anti-interleukin 1 (IL-1) agents, such as anakinra, and should therefore be excluded in patients with IRP. A newly described SAID, an autosomal dominant disorder known as NLRP12-AID (nucleotide-binding leucine-rich repeat-containing receptor 12-related autoinflammatory disease) is caused by heterozygous mutations in the NLRP12 gene and most commonly affects children. Fewer than 40 pediatric patients with NLRP12-AID have been described in the medical literature, with none presenting with RP. We report a case of relapsing pericarditis responsive to anti-IL-1 therapy in a male adolescent who carried a missense mutation in the NLRP12 gene potentially causative of the excessive activation of inflammatory pathways. This is a unique case in the medical literature that associates recurrent pericarditis in an adolescent presumed to be related to the missense mutation in the NLRP12 gene. The role of the NLRP12 inflammasome in generating and maintaining recurrent pericardial inflammation should be considered.
Collapse
Affiliation(s)
- Eliza Cinteza
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.C.); (A.C.)
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 41451 Bucharest, Romania;
| | - Dan Stefan
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 41451 Bucharest, Romania;
| | - Mihaela Adela Iancu
- Department of Internal, Family and Occupational Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea Ioan
- Department of Pediatrics, “Alessandrescu Rusescu” National Institute for Mother and Child Health, 020395 Bucharest, Romania;
| | - Corina Maria Vasile
- Pediatric and Adult Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, 3300 Bordeaux, France;
| | - Radu Vatasescu
- Cardio-Thoracic Department, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
- Department of Cardiology, Clinic Emergency Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexis Cochino
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.C.); (A.C.)
- Department of Pediatrics, “Alessandrescu Rusescu” National Institute for Mother and Child Health, 020395 Bucharest, Romania;
| |
Collapse
|
10
|
Huang L, Tao Y, Wu X, Wu J, Shen M, Zheng Z. The role of NLRP12 in inflammatory diseases. Eur J Pharmacol 2023; 956:175995. [PMID: 37572944 DOI: 10.1016/j.ejphar.2023.175995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Nucleotide-binding leucine-rich repeat-containing receptor 12 (NLRP12), a highly conserved protein containing an N-terminal pyrin domain (PYD), a nucleotide-binding domain and a C-terminal leucine-rich repeat region, belongs to the nucleotide-binding oligomerization domain-like receptor-containing PYD (NLRP) family and is a cytoplasmic sensor that plays a negative role in inflammation. NLRP12 is involved in multiple disease processes, including formation of inflammasomes and regulation of both canonical and noncanonical inflammatory signaling pathways. NLRP12 and pathogenic infections are closely linked, and alterations in NLRP12 expression and activity are associated with inflammatory diseases. In this review, we begin with a summary of the mechanisms of negative regulation by NLRP12. We then underscore the important roles of NLRP12 in the onset and progression of inflammation, infectious disease, host defense, carcinogenesis and COVID-19. Finally, we highlight factors that influence NLRP12 activity, including synthetic and naturally derived agonists, and are regarded as potential therapeutic agents to overcome inflammatory diseases.
Collapse
Affiliation(s)
- Lili Huang
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Youli Tao
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Xiping Wu
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Jianzhang Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Mengya Shen
- Affiliated Hospital of Jiaxing University, Jiaxing Maternity and Child Health Care Hospital in Zhejiang Province, Jiaxing, 314000, Zhejiang, China.
| | - Zhiwei Zheng
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
11
|
Yuan J, Zhang Y, Wei C, Zhu R. A Fully Self-Powered Wearable Leg Movement Sensing System for Human Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303114. [PMID: 37590377 PMCID: PMC10582417 DOI: 10.1002/advs.202303114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Energy-autonomous wearable human activity monitoring is imperative for daily healthcare, benefiting from long-term sustainable uses. Herein, a fully self-powered wearable system, enabling real-time monitoring and assessments of human multimodal health parameters including knee joint movement, metabolic energy, locomotion speed, and skin temperature, which are fully self-powered by highly-efficient flexible thermoelectric generators (f-TEGs) is proposed and developed. The wearable system is composed of f-TEGs, fabric strain sensors, ultra-low-power edge computing, and Bluetooth. The f-TEGs worn on the leg not only harvest energy from body heat and supply power sustainably for the whole monitoring system, but also serve as zero-power motion sensors to detect limb movement and skin temperature. The fabric strain sensor made by printing PEDOT: PSS on pre-stretched nylon fiber-wrapped rubber band enables high-fidelity and ultralow-power measurements on highly-dynamic knee movements. Edge computing is elaborately designed to estimate multimodal health parameters including time-varying metabolic energy in real-time, which are wirelessly transmitted via Bluetooth. The whole monitoring system is operated automatically and intelligently, works sustainably in both static and dynamic states, and is fully self-powered by the f-TEGs.
Collapse
Affiliation(s)
- Jinfeng Yuan
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Yuzhong Zhang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Caise Wei
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| |
Collapse
|
12
|
Hormigo I, Valente Pinto M, Cordeiro AI, Henriques C, Martins C, Parente Freixo J, Conde M, Gouveia C, Farela Neves J. Hemophagocytic lymphohistiocytosis in an adolescent with NLRP12-related autoinflammatory disorder-A case report. Pediatr Allergy Immunol 2023; 34:e14020. [PMID: 37747755 DOI: 10.1111/pai.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Inês Hormigo
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- Centro de investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Cristina Henriques
- Pediatric Reumatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Catarina Martins
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Parente Freixo
- Centro de Genética Preditiva e preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marta Conde
- Pediatric Reumatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- Auto-inflammatory syndromes Clinics, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Catarina Gouveia
- Pediatric Infectious Diseases Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Auto-inflammatory syndromes Clinics, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| |
Collapse
|
13
|
Diaz VL, Gribbons KB, Yazdi-Nejad K, Kuemmerle-Deschner J, Wanderer AA, Broderick L, Hoffman HM. Cold Urticaria Syndromes: Diagnosis and Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2275-2285. [PMID: 37290539 DOI: 10.1016/j.jaip.2023.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Cold urticaria is a chronic condition causing episodic symptoms of cold-induced wheals or angioedema in response to direct or indirect exposure to cold temperatures. Whereas symptoms of cold urticaria are typically benign and self-limiting, severe systemic anaphylactic reactions are possible. Acquired, atypical, and hereditary forms have been described, each with variable triggers, symptoms, and responses to therapy. Clinical testing, including response to cold stimulation, helps define disease subtypes. More recently, monogenic disorders characterized by atypical forms of cold urticaria have been described. Here, we review the different forms of cold-induced urticaria and related syndromes and propose a diagnostic algorithm to aid clinicians in making a timely diagnosis for the appropriate management of these patients.
Collapse
Affiliation(s)
- Vanessa L Diaz
- Department of Pediatrics, Rady Children's Hospital, San Diego, San Diego, Calif
| | | | | | - Jasmin Kuemmerle-Deschner
- Division of Pediatric Rheumatology and Autoinflammation Reference Center Tuebingen, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany; Member of European Reference Network (ERN-RITA), Tuebingen, Germany
| | - Alan A Wanderer
- Allergy and Clinical Immunology, School of Medicine, University of Colorado, Denver, Colo
| | - Lori Broderick
- Department of Pediatrics, Rady Children's Hospital, San Diego, San Diego, Calif; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, Calif
| | - Hal M Hoffman
- Department of Pediatrics, Rady Children's Hospital, San Diego, San Diego, Calif; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
14
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
15
|
Sundaram B, Pandian N, Mall R, Wang Y, Sarkar R, Kim HJ, Malireddi RKS, Karki R, Janke LJ, Vogel P, Kanneganti TD. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell 2023; 186:2783-2801.e20. [PMID: 37267949 PMCID: PMC10330523 DOI: 10.1016/j.cell.2023.05.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1β and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nagakannan Pandian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hee Jin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura J Janke
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
16
|
Cichoń M, Zielińska P, Zaucha JM, Zarzycka E, Trzeciak M. Cold-induced urticaria-like lesions related to NLRP-12 mutation. J Eur Acad Dermatol Venereol 2023. [PMID: 36785972 DOI: 10.1111/jdv.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Affiliation(s)
- M Cichoń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - P Zielińska
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Antoni Jurasz University Hospital, Bydgoszcz, Poland
| | - J M Zaucha
- Department of Haematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - E Zarzycka
- Department of Haematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - M Trzeciak
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Raghawan AK, Radha V, Swarup G. HSC70 as a sensor of low temperature: role in cold-triggered autoinflammatory disorders. FEBS J 2022; 289:8037-8049. [PMID: 34535969 DOI: 10.1111/febs.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Familial cold autoinflammatory syndrome (FCAS) is a subset of heritable autoinflammatory disorders wherein inflammatory symptoms aggravate upon exposure of the individual to subnormal temperature. In the past two decades, several mutations in various genes such as NLRP3, NLRP12, PLCG2 and NLRC4 have been identified that cause cold-triggered inflammation. However, our understanding of the mechanisms by which cells perceive subnormal temperature, and what keeps the inflammation under check until exposure to low temperature, is very limited. We hypothesise that recognition of FCAS-associated mutants as misfolded polypeptides by temperature-sensitive HSC70 (HSPA8) chaperone determines the FCAS phenotype. At 37 °C, HSC70 would interact with the mutant proteins, keeping them almost inactive, and loss of interaction at low temperature due to a conformational change in HSC70 would lead to their activation. The proposed mechanism of low temperature sensing in the context of FCAS may have wider implications for HSC70 as a cold temperature sensor in various pathological conditions where symptoms get aggravated upon exposure to low temperature.
Collapse
Affiliation(s)
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
18
|
Chen S, Li Z, Hu X, Zhang H, Chen W, Xu Q, Tang L, Ge H, Zhen Q, Yong L, Yu Y, Cao L, Zhang R, Hao Y, Shi J, Sun L. Rare mutations in NLRP3 and NLRP12 associated with familial cold autoinflammatory syndrome: two Chinese pedigrees. Clin Rheumatol 2022; 41:3461-3470. [DOI: 10.1007/s10067-022-06292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
|
19
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
20
|
Li Y, Deng M, Li Y, Mao X, Yan S, Tang X, Mao H. Clinical heterogeneity of NLRP12-associated autoinflammatory diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Lee EJ, Napier RJ, Vance EE, Lashley SJ, Truax AD, Ting JP, Rosenzweig HL. The innate immune receptor Nlrp12 suppresses autoimmunity to the retina. J Neuroinflammation 2022; 19:69. [PMID: 35313917 PMCID: PMC8939070 DOI: 10.1186/s12974-022-02425-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Nod-like receptors (NLRs) are critical to innate immune activation and induction of adaptive T cell responses. Yet, their role in autoinflammatory diseases of the central nervous system (CNS) remains incompletely defined. The NLR, Nlrp12, has been reported to both inhibit and promote neuroinflammation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE), where its T cell-specific role has been investigated. Uveitis resulting from autoimmunity of the neuroretina, an extension of the CNS, involves a breach in immune privilege and entry of T cells into the eye. Here, we examined the contribution of Nlrp12 in a T cell-mediated model of uveitis, experimental autoimmune uveitis (EAU). Methods Mice were immunized with interphotoreceptor retinoid-binding protein peptide 1–20 (IRBP1–20) emulsified in Complete Freund’s adjuvant, CFA. Uveitis was evaluated by clinical and histopathological scoring, and comparisons were made in WT vs. Nlrp12−/− mice, lymphopenic Rag1−/− mice reconstituted with WT vs. Nlrp12−/− CD4+ T cells, or among bone marrow (BM) chimeric mice. Antigen-specific Th-effector responses were evaluated by ELISA and intracellular cytokine staining. Cellular composition of uveitic eyes from WT or Nlrp12−/− mice was compared using flow cytometry. Expression of Nlrp12 and of cytokines/chemokines within the neuroretina was evaluated by immunoblotting and quantitative PCR. Results Nlrp12−/− mice developed exacerbated uveitis characterized by extensive vasculitis, chorioretinal infiltrates and photoreceptor damage. Nlrp12 was dispensable for T cell priming and differentiation of peripheral Th1 or Th17 cells, and uveitis in immunodeficient mice reconstituted with either Nlrp12−/− or WT T cells was similar. Collectively, this ruled out T cells as the source of Nlrp12-mediated protection to EAU. Uveitic Nlrp12−/− eyes had more pronounced myeloid cell accumulation than uveitic WT eyes. Transplantation of Nlrp12−/− BM resulted in increased susceptibility to EAU regardless of host genotype, but interestingly, a non-hematopoietic origin for Nlrp12 function was also observed. Indeed, Nlrp12 was found to be constitutively expressed in the neuroretina, where it suppressed chemokine/cytokine induction. Conclusions Our data identify a combinatorial role for Nlrp12 in dampening autoimmunity of the neuroretina. These findings could provide a pathway for development of therapies for uveitis and potentially other autoinflammatory/autoimmune diseases of the CNS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02425-x.
Collapse
Affiliation(s)
- Ellen J Lee
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Ruth J Napier
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Emily E Vance
- VA Portland Health Care System, Portland, OR, USA.,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | - Agnieszka D Truax
- Lineberger Comprehensive Cancer Center, University North Carolina, Chapel Hill, NC, USA
| | - Jenny P Ting
- Lineberger Comprehensive Cancer Center, Depts. Genetics and Microbiology-Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Holly L Rosenzweig
- VA Portland Health Care System, Portland, OR, USA. .,Dept. of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA. .,Oregon Health & Science University, VA Portland Health Care System, 3710 SW US Veterans Hospital Rd., Bldg 103, Room E-222, Mail stop: VA R&D-14, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Wang HF. NLRP12-associated systemic autoinflammatory diseases in children. Pediatr Rheumatol Online J 2022; 20:9. [PMID: 35123508 PMCID: PMC8817530 DOI: 10.1186/s12969-022-00669-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/22/2022] [Indexed: 01/13/2023] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are a group of monogenic diseases characterized by disordered innate immunity, which causes excessive activation of inflammatory pathways. Nucleotide-binding leucine-rich repeat-containing receptor 12-related autoinflammatory disease (NLRP12-AID) is a newly identified SAID and a rare autosomal dominant disorder caused by mutations in the NLRP12 gene, which is also known as familial cold autoinflammatory syndrome 2 (FCAS2) and mostly occurs in childhood. A total of 33 cases of NLRP12-AID in children and 21 different mutation types have been reported to date. The disease is mainly characterized by periodic fever, accompanied by multisystem inflammatory damage. NLRP12-AID is diagnosed through early clinical identification and genetic detection. Emerging drugs targeting interleukin-1-related inflammatory pathways are expected to change the treatment options and improve the quality of life of pediatric patients. This article aims to summarize the characteristics and pathogenesis of reported NLRP12-AID cases in children and provide ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui-fang Wang
- grid.412633.10000 0004 1799 0733Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe east Rd, Zhengzhou, 450052 Henan China
| |
Collapse
|
23
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Li J, Sun X, Luo S, Lin J, Xiao Y, Yu H, Huang G, Li X, Xie Z, Zhou Z. The Positivity Rate of IA-2A and ZnT8A in the Chinese Han Population With Type 1 Diabetes Mellitus: Association With rs1143627 and rs1143643 Polymorphisms in the IL1B Gene. Front Pharmacol 2021; 12:729890. [PMID: 34867336 PMCID: PMC8636020 DOI: 10.3389/fphar.2021.729890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate the association between susceptibility to type 1 diabetes mellitus (T1DM) and polymorphisms (rs1143627 and rs1143643) in the interleukin 1 beta (IL1B) gene in the Chinese Han population. Methods: The Meso Scale Discovery (MSD) method was used to detect the concentration of IL-1β in 24 T1DM patients and 27 healthy controls. MassARRAY was used to analyze the polymorphisms in the IL1B gene in 510 patients with classic T1DM and 531 healthy controls. The general data of the T1DM patients and healthy controls were compared by the chi-square test and Mann-Whitney U test. The chi-square test and logistic regression were used to analyze the frequency distributions of alleles and genotypes of polymorphisms in the IL1B gene. The Kruskal-Wallis H test and chi-square test were used for the genotype-phenotype analysis of rs1143627 and rs1143643 in the IL1B gene. Results: ① The concentration of IL-1β in T1DM patients was significantly higher than that in healthy controls. ② rs1143627 and rs1143643 in the IL1B gene were significantly correlated with the positivity rates for IA-2A and ZnT8A; genotype GG at rs1143627 and genotype CC at rs1143643 in the case group showed lower positivity rates for IA-2A and ZnT8A. ③ There was no significant difference in the genotypes or allele frequencies at rs1143627 (GG/GA/AA) or rs1143643 (CC/CT/TT) between the case group and control group (p > 0.05). ④ rs1143627 and rs1143643 were not found to be linked to T1DM susceptibility under different genetic models. Conclusion: rs1143627 and rs1143643 in the IL1B gene correlate with the positivity rate of IA-2A and ZnT8A in Chinese Han individuals with T1DM.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Rood JE, Behrens EM. Inherited Autoinflammatory Syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:227-249. [PMID: 34699263 DOI: 10.1146/annurev-pathmechdis-030121-041528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoinflammation describes a collection of diverse diseases caused by indiscriminate activation of the immune system in an antigen-independent manner. The rapid advancement of genetic diagnostics has allowed for the identification of a wide array of monogenic causes of autoinflammation. While the clinical picture of these syndromes is diverse, it is possible to thematically group many of these diseases under broad categories that provide insight into the mechanisms of disease and therapeutic possibilities. This review covers archetypical examples of inherited autoinflammatory diseases in five major categories: inflammasomopathy, interferonopathy, unfolded protein/cellular stress response, relopathy, and uncategorized. This framework can suggest where future work is needed to identify other genetic causes of autoinflammation, what types of diagnostics need to be developed to care for this patient population, and which options might be considered for novel therapeutic targeting. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julia E Rood
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
26
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
27
|
Asano T, Khourieh J, Zhang P, Rapaport F, Spaan AN, Li J, Lei WT, Pelham SJ, Hum D, Chrabieh M, Han JE, Guérin A, Mackie J, Gupta S, Saikia B, Baghdadi JEI, Fadil I, Bousfiha A, Habib T, Marr N, Ganeshanandan L, Peake J, Droney L, Williams A, Celmeli F, Hatipoglu N, Ozcelik T, Picard C, Abel L, Tangye SG, Boisson-Dupuis S, Zhang Q, Puel A, Béziat V, Casanova JL, Boisson B. Human STAT3 variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. J Exp Med 2021; 218:212397. [PMID: 34137790 PMCID: PMC8217968 DOI: 10.1084/jem.20202592] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joëlle Khourieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Tanwir Habib
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar.,College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luckshman Ganeshanandan
- Department of Clinical Immunology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Australia
| | - Luke Droney
- Department of Clinical Immunology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrew Williams
- Immunology Laboratory, Children's Hospital Westmead, Westmead, Australia
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science Antalya Education and Research Hospital, Antalya, Turkey
| | - Nevin Hatipoglu
- Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Capucine Picard
- Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et de la Recherche Médicale UMR 1163, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| |
Collapse
|
28
|
Maltseva N, Borzova E, Fomina D, Bizjak M, Terhorst‐Molawi D, Košnik M, Kulthanan K, Meshkova R, Thomsen SF, Maurer M. Cold urticaria - What we know and what we do not know. Allergy 2021; 76:1077-1094. [PMID: 33249577 DOI: 10.1111/all.14674] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Cold urticaria (ColdU) is a common form of chronic inducible urticaria characterized by the development of wheals, angioedema or both in response to cold exposure. Recent research and guideline updates have advanced our understanding and management of ColdU. Today, its pathophysiology is thought to involve the cold-induced formation of autoallergens and IgE to these autoallergens, which provoke a release of proinflammatory mediators from skin mast cells. The classification of ColdU includes typical and atypical subtypes. We know that cold-induced wheals usually develop on rewarming and resolve within an hour and that anaphylaxis can occur. The diagnosis relies on the patient's history and cold stimulation testing. Additional diagnostic work-up, including a search for underlying infections, should only be done if indicated by the patient's history. The management of ColdU includes cold avoidance, the regular use of nonsedating antihistamines and the off-label use of omalizumab. However, many questions regarding ColdU remain unanswered. Here, we review what is known about ColdU, and we present important unanswered questions on the epidemiology, underlying pathomechanisms, clinical heterogeneity and treatment outcomes. Our aim is to guide future efforts that will close these knowledge gaps and advance the management of ColdU.
Collapse
Affiliation(s)
- Natalya Maltseva
- Center of Allergy and Immunology Clinical State Hospital 52 Moscow Ministry of Healthcare Moscow Russian Federation
| | - Elena Borzova
- Department of Dermatology and Venereology I.M. Sechenov First Moscow State Medical University Moscow Russian Federation
| | - Daria Fomina
- Center of Allergy and Immunology Clinical State Hospital 52 Moscow Ministry of Healthcare Moscow Russian Federation
- Department of Clinical Immunology and Allergology I.M.Sechenov First Moscow State Medical University Moscow Russian Federation
| | - Mojca Bizjak
- University Clinic of Respiratory and Allergic Diseases Golnik Golnik Slovenia
| | - Dorothea Terhorst‐Molawi
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik Golnik Slovenia
| | - Kanokvalai Kulthanan
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Raisa Meshkova
- Smolensk State Medical University Smolensk Russian Federation
| | - Simon Francis Thomsen
- Department of Dermatology Bispebjerg Hospital University of Copenhagen Copenhagen Denmark
| | - Marcus Maurer
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | | |
Collapse
|
29
|
Betrains A, Staels F, Schrijvers R, Meyts I, Humblet-Baron S, De Langhe E, Wouters C, Blockmans D, Vanderschueren S. Systemic autoinflammatory disease in adults. Autoimmun Rev 2021; 20:102774. [PMID: 33609798 DOI: 10.1016/j.autrev.2021.102774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Systemic autoinflammatory disorders comprise an expanding group of rare conditions. They are mediated by dysfunction of the innate immune system and share a core of phenotypic manifestations including recurrent attacks of fever, cutaneous signs, chest or abdominal pain, lymphadenopathy, vasculopathy, and musculoskeletal symptoms. Diagnosis is often established in childhood, but a growing number of adult patients are being recognized with systemic autoinflammatory disorders, including adult-onset disease. In this review, we provide a concise update on the pathophysiology, clinical presentation, and diagnostic approach of systemic autoinflammatory disorders with an emphasis on the adult patient population. Despite the recent advances in genetic testing, the diagnosis of autoinflammatory disease in adult patients is often based on a thorough knowledge of the clinical phenotype. Becoming acquainted with the clinical features of these rare disorders may assist in developing a high index of suspicion for autoinflammatory disease in patients presenting with unexplained episodes of fever or inflammation.
Collapse
Affiliation(s)
- Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, Leuven, Belgium.
| | - Frederik Staels
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rik Schrijvers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Isabelle Meyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, Leuven, Belgium
| | - Stephanie Humblet-Baron
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, Leuven, Belgium
| | - Ellen De Langhe
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Leuven, Belgium
| | - Carine Wouters
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology & Immunobiology, Leuven, Belgium
| | - Daniel Blockmans
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, Leuven, Belgium
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; KU Leuven, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, Leuven, Belgium
| |
Collapse
|
30
|
Tsang MSM, Hou T, Chan BCL, Wong CK. Immunological Roles of NLR in Allergic Diseases and Its Underlying Mechanisms. Int J Mol Sci 2021; 22:1507. [PMID: 33546184 PMCID: PMC7913164 DOI: 10.3390/ijms22041507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.
Collapse
Affiliation(s)
- Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
| | - Ben Chung-Lap Chan
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; (M.S.-M.T.); (T.H.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Kulthanan K, Ungprasert P, Tapechum S, Rujitharanawong C, Kiratiwongwan R, Munprom K, Terhorst-Molawi D, Maurer M. Vibratory Angioedema Subgroups, Features, and Treatment: Results of a Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:971-984. [DOI: 10.1016/j.jaip.2020.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/20/2023]
|
32
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
33
|
Wang W, Zhou Y, Zhong LQ, Li Z, Jian S, Tang XY, Song HM. The clinical phenotype and genotype of NLRP12-autoinflammatory disease: a Chinese case series with literature review. World J Pediatr 2020; 16:514-519. [PMID: 31820221 DOI: 10.1007/s12519-019-00294-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The nucleotide-binding oligomerization domain-like receptor protein 12 (NLRP12)-autoinflammatory disorder (NLRP12-AD) is a rare autoinflammatory disease characterized by recurrent fever, rash as well as musculoskeletal symptoms, which is rarely reported in Asian populations. METHODS Three cases of NLRP12-AD presented to our hospital were studied after parental consents were obtained. Clinical presentations were recorded on a standardized case report form. Mutations of NLRP12 were detected by primary immunodeficiency disease panels and further examined by Sanger sequencing. PubMed literature search for relevant studies of systemic autoinflammatory disorders, especially NLRP12-AD between January, 2000 and January, 2019 was carried and the clinical data were summarized. Comparisons were made between groups in terms of onset age and of ethnicity. RESULTS All our patients presented with fever, rash and arthritis/arthralgia, and sensorineural as well as sensorineural deafness (1/3), uveitis (1/3), abdominal pain (1/3), and myalgia (1/3). Two novel mutation variations, p.W581X and p.L558R, are reported here. In addition, we also found that two patients inherited the mutated alleles from their healthy parents, and this may be evidence of haploinsufficiency. CONCLUSIONS Although the genotypes are similar, the clinical manifestations between Chinese patients and Western patients vary thus highlighting the possible influence of ethnic and environmental factors. On the other hand, some genetic mutations may lead to specific phenotype, as we have found a high prevalence of sensorineural hearing loss among p.R284X patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Lin-Qing Zhong
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Li
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Yan Tang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Li ZT, Liu H, Zhang WQ. NLRC3 alleviates hypoxia/reoxygenation induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6. Hepatobiliary Pancreat Dis Int 2020; 19:455-460. [PMID: 32386989 DOI: 10.1016/j.hbpd.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND NOD-like receptor family CARD domain containing 3 (NLRC3) plays an important role in both innate and adaptive immunity. This study was to explore the function and related mechanisms of NLRC3 in a hypoxia/reoxygenation (H/R)-induced inflammatory response in RAW264.7 cells. METHODS Liver ischemia-reperfusion (I/R) model in mice and H/R model in RAW264.7 cells were constructed. Western blotting was used to determine the protein expression level of NLRC3 in liver tissue and NLRC3, TRAF6, p-p65, p65, IκB-α, and the K63-linked ubiquitination level of TRAF6 in cells. The immunofluorescence assay was performed to evaluate the nuclear level of the NF-κB (p65). ELISA was conducted to measure the content of IL-1β in serum and cell supernatant. The interaction between NLRC3 and TRAF6 in cells was analyzed by the Co-IP assay. RESULTS The NLRC3 protein level in liver tissue was decreased with the prolongation of reperfusion time (P < 0.05). The expression of NLRC3 and IκB-α protein in RAW264.7 was decreased gradually, while the expression of p-p65 and TRAF6 proteins and K63-linked ubiquitination of TRAF6 were increased gradually with the prolongation of reoxgenation time (P < 0.05). The Co-IP assay revealed that NLRC3 and TRAF6 can bind to each other directly. However, NLRC3 had no effect on the expression of TRAF6 protein. The ubiquitination test results showed that the K63-linked ubiquitination level of TRAF6 in H/R + Lv-NLRC3 group was significantly lower than that in the H/R + negative control (NC) group (P < 0.05). Moreover, the activation of NF-κB in H/R + Lv-NLRC3 group was inhibited compared with that in the H/R + NC group, and the level of the inflammatory factor IL-1β in the cell culture supernatant was also decreased accordingly (P < 0.05). CONCLUSIONS NLRC3 might alleviate H/R-induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6.
Collapse
Affiliation(s)
- Zhong-Tang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wan-Qiu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
35
|
Del Porto F, Cifani N, Proietta M, Verrecchia E, Di Rosa R, Manna R, Chiurazzi P. NLRP12 gene mutations and auto-inflammatory diseases: ever-changing evidence. Rheumatology (Oxford) 2020; 59:3129-3136. [DOI: 10.1093/rheumatology/keaa304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
Systemic auto-inflammatory diseases (SAID) are a group of rare inherited conditions characterized by a dysregulation of the immune system and associated with recurrent episodes of fever and systemic inflammation. Patients with NLRP12 variants develop a rare autosomal dominant condition known as familial cold-induced autoinflammatory syndrome (FCAS2, OMIM #611762) that has been related to several different clinical manifestations including autoimmunity and immune deficiencies. In past years, several new variants have been described; however, their clinical relevance is sometimes uncertain, especially when they have been detected in healthy subjects. To our knowledge 61 patients with NLRP12 variants have been reported so far in the literature. Here we report the case of a 33-year-old woman with a history of recurrent fever and symmetric and additive poly-arthritis, fulfilling diagnostic criteria for RA, who was found to harbour two variants in the NLRP12 gene (OMIM *609648) and provide a review of the literature on similar cases.
Collapse
Affiliation(s)
- Flavia Del Porto
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, ‘Sapienza’ Università di Roma, UOC Medicina Interna, Ospedale Sant’Andrea
| | - Noemi Cifani
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, ‘Sapienza’ Università di Roma, UOC Medicina Interna, Ospedale Sant’Andrea
| | - Maria Proietta
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, ‘Sapienza’ Università di Roma, UOC Medicina Interna, Ospedale Sant’Andrea
| | - Elena Verrecchia
- Istituto di Medicina Interna e
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore
- UOC Medicina Interna Columbus, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS
| | - Roberta Di Rosa
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, ‘Sapienza’ Università di Roma, UOC Medicina Interna, Ospedale Sant’Andrea
| | - Raffaele Manna
- Istituto di Medicina Interna e
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore
- UOC Medicina Interna Columbus, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC Genetica Medica, Roma, Italia
| |
Collapse
|
36
|
van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev 2020; 297:247-272. [PMID: 32640080 DOI: 10.1111/imr.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Prado DS, Veras FP, Ferreira RG, Damasceno LEA, Melo PH, Zamboni DS, Cunha TM, Cunha FQ, Alves-Filho JC. NLRP12 controls arthritis severity by acting as a checkpoint inhibitor of Th17 cell differentiation. FASEB J 2020; 34:10907-10919. [PMID: 32632939 DOI: 10.1096/fj.202000795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/ - mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/ - cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/ - mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/ - mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/ - mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.
Collapse
Affiliation(s)
- Douglas Silva Prado
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavio P Veras
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Gomes Ferreira
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Eduardo Alves Damasceno
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Henrique Melo
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dario Simões Zamboni
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
38
|
Klinische Symptomatik autoinflammatorischer Erkrankungen. Hautarzt 2020; 71:342-358. [DOI: 10.1007/s00105-020-04582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Kralova J, Drobek A, Prochazka J, Spoutil F, Fabisik M, Glatzova D, Borna S, Pokorna J, Skopcova T, Angelisova P, Gregor M, Kovarik P, Sedlacek R, Brdicka T. Dysregulated NADPH Oxidase Promotes Bone Damage in Murine Model of Autoinflammatory Osteomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1607-1620. [PMID: 32024700 DOI: 10.4049/jimmunol.1900953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1β by neutrophil granulocytes. In this study, we show that in addition to IL-1β, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1β levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Daniela Glatzova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Simon Borna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Pavla Angelisova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; and
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| |
Collapse
|
40
|
Crosstalk between NLRP12 and JNK during Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21020496. [PMID: 31941025 PMCID: PMC7013925 DOI: 10.3390/ijms21020496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death, is initiated and promoted by chronic inflammation. Inflammatory mediators are transcriptionally regulated by several inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). cJun N-terminal kinase (JNK), a member of the MAPK family, plays a central role in HCC pathogenesis. Pathogen-associated molecular patterns (PAMPs) activate JNK and other MAPK upon recognition by toll-like receptors (TLRs). Apart from TLRs, PAMPs are sensed by several other pattern recognition receptors, including cytosolic NOD-like receptors (NLRs). In a recent study, we demonstrated that the NLR member NLRP12 plays a critical role in suppressing HCC via negative regulation of the JNK pathway. This article briefly reviews the crosstalk between NLRP12 and JNK that occurs during HCC.
Collapse
|
41
|
Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat Commun 2020; 11:179. [PMID: 31924766 PMCID: PMC6954242 DOI: 10.1038/s41467-019-13984-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Hereditary autoinflammatory diseases are caused by gene mutations of the innate immune pathway, e.g. nucleotide receptor protein 3 (NLRP3). Here, we report a four-generation family with cold-induced urticarial rash, arthralgia, chills, headache and malaise associated with an autosomal-dominant inheritance. Genetic studies identify a substitution mutation in gene F12 (T859A, resulting in p.W268R) which encodes coagulation factor XII (FXII). Functional analysis reveals enhanced autocatalytic cleavage of the mutated protein and spontaneous FXII activation in patient plasma and in supernatant of transfected HEK293 cells expressing recombinant W268R-mutated proteins. Furthermore, we observe reduced plasma prekallikrein, cleaved high molecular weight kininogen and elevated plasma bradykinin. Neutrophils are identified as a local source of FXII. Interleukin-1β (IL-1β) is upregulated in lesional skin and mononuclear donor cells exposed to recombinant mutant proteins. Treatment with icatibant (bradykinin-B2-antagonist) or anakinra (interleukin-1-antagonist) reduces disease activity in patients. In conclusion, our findings provide a link between contact system activation and cytokine-mediated inflammation. Systemic autoinflammatory syndromes such as cryopyrin-associated periodic syndrome (CAPS) are rare and often involve genes related to the inflammasome. Here, the authors report a syndrome characterised by systemic inflammation and cold-induced urticarial rash associated with a Factor XII-activating mutation.
Collapse
|
42
|
Standing AS, Hong Y, Paisan-Ruiz C, Omoyinmi E, Medlar A, Stanescu H, Kleta R, Rowcenzio D, Hawkins P, Lachmann H, McDermott MF, Eleftheriou D, Klein N, Brogan PA. TRAP1 chaperone protein mutations and autoinflammation. Life Sci Alliance 2019; 3:3/2/e201900376. [PMID: 31882397 PMCID: PMC6975284 DOI: 10.26508/lsa.201900376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
We identified a consanguineous kindred, of three affected children with severe autoinflammation, resulting in the death of one sibling and allogeneic stem cell transplantation in the other two. All three were homozygous for MEFV p.S208C mutation; however, their phenotype was more severe than previously reported, prompting consideration of an oligogenic autoinflammation model. Further genetic studies revealed homozygous mutations in TRAP1, encoding the mitochondrial/ER resident chaperone protein tumour necrosis factor receptor associated protein 1 (TRAP1). Identification of a fourth, unrelated patient with autoinflammation and compound heterozygous mutation of TRAP1 alone facilitated further functional studies, confirming the importance of this protein as a chaperone of misfolded proteins with loss of function, which may contribute to autoinflammation. Impaired TRAP1 function leads to cellular stress and elevated levels of serum IL-18. This study emphasizes the importance of considering digenic or oligogenic models of disease in particularly severe phenotypes and suggests that autoinflammatory disease might be enhanced by bi-allelic mutations in TRAP1.
Collapse
Affiliation(s)
- Ariane Si Standing
- University College London and Great Ormond Street Institute of Child Health, London, UK .,The Natural History Museum, London, UK
| | - Ying Hong
- University College London and Great Ormond Street Institute of Child Health, London, UK
| | - Coro Paisan-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ebun Omoyinmi
- University College London and Great Ormond Street Institute of Child Health, London, UK
| | - Alan Medlar
- University College London Division of Medicine, London, UK
| | - Horia Stanescu
- University College London Division of Medicine, London, UK
| | - Robert Kleta
- University College London Division of Medicine, London, UK
| | | | - Philip Hawkins
- National Amyloidosis Centre and Royal Free Hospital, London, UK
| | - Helen Lachmann
- National Amyloidosis Centre and Royal Free Hospital, London, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Despina Eleftheriou
- University College London and Great Ormond Street Institute of Child Health, London, UK
| | - Nigel Klein
- University College London and Great Ormond Street Institute of Child Health, London, UK
| | - Paul A Brogan
- University College London and Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
43
|
Marino A, Tirelli F, Giani T, Cimaz R. Periodic fever syndromes and the autoinflammatory diseases (AIDs). J Transl Autoimmun 2019; 3:100031. [PMID: 32743516 PMCID: PMC7388371 DOI: 10.1016/j.jtauto.2019.100031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Innate immune system represents the ancestral defense against infectious agents preserved along the evolution and species; it is phylogenetically older than the adaptive immune system, which exists only in the vertebrates. Cells with phagocytic activity such as neutrophils, macrophages, and natural killer (NK) cells play a key role in innate immunity. In 1999 Kastner et al. first introduced the term “autoinflammation” describing two diseases characterized by recurrent episodes of systemic inflammation without any identifiable infectious trigger: Familial Mediterranean Fever (FMF) and TNF Receptor Associated Periodic Syndrome (TRAPS). Autoinflammatory diseases (AIDs) are caused by self-directed inflammation due to an alteration of innate immunity leading to systemic inflammatory attacks typically in an on/off mode. In addition to inflammasomopathies, nuclear factor (NF)-κB-mediated disorders (also known as Rhelopathies) and type 1 interferonopathies are subjects of more recent studies. This review aims to provide an overview of the field with the most recent updates (see “Most recent developments in..” paragraphs) and a description of the newly identified AIDs. Autoinflammatory diseases are caused by self-directed inflammation. Alteration of innate immunity leads to systemic inflammation attacks. The autoinflammatory field is exponentially expanding. The advances in AIDs have led to new insights into immune system understanding. Autoimmunity and autoinflammation features may be simultaneously present.
Collapse
Affiliation(s)
- Achille Marino
- Department of Pediatrics, Desio Hospital, ASST Monza, Desio, MB, Italy.,Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Tirelli
- Rheumatology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Teresa Giani
- Rheumatology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| |
Collapse
|
44
|
Whole exome sequencing in a child with acute disseminated encephalomyelitis, optic neuritis, and periodic fever syndrome: a case report. J Med Case Rep 2019; 13:368. [PMID: 31836009 PMCID: PMC6911267 DOI: 10.1186/s13256-019-2305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 10/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background Acute disseminated encephalomyelitis is generally preceded by an infection, and it is usually self-limiting and non-recurrent. However, when there are multiple attacks of acute disseminated encephalomyelitis followed by optic neuritis, it is defined as acute disseminated encephalomyelitis-optic neuritis. To the best of our knowledge, there are no previous reports of acute disseminated encephalomyelitis and optic neuritis preceded by autoinflammation, triggered by periodic fever syndrome. Case summary We report on a case of acute disseminated encephalomyelitis with optic neuritis and periodic fever syndrome in a 12-year-old Ecuadorian Hispanic boy with several relapses over the past 10 years, always preceded by autoinflammatory manifestations and without evidence of infectious processes. Whole exome sequencing was performed, and although the results were not conclusive, we found variants in genes associated with both autoinflammatory (NLRP12) and neurological (POLR3A) phenotypes that could be related to the disease pathogenesis having a polygenic rather than monogenic trait. Conclusion We propose that an autoinflammatory basis should be pursued in patients diagnosed as having acute disseminated encephalomyelitis and no record of infections. Also, we show that our patient had a good response after 1 year of treatment with low doses of intravenous immunoglobulin and colchicine.
Collapse
|
45
|
Hua Y, Wu D, Shen M, Yu K, Zhang W, Zeng X. Phenotypes and genotypes of Chinese adult patients with systemic autoinflammatory diseases. Semin Arthritis Rheum 2019; 49:446-452. [DOI: 10.1016/j.semarthrit.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 11/15/2022]
|
46
|
Figueras-Nart I, Mascaró JM, Solanich X, Hernández-Rodríguez J. Dermatologic and Dermatopathologic Features of Monogenic Autoinflammatory Diseases. Front Immunol 2019; 10:2448. [PMID: 31736939 PMCID: PMC6828938 DOI: 10.3389/fimmu.2019.02448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Autoinflammatory diseases include disorders with a monogenic cause and also complex conditions associated to polygenic or multifactorial factors. An increased number of both monogenic and polygenic autoinflammatory conditions have been identified during the last years. Although skin manifestations are often predominant in monogenic autoinflammatory diseases, clinical and histopathological information regarding their dermatological involvement is still scarce. Monogenic autoinflammatory diseases with cutaneous expression can be classified based on the predominant lesion: (1) maculopapular rashes or inflammatory plaques; (2) urticarial rashes; (3) pustular, pyogenic or neutrophilic dermatosis-like rashes; (4) panniculitis or subcutaneous nodules; (5) vasculitis or vasculopathy; (6) hyperkeratotic lesions; (7) hyperpigmented lesions; (8) bullous lesions; and (9) aphthous lesions. By using this classification, this review intends to provide clinical and histopathological knowledge about cutaneous involvement in monogenic autoinflammatory diseases.
Collapse
Affiliation(s)
- Ignasi Figueras-Nart
- Department of Dermatology, Bellvitge Hospital, University of Barcelona, Barcelona, Spain
| | - José M Mascaró
- Department of Dermatology, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Bellvitge Hospital, University of Barcelona, Barcelona, Spain
| | - José Hernández-Rodríguez
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
HSC70 regulates cold-induced caspase-1 hyperactivation by an autoinflammation-causing mutant of cytoplasmic immune receptor NLRC4. Proc Natl Acad Sci U S A 2019; 116:21694-21703. [PMID: 31597739 DOI: 10.1073/pnas.1905261116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NLRC4 [nucleotide-binding domain and leucine-rich repeat (NLR) family, caspase recruitment domain (CARD) containing 4] is an innate immune receptor, which, upon detection of certain pathogens or internal distress signals, initiates caspase-1-mediated interleukin-1β maturation and an inflammatory response. A gain-of-function mutation, H443P in NLRC4, causes familial cold autoinflammatory syndrome (FCAS) characterized by cold-induced hyperactivation of caspase-1, enhanced interleukin-1β maturation, and inflammation. Although the H443P mutant shows constitutive activity, the mechanism involved in hyperactivation of caspase-1 by NLRC4-H443P upon exposure of cells to lower temperature is not known. Here, we show that heat shock cognate protein 70 (HSC70) complexes with NLRC4 and negatively regulates caspase-1 activation by NLRC4-H443P in human cells. Compared with NLRC4, the structurally altered NLRC4-H443P shows enhanced interaction with HSC70. Nucleotide binding- and leucine-rich repeat domains of NLRC4, but not its CARD, can engage in complex formation with HSC70. Knockdown of HSC70 enhances apoptosis-associated speck-like protein containing a CARD (ASC)-speck formation and caspase-1 activation by NLRC4-H443P. Exposure to subnormal temperature results in reduced interaction of NLRC4-H443P with HSC70, and an increase in its ability to form ASC specks and activate caspase-1. Unlike the NLRC4-H443P mutant, another constitutively active mutant (NLRC4-V341A) associated with autoinflammatory diseases, but not FCAS, showed neither enhanced interaction with HSC70 nor an increase in inflammasome formation upon exposure to subnormal temperature. Our results identify HSC70 as a negative regulator of caspase-1 activation by the temperature-sensitive NLRC4-H443P mutant. We also show that low-temperature-induced hyperactivation of caspase-1 by NLRC4-H443P is due to loss of inhibition by HSC70.
Collapse
|
48
|
Jacob N, Dasharathy SS, Bui V, Benhammou JN, Grody WW, Singh RR, Pisegna JR. Generalized Cytokine Increase in the Setting of a Multisystem Clinical Disorder and Carcinoid Syndrome Associated with a Novel NLRP12 Variant. Dig Dis Sci 2019; 64:2140-2146. [PMID: 30788684 PMCID: PMC6707534 DOI: 10.1007/s10620-019-05525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a group of cytoplasmic sensors that survey danger signals released by invading pathogens or damaged tissue. Mutations in the NLRP subfamily affect pro-inflammatory mediators and cause nonspecific systemic symptoms. AIMS We sought to identify a potential genetic etiology of an inflammatory syndrome in a patient that presented with an atypical multisystem illness with carcinoid syndrome as well as atopic and autoimmune features. METHODS Exome sequencing was performed using the Agilent SureSelect Clinical Research Exome XT kit on an Illumina HiSeq 2500. Longitudinal monitoring of pro-inflammatory cytokines was performed. RESULTS We identified a novel variant (heterozygous c.536C > T [p.Thr179Ile]) in the NLRP12 gene in a 63-year-old woman and her daughter, who presented with an unusual clinical syndrome that differs from autoinflammatory disorders previously reported in association with the NLRP subfamily gene mutations. This NLRP12 variant was predicted to be pathogenic by functional analysis through Hidden Markov Models (FATHMM). Both the mother and the daughter had episodes of abdominal pain, fever, diarrhea, skin rash, hypothyroidism, and elevated urine 5-hydroxyindoleacetic acid (5-HIAA) levels. The proband also had elevated serum levels of pro-inflammatory (IL-1β, IL-6, IL-12, and TNF-α), Th1 (IL-2, IFN-γ), and Th2 (IL-4, IL-5, IL-13) cytokines, but not of Th17 (IL-17) and IL-10. CONCLUSION This report adds to the expanding spectrum of clinical manifestations attributed to the NLRP subfamily gene variants and suggests a role of NLRP12 in the regulation of multiple cytokines.
Collapse
Affiliation(s)
- Noam Jacob
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA
| | - Sonya S Dasharathy
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Viet Bui
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jihane N Benhammou
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA
| | - Wayne W Grody
- Departments of Human Genetics and Pediatrics, and the UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ram Raj Singh
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Molecular Toxicology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
- Departments of Human Genetics and Pediatrics, and the UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
49
|
Sharma N, Saxena S, Agrawal I, Singh S, Srinivasan V, Arvind S, Epari S, Paul S, Jha S. Differential Expression Profile of NLRs and AIM2 in Glioma and Implications for NLRP12 in Glioblastoma. Sci Rep 2019; 9:8480. [PMID: 31186453 PMCID: PMC6559951 DOI: 10.1038/s41598-019-44854-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most prevalent primary brain tumors with immense clinical heterogeneity, poor prognosis and survival. The nucleotide-binding domain, and leucine-rich repeat containing receptors (NLRs) and absent-in-melanoma 2 (AIM2) are innate immune receptors crucial for initiation and progression of several cancers. There is a dearth of reports linking NLRs and AIM2 to glioma pathology. NLRs are expressed by cells of innate immunity, including monocytes, macrophages, dendritic cells, endothelial cells, and neutrophils, as well as cells of the adaptive immune system. NLRs are critical regulators of major inflammation, cell death, immune and cancer-associated pathways. We used a data-driven approach to identify NLRs, AIM2 and NLR-associated gene expression and methylation patterns in low grade glioma and glioblastoma, using The Cancer Genome Atlas (TCGA) patient datasets. Since TCGA data is obtained from tumor tissue, comprising of multiple cell populations including glioma cells, endothelial cells and tumor-associated microglia/macrophages we have used multiple cell lines and human brain tissues to identify cell-specific effects. TCGA data mining showed significant differential NLR regulation and strong correlation with survival in different grades of glioma. We report differential expression and methylation of NLRs in glioma, followed by NLRP12 identification as a candidate prognostic marker for glioma progression. We found that Nlrp12 deficient microglia show increased colony formation while Nlrp12 deficient glioma cells show decreased cellular proliferation. Immunohistochemistry of human glioma tissue shows increased NLRP12 expression. Interestingly, microglia show reduced migration towards Nlrp12 deficient glioma cells.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Shivanjali Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Ishan Agrawal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Varsha Srinivasan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - S Arvind
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sushmita Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India.
| |
Collapse
|
50
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|